首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the genetic structure of many populations of marine organisms show little deviation from panmixia, in those marine species with limited larval dispersal, patterns of microgeographic genetic differentiation may be common. The octocoral Briareum asbestinum should show local population differentiation because colonies reproduce asexually by fragmentation, most matings occur between colonies in very close proximity, and the sexually produced larvae and sperm appear to disperse only short distances. Variability in secondary chemistry of individual B. asbestinum colonies from different populations in close proximity also suggests local population differentiation. We determined the genetic composition of local populations by surveying allozyme variation of three shallow and two deep populations within a 300 m2 area at San Salvador Island, Bahamas and at a site 161 km away on Little San Salvador, Bahamas in July 1990. As B. asbestinum occurs as either an erect branching form or an encrusting mat often at the same sites, we sampled both morphs to examine the extent of genetic exchange between them. Five of 21 loci were polymorphic and most populations showed a deficit of heterozygotes. Allele frequencies differed significantly between morphs at each site where they occurred together. The mean genetic distance (D=0.065) between morphs is consistent with the interpretation that the two morphs are genetically isolated. Despite the close spatial proximity of the San Salvador populations, both the branching and encrusting morphs showed significant genetic heterogeneity among neighboring populations. Similarly, pooled allelic frequencies for samples collected from the islands of San Salvador and Little San Salvador differed significantly at 1 locus for the branching morph and at 3 out of 5 loci for the encrusting morph.  相似文献   

2.
Allozyme electrophoresis at five loci was used to clarify the species status of two morphs of the scleractinian coral Montipora digitata (Dana, 1846), using specimens collected from three locations off the Queensland coast between October 1991 and April 1993. The two morphs, occurring sympatrically, were distinguished by one fixed gene difference at Locus LT-2 and frequency differences at three other loci, indicating reproductive isolation between them. Populations of both morphs were generally in Hardy-Weinberg equilibrium, suggesting that sexual reproduction does occur. Despite sampling designed to reduce the chance of collecting clonemates, the genetic diversity ratio (G O:GE) indicated that asexual reproduction also occurs. This is in agreement with the known modes of reproduction for this species. There was significant genetic differentiation between populations of one of the morphs of M. digitata. This could have been influenced by greater degrees of asexual reproduction in this morph, selection within sites, or variation in larval survival and recruitment patterns. Relatively low F st (differentiation among populations) values found for a broadcast spawning species during this study are in accordance with the hypothesis that brooded planulae are adapted for rapid settlement, whereas planulae produced by broadcast spawners are adapted for widespread dispersal.  相似文献   

3.
The Isthmus of Panama rose approximately 3 million years before the present (mybp) and isolated biotas in the tropical eastern Pacific from those in the Caribbean Sea. Populations that were split by the Isthmus and have evolved in allopatry since that time are known as geminates. The surf zone/beach isopod Excirolana braziliensis Richardson was examined between 1984 and 1989 to test the hypothesis that divergence in geminate isopod morphology has occurred, and that geminate divergence is greater than divergence between local populations from the same coastline. Three morphs of Excirolana braziliensis, one in the Caribbean and two in the eastern Pacific, were discovered using numerical taxonomic methods that adjust for body size. The two Pacific morphs have overlapping large-scale distributions, but those morphs are segregated on a smaller scale by beach. We inferred that one Pacific morph and one Caribbean morph were geminates, based on their relative similarity in shape, their geographical ranges, and natural history information about the organism's dispersal capabilities. The origin of the third morph probably predates the Isthmus of Panama, given its relative dissimilarity from the geminate morphs. The presumed geminates differ primarily with respect to the rostrum, antennae and one male reproductive structure. Divergence between geminates is greater than divergence between local populations of any morph along a coastline. Because only one morph occurs in the Caribbean, that region contains less morphological variation than the eastern Pacific, which contains two morphs. There was weak evidence that some introductions may have taken place in the last century from the Caribbean to the Pacific; however, introductions have not masked the pattern of divergence that has developed over millions of years.  相似文献   

4.
Gene flow between populations of the asteroid Linckia laevigata (Linnaeus) was investigated by examining over 1000 individuals collected from ten reefs throughout the Great Barrier Reef (GBR), Australia, for genetic variation at seven polymorphic enzyme loci. Despite geographic separations in excess of 1000 km, Nei's unbiased genetic distance (0 to 0.003) and standardised genetic variation between populations (F ST) values (mean 0.0011) were small and not significant. Genetic homogeneity among L. laevigata populations is consistent with the long-distance dispersal capability of its 28 d planktonic larval phase, and is greater than that observed for other asteroid species, including another high-dispersal species, Acanthaster planci, which has a 14 d larval phase. Variation within populations was also higher than previously recorded for asteroids (mean heterozygosity=0.384; number of alleles per locus ranged from 5.1 to 6.0 in each population). Among asteroids, dispersal ability is positively correlated with gene flow and levels of variation, and negatively correlated with levels of differentiation.  相似文献   

5.
The amount of genetic structure in marine invertebrates is often thought to be negatively correlated with larval duration. However, larval retention may increase genetic structure in species with long-lived planktonic larvae, and rafting provides a means of dispersal for species that lack a larval dispersal phase. We compared genetic structure, demographic histories and levels of gene flow of regional lineages (in most cases defined by biogeographic region) of five southern African coastal invertebrates with three main types of larval development: (1) dispersal by long-lived planktonic larvae (mudprawn Upogebia africana and brown mussel Perna perna), (2) abbreviated larval development (crown crab Hymenosoma orbiculare) and (3) direct development (estuarine isopod Exosphaeroma hylecoetes and estuarine cumacean Iphinoe truncata). We hypothesized that H. orbiculare, having abbreviated larval development, would employ a strategy of larval retention, resulting in genetic structure comparable to that of the direct developers rather than the planktonic dispersers. However, regional population structure was significantly lower in all species with planktonic larvae, including H. orbiculare, than in the direct developers. Moreover, nested clade analysis identified demographic histories resulting from low levels of gene flow (isolation by distance and allopatric fragmentation) in the direct developers only, and migration rates were significantly higher in all three species having planktonic larvae than in the direct developers. We conclude that the amount of genetic structure within marine biogeographic regions strongly depends on the presence or absence of free-swimming larvae. Whether such larvae are primarily exported or retained, whether they have long or short larval duration, and whether or not they are capable of active dispersal seems to have little effect on connectivity among populations.  相似文献   

6.
Sympatric populations of two forms of the common dolphin, currently recognized collectively as Delphinus delphis Linnaeus, occur in several areas of the world's oceans. A molecular genetic study was initiated to determine whether these forms are genetically distinct in the Northeast Pacific. We compared mitochondrial DNA sequences from the control region and cytochrome b gene between specimens of the long-beaked and the short-beaked morphotypes collected between 1986 and 1989 off the coast of southern California. Additional short-beaked specimens collected from the eastern tropical Pacific (in 1978 and 1982) and the Black Sea (in 1989) were also compared. There were no shared mitochondrial DNA haplotypes between the two morphotypes, and both gene regions exhibited frequency and fixed nucleotide substitutions between the two morphotypes. This genetic differentiation, coupled with unique morphological characters of the short-beaked and long-beaked morphotypes determined in a parallel study, indicate that although sympatric, these populations of common dolphin are reproductively isolated from one another and may represent separate species.  相似文献   

7.
I used DNA fingerprinting to provide the first analysis of the genetic composition of western pond turtle ( Clemmys marmorata ) populations in Washington, Oregon, and California. Populations of the western pond turtle in Washington and northern Oregon are rapidly approaching extinction. Genetic similarity within the largest northern populations, which are located inland, is high. An analysis of population substructure (Fst) revealed significant genetic divergence between inland populations, indicating a lack of dispersal and gene flow between sites. In contrast, northern coastal sites are not genetically distinct, but there are few if any viable populations remaining in this region. Genetic variability within southern California populations is a great deal higher than in northern inland sites. Similarly, a low Fst value indicated a lack of genetic differentiation between southern sites. An inter-regional analysis of population substructure (Fst = 0.24) revealed a significant degree of genetic divergence between geographical regions throughout the range. In addition, an estimate of western pond turtle phylogeny showed a genetic break in the species between northern and southern populations. Both population subdivision and phylogenetic analyses suggest a lack of appreciable gene flow between geographical regions for a considerable period of time. Genetic analyses support traditional subdivision based solely on the morphological variation of Clemmys marmorata into two subspecies: northern Clemmys marmorata marmorata and southern Clemmys marmorata pallida . Recovery of dwindling northern populations must combine demographic and genetic considerations. A first step should be to preserve local gene pools while augmenting population numbers, with the goal of preventing the extinction of this genetically and morphologically distinct subspecies.  相似文献   

8.
Anthothoe albocincta, a common subtidal anemone along south-eastern Australia, reproduces both sexually through broadcast spawning and clonally through fission. Clones may be distinguished both by their electrophoretic genotypes and the colour of their tentacles and oral discs. Local populations typically consist of many, dense clonal aggregations. However, some clones appear to have locally extensive distributions, forming a series of separate aggregations. The capacity of clones to disperse among local populations is unknown. In this study we used an electrophoretic survey at six allozyme loci to quantify levels of variation among samples from each of 13 local populations and four geographic regions sampled between April 1992 and June 1993. These data revealed that populations of A. albocincta, separated by up to 930 km, were at least moderately subdivided. Levels of geographic variation were high and the average F ST value (standardised genetic variation) was 0.27 based on genotypes of all individual polyps. This value reflects substantial variation both within (F PR =0.13) and among (F RT =0.16) regions. Estimates of gene flow among both neighbouring populations and regions are therefore low (N e m=1.7 and 1.3, respectively). UPGMA (unweighted pair-group method using arithmetic averages) dendrograms suggest that a genetic discontinuity occurs at the very south-east corner of Australia, paralleling reports for two other south-eastern Australian marine invertebrates. In addition, our analyses and theoretical predictions imply that localised proliferation of clonal genotypes may have caused us to underestimate the potential importance of gene flow via larval dispersal. Moreover, the abundance and vast geographic range of this species suggests that widespread dispersal does occur. Collections from three populations covering the peroid December 1992 to June 1993 were examined by crude dissection along with histological sectioning, and showed A. albocincta to be dioecious, with unisexual clones. Eggs within the ovaries of six females sampled over a 3 mo period were small (96±4 m) and similar to those of related species that produce planktotrophic larvae. In contrast, we found no evidence that clones were dispersed (shared) among neighbouring local populations. An average of only 6% of six-locus genotypes were common to pairs of local populations separated by up to 125 km, this being equal to the percentage expected through sexual reproduction alone. In addition, the percentage of shared genotypes did not decline with increasing geographic separation. These data imply that although asexual reproduction may be used to maintain local populations, the sexual production of genotypically diverse larvae is the primary source of widely dispersed colonists and hence of new clones.  相似文献   

9.
Lingcod, Ophiodon elongatus Girard, have a 3-month pelagic larval stage and are an important recreational and commercial species on the west coast of North America. Cytochrome-c oxidase I sequences from tissue samples were used to characterize population structure and infer patterns of gene flow from California to Alaska. No significant genetic structure was found when estimates of Wright’s F ST (i.e., ΦST) were generated among all populations sampled. Nesting populations within regions, however, indicated that the inner coast of Washington State is distinct, a result corroborating previous allozyme work. Coalescent-based estimates of gene flow indicate that although migration can be high from an evolutionary perspective, nearly half of all comparisons among populations showed no gene flow in at least one direction. From an ecological perspective, moderate migration rates (Nm < 10) among most populations provide surprisingly limited connectivity at large (∼ 1,000 km) and small (∼100 km) spatial scales. Coalescent-based estimates also show that gene flow between the inner and the outer coasts is asymmetric, a result consistent with prevailing surface currents. Because the expected inter-locus variances for coalescent-based estimates of gene flow are likely large, future work will benefit from analyses of nuclear DNA markers. However, limited demographic connectivity on large spatial scales may help explain why stock recovery has been uneven, with greater recovery in the northern (87% rebuilt) than in the southern (24% rebuilt) fishery region, supporting a regional management strategy. These results suggest that despite a 3-month pelagic larval stage, some areas may be effectively closed with respect to both population dynamics and fishery management issues.  相似文献   

10.
Photosynthesis, growth, distribution, and persistence of macroalgae are determined in part by the physical environment in which they live. Therefore, discerning how macroalgae interact with their physical environment is necessary to better understand their physiological performance. The purpose of this study was to examine what photosynthetic and hydrodynamic costs and benefits the morphology of Pachydictyon coriaceum (Phaeophyta) confers on the thallus in a given environment. Principal components analysis of morphometric measurements of Pachydictyon coriaceum from different flow habitats and depths separated thalli into three distinct morphs: shallow wave-exposed, shallow wave-protected, and deep. To test the hypothesis that thallus morphology affects net photosynthesis (NP), thalli of three morphotypes of P. coriaceum were incubated in an enclosed recirculating flume under three simulated light/water flow environments representing conditions from which the three morphotypes were collected. The wave-protected and deep morphs had significantly higher rates of photosynthesis than the wave-exposed morph for all three simulated environments. The dense, compact shape of the wave-exposed morph readily streamlines with flow and in doing so, potentially shades many of its internal blades likely accounting for its lower biomass-specific NP. Drag coefficients (C d) were estimated for the three morphotypes over a range of flow velocities between 0.08 and 0.47 m s−1. At lower water flow velocities (0.08–0.21 m s−1), wave-exposed morphs had the lowest C d among the three morphotypes. But drag coefficients of the three morphotypes converged with increasing flow velocities, and at velocities >0.31 m s−1 there were no differences in C d among the three morphotypes. The results of this study indicate that the environmentally-shaped morphs influence photosynthesis and, to a lesser degree, hydrodynamic forces acting on P. coriaceum.  相似文献   

11.
Color variation is used in taxonomic classification of reef fishes, but it may not reliably indicate evolutionary divergence. In the central Pacific, there are three color morphs of the flame angelfish, Centropyge loriculus: a red morph that occurs primarily in the Hawaiian archipelago, the endemic Marquesan color morph with reduced black markings, and an orange morph that occurs throughout the rest of Oceania. The red and orange morphs co-occur at Johnston Atoll (1,300 km south of Hawai’i), but intermediate forms have not been reported. To determine whether the three color morphs represent distinct evolutionary lineages, we compared 641 base pairs of mitochondrial cytochrome b. Forty-one closely related haplotypes were observed in 116 individuals. Analysis of molecular variance (AMOVA) indicated no significant genetic structure among color morphs (ΦST = 0.011, P = 0.147). Likewise, there was no significant pairwise structure between sampling locations, separated by up to 5,700 km, after a Bonferroni correction (ΦST = 0.000–0.080, P = 0.0130–0.999). Genetic studies in conjunction with larval distribution data indicate that Centropyge species are highly dispersive. While there is a strong geographic component to the distribution of color morphs in C. loriculus, we find no evidence for corresponding genetic partitioning. We do not rule out an adaptive role for color differentiation, but our data do not support emerging species.  相似文献   

12.
Discrete estuary subpopulations of the mud crab Hemigrapsus oregonensis (Dana, 1851) are connected via larval dispersal. Sequence variation at the mtDNA COI locus was examined in eight populations sampled in 2001–2002 from central California through northern Oregon in the northeast Pacific (36.6–45.8°N) to infer patterns of dispersal and historical connectivity in the region. Strong evidence for persistence since the mid-Pleistocene, with no range truncation resulting from southward shifting temperature isoclines, was provided by a phylogeographic pattern of haplotypes of an older clade distributed throughout the sampled range. A recently derived clade became widespread only north of Cape Blanco after the last glacial maximum. Its clear pattern of restriction to the northern area, in the absence of similarly restricted southern clades, suggests that contemporary dispersal around Cape Blanco is rare (population F ST = 0.192). Low pairwise differentiation within Oregon and within central California, as well as contrasts between northern and southern groups in the shape of the pairwise mismatch distribution, nucleotide diversity, and Tajima’s D suggest that these regions reflect different demographic histories. Potential mechanisms explaining this latitudinal break include contemporary coastal circulation patterns, selection, and ancient patterns of larval dispersal in the California Current.  相似文献   

13.
Sponges of three morphotypes of Suberites ficus (Johnston, 1842) were collected during February and March 1985 off the south-west of the Isle of Man, and were compared by using spicule size distributions and genetic allele frequencies of isozyme loci. The populations did not show any significant differences of spicule size or type, but could be easily differentiated into three separate species based on isozyme patterns. Samples of pale orange S. ficus growing on gastropod shells inhabited by hermit crabs (Pagurus spp.) were reproductively isolated from the redorange and the pale yellow colour morphs encrusting the bivalve Chlamys opercularis. These latter two colour morphs were genetically similar, but significant differences were observed at two of the 19 gene loci assayed. All the sponges studied were sympatric, and therefore the genetic differences, indicating reproductive isolation, are strong evidence for separate gene pools and, hence, that they are different species. The genetic identity between the two colour morphs of S. ficus on C. opercularis shells was 0.977, whilst between each of these and S. ficus on hermit crabs it was about 0.65. In all three species genetic variability was high, with mean expected and observed heterozygosity values per locus ranging from 0.17 to 0.36.  相似文献   

14.
Within its distribution range in the northeastern Atlantic, the stalked barnacle Pollicipes pollicipes shows a well-defined pattern of genetic variation, comprising (a) a subtropical/temperate northern assemblage, made up of populations distributed between 47°N and 28°N along the French, Iberian, North African and Canary Islands coastlines, and (b) a single isolated and highly divergent tropical population in the Cape Verde Islands (16°N), at the southernmost limit of the species’ distribution. However, within the northern assemblage several populations show a level of genetic differentiation that allows rejection of the hypothesis of genetic homogeneity. The congruence observed between genetic and hydrographic patterns suggests a crucial role of hydrodynamics, and of the dispersal of the planktonic larvae, in the determination of population structure. Along the southern European Atlantic coast, the Iberian Poleward Current and mesoscale hydrographic structures are, respectively, facilitating gene flow at the regional level and genetic differentiation at the local level. On the Atlantic coast of North Africa, the homogenizing equatorward flow of the Canary Current does not extend as far as the Cape Verde Islands. A demographic expansion is dated to the late Pleistocene, preceding the Eemian interglacial, and is oldest in the case of the long-standing Cape Verde population, sustained by a stable tropical habitat. The divergence between the Cape Verde population and the remaining populations is thus ancient, and suggests that oceanic current patterns may constitute a generalized physical barrier to the dispersal of marine organisms between Cape Verde and the rest of Macaronesia.  相似文献   

15.
Abstract:  Pool-breeding amphibian populations operate at multiple scales, from the individual pool to surrounding upland habitat to clusters of pools. When metapopulation dynamics play a role in long-term viability, conservation efforts limited to the protection of individual pools or even pools with associated upland habitat may be ineffective over the long term if connectivity among pools is not maintained. Connectivity becomes especially important and difficult to assess in regions where suburban sprawl is rapidly increasing land development, road density, and traffic rates. We developed a model of connectivity among vernal pools for the four ambystomatid salamanders that occur in Massachusetts and applied it to the nearly 30,000 potential ephemeral wetlands across the state. The model was based on a modification of the kernel estimator (a density estimator commonly used in home range studies) that takes landscape resistance into account. The model was parameterized with empirical migration distances for spotted salamanders ( Ambystoma maculatum ), dispersal distances for marbled salamanders ( A. opacum ), and expert-derived estimates of landscape resistance. The model ranked vernal pools in Massachusetts by local, neighborhood, and regional connectivity and by an integrated measure of connectivity, both statewide and within ecoregions. The most functionally connected pool complexes occurred in southeastern and northeastern Massachusetts, areas with rapidly increasing suburban development. In a sensitivity analysis estimates of pool connectivity were relatively insensitive to uncertainty in parameter estimates, especially at the local and neighborhood scales. Our connectivity model could be used to prioritize conservation efforts for vernal-pool amphibian populations at broader scales than traditional pool-based approaches.  相似文献   

16.
In situ and in vitro observations indicate that brooding colonial ascidians commonly display limited larval dispersal, whilst the larvae of most solitary species are assumed to be widely dispersed. We used allozyme data to determine the population genetic consequences of reproduction and dispersal in a broadcast-spawning solitary ascidian and two brooding colonial species along the central and southern coast of New South Wales, Australia. We surveyed genetic variation at 2 to 9 variable loci for samples collected from 6 to 8 local populations of each of the stalked solitary species Pyura gibbosa gibbosa Heller, 1878; the social Stolonica australis Michaelsen, 1927 and the compound Botrylloides magnicoecum Hartmeyer, 1912. Samples from each local population displayed levels and patterns of genotypic diversity that were consistent with expectations for sexually-derived recruitment of both solitary zooids and separate colonies. However, we found clear differences in the structure of the populations of solitary and colonial species. Genotype frequencies within all nine samples of P. gibbosa gibbosa conformed to expectations for random mating (i.e. Hardy–Weinberg equilibria). Moreover, allele frequencies showed little variation among samples [mean standardised genetic variance (F S T ) =0.002], which implies that local populations are strongly connected by larval dispersal. We estimate (via Wright's “island model”) that gene flow (N e m) within this set of local populations is 125 effective migrants per generation, which is very similar to estimates obtained for other broadcast-spawning taxa in this region. In contrast, genotype frequencies within samples of both colonial species were characterised by large and statistically significant deficits of heterozygotes, consistent with expectations for highly limited dispersal of larvae or sperm. Moreover, local populations were highly differentiated (F S T =0.201 and 0.202 for S. australis and B. magnicoecum, respectively) and N e m was estimated to be ∼1.0 in each case. These values of F S T and subsequent estimates of N e m lie within the range of values reported for other New South Wales taxa with direct larval development, and imply that local populations are effectively closed to immigration. Received: 13 February 1997 / Accepted 18 July 1997  相似文献   

17.
It has been proposed that the common West Coast limpet, Lottia digitalis, is actually the northern counterpart of a cryptic species duo including, Lottia austrodigitalis. Allele frequency differences between southern and northern populations at two polymorphic enzyme loci provided the basis for this claim. Due to lack of further evidence, L. austrodigitalis is still largely unrecognized in the literature. Seven additional enzyme loci were examined from populations in proposed zones of allopatry and sympatry to determine the existence of L. austrodigitalis as a sibling species to L. digitalis. Significant allele frequency differences were found at five enzyme loci between populations in Laguna Beach, southern California, and Bodega Bay, northern California; strongly supporting the existence of separate species. Both species exhibit two microhabitat morphotypes, a gooseneck barnacle morph in the mid-intertidal zone and a rock morph in the high-intertidal zone. In sympatry, L. austrodigitalis was more abundant higher in the intertidal on rocks, whereas L. digitalis was more abundant lower in the intertidal on barnacles. This finding supports earlier claims of microhabitat partitioning in this sibling species pair. In addition to this finding, the transition zone between the species was found to have shifted substantially northward in only two decades, from Monterey Peninsula, CA to near Pigeon Point, CA, where L. digitalis previously dominated.  相似文献   

18.
Six Tridacna gigas populations were sampled in 1990 from locations throughout the central and northern Great Barrier Reef (GBR). Despite separations in excess of 1000 km, mean Nei's unbiased genetic distances among the populations was 0.0007. The complete lack of spatial variation observed among populations did not results from lack of genetic variability. Genetic variation within populations was high, with mean heterozygosities from 0.221 to 0.250. Gene frequencies were consistent with expectations under conditions of Hardy-Weinberg equilibrium. These data suggest panmixis, or random mating, throughout the highly connected reef system of the central and northern GBR. The large gene exchange among the giant clam populations has important implications for conservation management of one of the few large populations of T. gigas in the world. Small local effects are likely to be overcome in time by inputs from other sources. However, large genetic perturbations, particularly from up-current sources, may spread rapidly through the population.Contribution No. 561 from the Australian Institute of Marine Science  相似文献   

19.
Alternative phenotypes in natural populations can arise from either genetic polymorphism or an environmentally induced phenotype, that is, polyphenism. Evolutionary models of polyphenism developed by theoretical studies predict that polyphenism is favored when there are environment-dependent fitness trade-offs between alternatives and that the threshold frequency for a facultative switch between alternative phenotypes is adjusted in accordance with different selection regimes. The broad-headed (alternative) larval morph of Hynobius retardatus, which is induced by crowding with conspecifics or heterospecific anuran (Rana pirica) larvae, is a representative example of cannibalistic polyphenism. Morph induction by such proximate factors must reflect evolutionary (conditional frequency-dependent) processes. To clarify the role of frequency-dependent processes in polyphenism, I investigated the occurrence rate of the broad-headed morph under experimental crowding conditions (low conspecific, high conspecific, and high heterospecific densities) using larvae from eight natural populations with different larval densities of conspecifics and heterospecifics, and found interpopulational differences in the expression of the morph. Thus, there is a larval density-dependent equilibrium frequency of the morph in each pond, suggesting that the local switch point for morph induction was modified by selection to produce evolved differences between ponds. The evolution of such interpond differences has three necessary conditions: (1) There are pond-dependent fitness trade-offs between alternatives, (2) The maintenance of the morph is costly, and (3) The presence of conspecific or, especially, heterospecific larvae provides a reliable cue to the receiver.  相似文献   

20.
Larval dispersal connectivity is typically integrated into spatial conservation decisions at regional or national scales, but implementing agencies struggle with translating these methods to local scales. We used larval dispersal connectivity at regional (hundreds of kilometers) and local (tens of kilometers) scales to aid in design of networks of no-take reserves in Southeast Sulawesi, Indonesia. We used Marxan with Connectivity informed by biophysical larval dispersal models and remotely sensed coral reef habitat data to design marine reserve networks for 4 commercially important reef species across the region. We complemented regional spatial prioritization with decision trees that combined network-based connectivity metrics and habitat quality to design reserve boundaries locally. Decision trees were used in consensus-based workshops with stakeholders to qualitatively assess site desirability, and Marxan was used to identify areas for subsequent network expansion. Priority areas for protection and expected benefits differed among species, with little overlap in reserve network solutions. Because reef quality varied considerably across reefs, we suggest reef degradation must inform the interpretation of larval dispersal patterns and the conservation benefits achievable from protecting reefs. Our methods can be readily applied by conservation practitioners, in this region and elsewhere, to integrate connectivity data across multiple spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号