首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In conjunction with the OP3 campaign in Danum Valley, Malaysian Borneo, flux measurements of methyl chloride (CH3Cl) and methyl bromide (CH3Br) were performed from both tropical plant branches and leaf litter in June and July 2008. Live plants were mainly from the Dipterocarpaceae family whilst leaf litter samples were representative mixtures of different plant species. Environmental parameters, including photosynthetically-active radiation, total solar radiation and air temperature, were also recorded. The dominant factor determining magnitude of methyl halide fluxes from living plants was plant species, with specimens of the genus Shorea showing persistent high emissions of both gases, e.g. Shorea pilosa: 65 ± 17 ng CH3Cl h?1 g?1 (dry weight foliage) and 2.7 ± 0.6 ng CH3Br h?1 g?1 (dry weight foliage). Mean CH3Cl and CH3Br emissions across 18 species of plant were 19 (range, <LOD ?76) and 0.4 (<LOD ?2.9) ng h?1 g?1 respectively; fluxes from leaf litter were 1–2 orders of magnitude smaller per dry mass. CH3Cl and CH3Br fluxes were weakly correlated. Overall, the findings suggest that tropical rainforests make an important contribution to global terrestrial emissions of CH3Cl, but less so for CH3Br.  相似文献   

2.
To investigate the impacts of major factors on carbon loss via gaseous emissions, carbon dioxide (CO2) and methane (CH4) emissions from the ground of open dairy lots were tested by a scale model experiment at various air temperatures (15, 25, and 35 °C), surface velocities (0.4, 0.7, 1.0, and 1.2 m sec?1), and floor types (unpaved soil floor and brick-paved floor) in controlled laboratory conditions using the wind tunnel method. Generally, CO2 and CH4 emissions were significantly enhanced with the increase of air temperature and velocity (P < 0.05). Floor type had different effects on the CO2 and CH4 emissions, which were also affected by air temperature and soil characteristics of the floor. Although different patterns were observed on CH4 emission from the soil and brick floors at different air temperature-velocity combinations, statistical analysis showed no significant difference in CH4 emissions from different floors (P > 0.05). For CO2, similar emissions were found from the soil and brick floors at 15 and 25 °C, whereas higher rates were detected from the brick floor at 35 °C (P < 0.05). Results showed that CH4 emission from the scale model was exponentially related to CO2 flux, which might be helpful in CH4 emission estimation from manure management.

Implications: Gaseous emissions from the open lots are largely dependent on outdoor climate, floor systems, and management practices, which are quite different from those indoors. This study assessed the effects of floor types and air velocities on CO2 and CH4 emissions from the open dairy lots at various temperatures by a wind tunnel. It provided some valuable information for decision-making and further studies on gaseous emissions from open lots.  相似文献   

3.
Measurements of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) were made from 11 outdoor concrete yards used by livestock. Measurements of NH3 emission were made using the equilibrium concentration technique while closed chambers were used to measure N2O and CH4 emissions. Outdoor yards used by livestock proved to be an important source of NH3 emission. Greatest emission rates were measured from dairy cow feeding yards, with a mean of 690 mg NH3-N m−2 h−1. Smaller emission rates were measured from sheep handling areas, dairy cow collecting yards, beef feeding yards and a pig loading area, with respective mean emission rates of 440, 280, 220 and 140 mg NH3-N m−2 h−1. Emission rates of N2O and CH4 were much smaller and for CH4, in particular, emission rates were influenced greatly by the presence or absence of dung on the measurement area.  相似文献   

4.
We studied the role of vegetated littoral area in the efflux of methane (CH4) in a southern boreal landscape (1600 km2), in Finland, covered by 619 lakes. A regression model was constructed to describe the relationship between lake area or lake shoreline length and total macrophyte or total emergent macrophyte coverage. Phragmites australis and Equisetum fluviatile were by far the most widely distributed emergent macrophytes in the area with a proportion of 40% of all zone-forming macrophytes. The zone-forming floating-leaved species Nuphar lutea, Potamogeton natans and Sparganium spp. covered 44% of all vegetated littoral areas. The strong temperature dependence of the emission rates was taken into consideration in the emission estimations for P. australis and E. fluviatile. The regional efflux, estimated for the growing seasons 1998–2002, varied between 0.8×105 and 1.1×105 kg CH4 and between 1.6×105 and 2.4×105 kg CH4, respectively. The emissions from the stands of floating-leaved species were negligible compared to the emissions from stands of P. australis and E. fluviatile. This indicates that species specific emission rates and areal coverage of the dominating species, as well as ambient temperature, should all be carefully considered when estimating the total regional emissions of CH4 from lake littorals. The natural open ombrogenous bogs and minerogenous fens in the study region covered a 2.5-fold larger area than P. australis and E. fluviatile littoral, but their emissions were estimated to be only 78% of the emissions of P. australis and E. fluviatile, indicating that vegetated lake littoral is an important natural CH4 source in the region.  相似文献   

5.
This study was a pen trial in which the effects of adding different rates of liquid aluminum chloride (AlCl3) on litter pH, total volatile fatty acids (VFAs), and ammonia (NH3) fluxes was evaluated. Liquid AlCl3 treatments used in this study were sprayed on the rice hull surface at rates of 100 g, 200 g, and 300 g liquid AlCl3/kg rice hulls; untreated rice hulls served as controls. Litter pH, total VFAs, and NH3 fluxes were all lowered (P< 0.05) by all of the liquid AlCl3 treatments compared with controls during certain times of the 5 week study. However, there were no significant differences among treatments on litter pH at the end of the study (from 3 to 5 weeks) or NH3 fluxes at beginning of the study (0 to 3 weeks). Total VFAs were reduced 16 %, 29 %, and 53 % by 100 g liquid AlCl3/kg rice hulls, 200 g liquid AlCl3/kg rice hulls, and 300 g liquid AlCl3/kg rice hulls, respectively. Liquid AlCl3additions reduced NH3 fluxes by 35 %, 57 % and 67 %, respectively, at the low, medium and high rates. In summary, these results indicate that adding liquid aluminum chloride to rice hulls would be a useful tool in reducing the negative environmental impact of poultry litter. It should be noted that the decreased VFA production and NH3 volatilization was chiefly associated with reduction in litter pH.  相似文献   

6.
Recent experiments have shown that dry and fresh leaves, other plant matter, as well as several structural plant components, emit methane upon irradiation with UV light. Here we present the source isotope signatures of the methane emitted from a range of dry natural plant leaves and structural compounds. UV-induced methane from organic matter is strongly depleted in both 13C and D compared to the bulk biomass. The isotopic content of plant methoxyl groups, which have been identified as important precursors of aerobic methane formation in plants, falls roughly halfway between the bulk and CH4 isotopic composition. C3 and C4/CAM plants show the well-established isotope difference in bulk 13C content. Our results show that they also emit CH4 with different δ13C value. Furthermore, δ13C of methoxyl groups in the plant material, and ester methoxyl groups only, show a similar difference between C3 and C4/CAM plants. The correlation between the δ13C of emitted CH4 and methoxyl groups implies that methoxyl groups are not the only source substrate of CH4.Interestingly, δD values of the emitted CH4 are also found to be different for C3 and C4 plants, although there is no significant difference in the bulk material. Bulk δD analyses may be compromised by a large reservoir of exchangeable hydrogen, but no significant δD difference is found either for the methoxyl groups, which do not contain exchangeable hydrogen. The δD difference in CH4 between C3 and C4 plants indicates that at least two different reservoirs are involved in CH4 emission. One of them is the OCH3 group, the other one must be significantly depleted, and contribute more to the emissions of C3 plants compared to C4 plants. In qualitative agreement with this hypothesis, CH4 emission rates are higher for C3 plants than for C4 plants.  相似文献   

7.
ABSTRACT

The visual impact of primary particles emitted from stacks is regulated according to stack opacity criteria. In-stack monitoring of the flue gas opacity allows plant operators to ensure that the plant meets U.S. Environmental Protection Agency opacity regulations. However, the emission of condensable gases such as SO3 (that hydrolyzes to H2SO4), HCl, and NH3, which may lead to particle formation after their release from the stack, makes the prediction of stack plume opacity more difficult.

We present here a computer simulation model that calculates the opacity due to both primary particles emitted from the stack and secondary particles formed in the atmosphere after the release of condensable gases from the stack. A comprehensive treatment of the plume rise due to buoyancy and momentum is used to calculate the location at which the condensed water plume has evaporated (i.e., where opacity regulations apply).

Conversion of H2SO4 to particulate sulfate occurs through nucleation and condensation on primary particles. A thermodynamic aerosol equilibrium model is used to calculate the amount of ammonium, chloride, and water present in the particulate phase with the condensed sulfate. The model calculates the stack plume opacity due to both primary and secondary particles. Examples of model simulations are presented for three scenarios that differ by the emission control equipment installed at the power plant: (1) electrostatic precipitators (ESP), (2) ESP and flue gas desulfurization, and (3) ESP and selective catalytic reduction. The calculated opacity is most sensitive to the primary particulate emissions. For the conditions considered here, SO3 emissions showed only a small effect, except if one assumes that most H2SO4 condenses on primary particles. Condensation of NH4Cl occurs only at high NH3 emission rates (about 25 ppm stack concentration).  相似文献   

8.
Methane (CH4) formation under aerobic conditions has been intensely debated, especially since the discovery of CH4 generation by both dried plant material and living plants. In this study we test the hypothesis that non-microbial CH4 formation also occurs in soils. All lyophilised soil samples investigated under aerobic conditions released CH4 at temperatures ranging from 30 to 70 °C exceeding that allowing normal enzymatic activity to proceed. No emissions were observed for single mineral soil components such as quartz sand, clay mineral and iron oxide. Methane release rates from the soils investigated were found to increase both with increasing temperature and higher organic carbon content. Addition of water to dried soils increased CH4 release rates up to 8-fold those observed with the dried material. Our results suggest the existence of a chemical process in soils that produces CH4 under aerobic conditions, a finding which has not been hitherto reported.  相似文献   

9.
Liquid manure storages are a significant source of methane (CH4) emissions. Farmers commonly agitate (stir) liquid manure prior to field application to homogenize nutrients and solids. During agitation, manure undergoes mechanical stress and is exposed to the air, disrupting anaerobic conditions. This on-farm study aimed to better understand the effects of agitation on CH4 emissions, and explore the potential for intentional agitation (three times) to disrupt the exponential increase of CH4 emissions in spring and summer. Results showed that agitation substantially increased manure temperature in the study year compared to the previous year, particularly at upper- and mid-depths of the stored manure. The temporal pattern of CH4 emissions was altered by reduced emissions over the subsequent week, followed by an increase during the second week. Microbial analysis indicated that the activity of archaea and methanogens increased after each agitation event, but there was little change in the populations of methanogens, archaea, and bacteria. Overall, CH4 emissions were higher than any of the previous three years, likely due to warmer manure temperatures that were higher than the previous years (despite similar air temperatures). Therefore, intermittent manure agitation with the frequency, duration, and intensity used in this study is not recommended as a CH4 emission mitigation practice.

Implications: The potential to mitigate methane emissions from liquid manure storages by strategically timed agitation was evaluated in a detailed farm-scale study. Agitation was conducted with readily-available farm equipment, and targeted at the early summer to disrupt methanogenic communities when CH4 emissions increase exponentially. Methane emissions were reduced for about one week after agitation. However, agitation led to increased manure temperature, and was associated with increased activity of methanogens. Overall, agitation was associated with similar or higher methane emissions. Therefore, agitation is not recommended as a mitigation strategy.  相似文献   

10.
Irish peatland ecosystems have been shown to be important sources of low molecular weight halocarbons. Emission of CH3Br, CH3Cl, CH3I and CHCl3 was recorded from all peatland sites monitored, with minor flux of other halocarbons at certain sites. Fluxes were found to be highly linked to incident light, with strong diurnal cycles recorded at all open peatland sites. Estimates of halomethane emissions, particularly from coastal peatland and conifer plantation forest floor sites, suggests that these ecosystems may make a significant contribution to the global budgets of several important halocarbons. Global annual fluxes of 4.7 (0.1–151.9), 0.9 (0.1–3.3), 5.5 (0.9–43.4), and 1.4 (0.1–12.8) Gg yr−1 for CHCl3, CH3Br, CH3Cl, and CH3I, respectively, were determined for peatland ecosystems.  相似文献   

11.
Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.  相似文献   

12.
Landfill fugitive methane emissions were quantified as a function of climate type and cover type at 20 landfills using U.S. Environmental Protection Agency (EPA) Other Test Method (OTM)-10 vertical radial plume mapping (VRPM) with tunable diode lasers (TDLs). The VRPM data were initially collected as g CH4/sec emission rates and subsequently converted to g CH4/m2/day rates using two recently published approaches. The first was based upon field tracer releases of methane or acetylene and multiple linear regression analysis (MLRM). The second was a virtual computer model that was based upon the Industrial Source Complex (ISC3) and Pasquill plume stability class models (PSCMs). Calculated emission results in g CH4/m2/day for each measured VRPM with the two approaches agreed well (r 2 = 0.93). The VRPM data were obtained from the working face, temporary soil, intermediate soil, and final soil or synthetic covers. The data show that methane emissions to the atmosphere are a function of climate and cover type. Humid subtropical climates exhibited the highest emissions for all cover types at 207, 127, 102, and 32 g CH4/m2/day, for working face (no cover), temporary, intermediate, and final cover, respectively. Humid continental warm summers showed 67, 51, and 27 g CH4/m2/day for temporary, intermediate, and final covers. Humid continental cool summers were 135, 40, and 26 g CH4/m2/day for the working face, intermediate, and final covers. Mediterranean climates were examined for intermediate and final covers only and found to be 11 and 6 g CH4/m2/day, respectively, whereas semiarid climates showed 85, 11, 3.7, and 2.7 g CH4/m2/day for working face, temporary, intermediate, and final covers. A closed, synthetically capped landfill covered with soil and vegetation with a gas collection system in a humid continental warm summer climate gave mostly background methane readings and average emission rates of only 0.09 g CH4/m2/day flux when measurable.

Implications The OTM-10 method is being proposed by EPA to quantify surface methane emissions from landfill covers. This study of 20 landfills across the United States was done to determine the efficacy of using OTM-10 for this purpose. Two recently published models were used to evaluate the methane flux results found with VRPM optical remote sensing. The results should provide a sense of the practicality of the method, its limitations at landfills, and the impact of climate upon the cover's methane flux. Measured field data may assist landfill owners in refining previously modeled methane emission factor default values.  相似文献   

13.
Agriculture is an important source of NH3, which contributes to acidification and eutrophication, as well as emissions of the greenhouse gases CH4 and N2O. Because of their common sources, emission reduction measures for one of these gases may affect emissions of others. These interrelations are often ignored in policy making. This study presents an analysis of the effects of measures to reduce NH3 emissions on emissions of N2O and CH4 from agriculture in Europe. The analysis combines information from the NH3 module of the Regional Air pollution INformation and Simulation (RAINS) model for Europe with the IPCC method for national greenhouse gas inventories. The IPCC method for estimating agricultural emissions of N2O and CH4 is adjusted in order to use it in combination with the RAINS database for the European agricultural sector. As an example, we applied the adjusted method to the agricultural sector in the Netherlands and found that application of several NH3 abatement options may result in a substantial increase in N2O emissions while the effect on CH4 emissions is relatively small. In Part 2 of this paper we focus on the resulting emissions for all European countries for 1990 and 2010.  相似文献   

14.
Gaseous methane (CH4) emissions from a swine waste holding lagoon were determined periodically during the year. Micrometeorological techniques were used in order that emission rates from the lagoon were measured under ambient conditions with little disturbance to the natural environment. During the cold winter measurement period, CH4 fluxes were linearly related to lagoon water temperature below 22°C (r=0.87). During warmer measurement periods, both water and air temperatures and windspeed affected emissions rates. In general, flux rates followed a diurnal pattern with greater fluxes during the day when both temperature and windspeed were greatest. Mathematical models using air and water temperature and windspeed factors could explain 47 to 75% of the variation in fluxes. Daily emission rates ranged from 1 to 500 kg CH4 ha−1 d−1. The average flux for the year was 52.3 kg CH4 ha−1 d−1 which corresponded to about 5.6 kg CH4 animal−1 yr−1 from the primary lagoon.  相似文献   

15.
We have used a global version of the Regional Air Pollution Information and Simulation (RAINS) model to estimate anthropogenic emissions of the air pollution precursors sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), primary carbonaceous particles of black carbon (BC), organic carbon (OC) and methane (CH4). We developed two scenarios to constrain the possible range of future emissions. As a baseline, we investigated the future emission levels that would result from the implementation of the already adopted emission control legislation in each country, based on the current national expectations of economic development. Alternatively, we explored the lowest emission levels that could be achieved with the most advanced emission control technologies that are on the market today. This paper describes data sources and our assumptions on activity data, emission factors and the penetration of pollution control measures. We estimate that, with current expectations on future economic development and with the present air quality legislation, global anthropogenic emissions of SO2 and NOx would slightly decrease between 2000 and 2030. For carbonaceous particles and CO, reductions between 20% and 35% are computed, while for CH4 an increase of about 50% is calculated. Full application of currently available emission control technologies, however, could achieve substantially lower emissions levels, with decreases up to 30% for CH4, 40% for CO and BC, and nearly 80% for SO2.  相似文献   

16.
Agriculture is an important source of NH3, which contributes to acidification and eutrophication, as well as emissions of the greenhouse gases CH4 and N2O. Because of their common sources, emission reduction measures for one of these gases may affect emissions of others. These interrelations are often ignored in policy making. This study presents an analysis of the effects of measures to reduce NH3 emissions on emissions of N2O and CH4 from agriculture in Europe. The analysis combines information from the NH3 module of the Regional Air pollution INformation and Simulation (RAINS) model for Europe with the IPCC method for national greenhouse gas inventories. The IPCC method for estimating agricultural emissions of N2O and CH4 is adjusted in order to use it in combination with the RAINS database for the European agricultural sector. As an example, we applied the adjusted method to the agricultural sector in the Netherlands and found that application of several NH3 abatement options may result in a substantial increase in N2O emissions while the effect on CH4 emissions is relatively small. In Part 2 of this paper we focus on the resulting emissions for all European countries for 1990 and 2010.  相似文献   

17.
Analysis of time series and trends of nitrous oxide (N2O) and halocompounds weekly monitored at the Mediterranean island of Lampedusa are discussed. Atmospheric N2O levels showed a linear upward growth rate of 0.78 ppb yr?1 and mixing ratios comparable with Northern Hemisphere global stations. CFC-11 and CFC-12 time series displayed a decline consistent with their phase-out. Chlorofluorocarbons (CFCs) replacing compounds and SF6 exhibited an increasing temporal behaviour. The most rapid growth rate was recorded for HFC-134a with a value of 9.6% yr?1. The industrial solvents CCl4 and CH3CCl3, banned by the Montreal Protocol, showed opposite trends. While CH3CCl3 reported an expected decay of ?1.8 ppt yr?1, an increasing rate of 5.7 ppt yr?1 was recorded for CCl4 and it is probably related to its relatively long lifetime and persisting emissions. Chlorinated halomethanes showed seasonality with a maximum in early April and a minimum at the end of September. Halon-1301 and Halon-1211 displayed a decreasing trend consistent with industry emission estimates.An interspecies correlation analysis gave positive high correlations between HCFC-22 and HFC-134a (+0.84) highlighting the common extensive employment as refrigerants. Sharing sources inferred the high coupling between CH3Cl and CH3Br (+0.73) and between CHCl3 and CH2Cl2 (+0.77). A singular strong relationship (+0.55) between HFC-134a and CH3I suggested the influence of an unknown anthropogenic source of CH3I.Constraining of source and sink distribution was carried out by transport studies. Results were compared with the European Environment Agency (EEA) emission database. In contrast with the emission database results, our back trajectory analysis highlighted the release of large amounts of HFC-134a and SF6 from Eastern Europe. Observations also showed that African SF6 emissions may be considerable. Leakages from SF6 insulated electrical equipments located in the industrialized Northern African areas justify our observations.  相似文献   

18.
Spartina alterniflora exhibits great invading potential in the coastal marsh ecosystems. Also, nitrogen (N) deposition shows an apparent increase in the east of China. To evaluate CH4 emissions in the coastal marsh as affected by the invasion of S. alterniflora and N deposition, we measured CH4 emission from brackish marsh mesocosms vegetated with S. alterniflora and a native plant, Suaeda salsa, and fertilized with exogenous N at the rates of 0 and 2.7 g N m?2, respectively. Dissolved porewater CH4 concentration and redox potentials in soils as well as aboveground biomass and stem density of plants were also monitored. The averaged rate of CH4 emission during the growing season in the S. alterniflora and S. salsa mesocosms without N application was 0.88 and 0.54 mg CH4 m?2 h?1, respectively, suggesting that S. alterniflora plants significantly increased CH4 emission mainly because of higher plant biomass rather than stem density compared to S. salsa, which delivered more substrates to the soil for methanogenesis. Exogenous N input dramatically stimulated CH4 emission by 71.7% in the S. alterniflora mesocosm. This increase was attributable to enhancement in biomass and particularly stem density of S. alterniflora driven by N application, which transported greater photosynthesis products than oxygen into soils for CH4 production and provided more pathways for CH4 emission. In contrast, there was no significant effect of N fertilization on CH4 emission in the S. salsa mesocosm. Although N fertilization significantly stimulated CH4 production by increasing S. salsa biomass, no significant increase in stem density was observed. This fact, along with the low gas transport capacity of S. salsa, failed to efficiently transport CH4 from wetlands into the atmosphere. Thus we argue that the stimulatory or inhibitory effect of N fertilization on CH4 emission from wetlands might depend on the gas transport capacity of plants and their relative contribution to substrates for CH4 production and oxygen for CH4 oxidation in soil.  相似文献   

19.
Emissions of CH4 and N2O related to private pig farming under a tropical climate in Uvéa Island were studied in this paper. Physicochemical soil parameters such as nitrate, nitrite, ammonium, Kjeldahl nitrogen, total organic carbon, pH and moisture were measured. Gaseous soil emissions as well as physicochemical parameters were compared in two private pig farming strategies encountered on this island on two different soils (calcareous and ferralitic) in order to determine the best pig farming management: in small concrete pens or in large land pens. Ammonium levels were higher in control areas while nitrate and nitrite levels were higher in soils with pig slurry inputs, indicating that nitrification was the predominant process related to N2O emissions. Nitrate contents in soils near concrete pens were important (≥55 μg N/g) and can thus be a threat for the groundwater. For both pig farming strategies, N2O and CH4 fluxes can reach high levels up to 1 mg N/m2/h and 1 mg C/m2/h, respectively. CH4 emissions near concrete pens were very high (≥10.4 mg C/m2/h). Former land pens converted into agricultural land recover low N2O emission rates (≤0.03 mg N/m2/h), and methane uptake dominates. N2O emissions were related to nitrate content whereas CH4 emissions were found to be moisture dependent. As a result relating to the physicochemical parameters as well as to the gaseous emissions, we demonstrate that pig farming in large land pens is the best strategy for sustainable family pig breeding in Uvéa Islands and therefore in similar small tropical islands.  相似文献   

20.
Many farms have unroofed concrete yards used by livestock. These concrete yards have received little attention as sources of gaseous emissions. From 1997 to 1999 measurements were made of emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) from 11 concrete yards used by livestock. A postal survey was carried out to assess the areas of yards on farms in England and Wales to enable the measurements to be scaled up to estimate national emissions. Using the results of this study NH3-N emissions from farm concrete yards were calculated to be ca. 35×103 t annually. This is 13% of the current estimated total NH3-N emission from UK livestock. Concrete yards were an insignificant source of N2O and CH4 which were both <0.01% of current estimates of agricultural emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号