首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The red porgy, Pagrus pagrus (L.), is a protogynous sparid associated with reefs and hard bottom habitat throughout the warm-temperate Atlantic Ocean. In this study, the degree of geographic population differentiation in Atlantic populations was examined with microsatellite and mitochondrial DNA markers (mtDNA). Six microsatellite loci were amplified and scored in 690 individuals from the eastern North Atlantic (Crete, Madeira, and Azores), western North Atlantic (North Carolina to Florida, and the eastern Gulf of Mexico), and Brazil. At two loci, fixed allelic differences were found among the three major geographic areas, while frequency differences were observed at three other loci. The DNA of 371 individuals was amplified at the mtDNA control region, and 526 bp were sequenced. Tamura–Nei’s D was used as a measure of nucleotide diversity and divergence: diversity averaged 0.011 within samples, while the corrected divergence averaged 0 between samples within the same area and 0.061 between samples from different areas. Transversion haplotype minimum spanning networks, nucleotide divergence, and F ST values all show that the western Atlantic samples were more closely related to each other than any was to samples from the eastern North Atlantic. Within the western North Atlantic, no significant population differentiation was observed, and within the eastern North Atlantic, only the Azores sample showed detectable differences from Crete and Madeira. These data indicate general homogeneity within large areas, and deep divisions between these areas. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
The nurse shark, Ginglymostoma cirratum, inhabits shallow, tropical, and subtropical waters in the Atlantic and the eastern Pacific. Unlike many other species of sharks, nurse sharks are remarkably sedentary. We assayed the mitochondrial control region and eight microsatellite loci from individuals collected primarily in the western Atlantic to estimate the degree of population subdivision. Two individuals from the eastern Atlantic and one from the Pacific coast of Panama also were genotyped. Overall, the mtDNA haplotype (h = 48 ± 5%) and nucleotide (π = 0.08 ± 0.06%) diversities were low. The microsatellite data mirror the mitochondrial results with the average number of alleles ([`(N)]A \bar{N}_{A}  = 9) and observed heterozygosity ([`(H)]O \bar{H}_{O}  = 0.58) both low. The low levels of diversity seen in both the mtDNA and the microsatellite may be due to historical sea level fluctuations and concomitant loss of shallow water habitat. Eight of the 10 pair-wise western Atlantic F ST estimates for mtDNA indicated significant genetic subdivision. Pair-wise F ST values for the microsatellite loci indicated a similar pattern as the mtDNA. The western Atlantic population of nurse sharks is genetically subdivided with the strongest separation seen between the offshore islands and mainland Brazil, likely due to deep water acting as a barrier to dispersal. The eastern and western Atlantic populations were closely related. The eastern Pacific individual is quite different from Atlantic individuals and may be a cryptic, sister species.  相似文献   

3.
The genetic population structure of the highly migratory albacore (Thunnus alalunga) was investigated using restriction fragment length polymorphism (RFLP) analysis of the mitochondrial ATPase gene amplified by the polymerase chain reaction (PCR). 620 individuals comprising 13 geographically distant samples (ten Pacific, two Atlantic and the Cape of Good Hope) were surveyed between 1991 and 1994 with two restriction endonucleases (Mse I and Rsa I), resulting in seven haplotypes. No heterogeneity was observed in the distribution of haplotypes among the ten samples from the North and South Pacific, nor among the samples from North and South Atlantic and Cape of Good Hope. However, highly significant heterogeneity was evident among Atlantic and Pacific samples. Higher haplotypic diversity (h) was observed in the Pacific samples (0.59 to 0.69) than in the Atlantic and Cape samples (0.22 to 0.43). These results suggest greater gene flow between albacore of the northern and southern hemispheres (within oceans) than between the Atlantic and Pacific Oceans.  相似文献   

4.
Allozyme and mitochondrial DNA (mtDNA) genetic variation was compared in orange roughy (Hoplostethus atlanticus Collett) collected from waters off southern Australia and from waters about 22 000 km away in the North Atlantic west of Scotland. Samples were screened for 11 polymorphic allozyme loci and with 9 restriction enzymes. Significant heterogeneity between the two areas was detected for three allozyme loci (ADA *, CK * and GPI-1 *), and the overall G ST (gene-diversity statistic) value of 1% was small but significant. Significant mtDNA haplotype heterogeneity was observed after 2- of haplotype frequencies but not after a G ST analysis. Nucleotide sequence-diversity analysis showed very low net divergence (0.0023%) between the two samples. The Australian orange roughy had a lower allozyme heterozygosity and a lower mitochondrial DNA nucleon diversity than the North Atlantic sample. The very limited, although significant, allozyme and mitochondrial DNA heterogeneity between these areas suggests that there is some gene flow between these two populations. The species appears to be widespread, with its presence reported from the southern Pacific, southern Indian, and northern and southern Atlantic Oceans, and it is likely that gene flow between the antipodes is mediated by stepping-stone exchange between adjacent populations rather than by direct migration.  相似文献   

5.
Many marine species, including mussels in the Mytilus edulis species group (i.e. M. edulis L., M. galloprovincialis Lamarck, and M. trossulus Gould), have an antitropical distribution pattern, with closely related taxa occurring in high latitudes of the northern and southern hemispheres but being absent from the tropics. We tested four hypotheses to explain the timing and route of transequatorial migration by species with antitropical distributions. These hypotheses yield different predictions for the phylogenetic relationship of southern hemisphere taxa relative to their northern counter-parts. The three Mytilus species were used to test these hypotheses since they exhibit a typical antitropical distribution and representative taxa occur in both the Pacific and Atlantic. Two types of mtDNA lineages were found among populations of mussels collected from the southern hemisphere between 1988 and 1996; over 90% of the mtDNA lineages formed a distinct subclade which, on average, had 1.4% divergence from haplotypes found exclusively in northern Atlantic populations of M. galloprovincialis. These data indicate that southern hemisphere mussels arose from a migration event from the northern hemisphere during the Pleistocene via an Atlantic route. The remainder of the southern hemisphere lineages (<10%) were very closely related to mtDNA haplotypes found in both M. edulis and M. galloprovincialis in the northern hemisphere, suggesting a second, more recent migration to the southern hemisphere. There was no evidence that southern hemisphere mussels arose from Pacific populations of mussels. Received: 8 December 1998 / Accepted: 8 November 1999  相似文献   

6.
 The swordfish Xiphias gladius is a migratory oceanic species distributed in sub-tropical and temperate waters worldwide. Studies utilizing mitochondrial DNA (mtDNA) have demonstrated genetic subdivision between ocean basins, as well as within the Atlantic basin. However, there has been no support of population subdivision within the Pacific. We sequenced 629 base pairs of the control region for 281 swordfish collected in the Pacific. A rate heterogeneity parameter, alpha, was found to be 0.201, indicating substantial variation in mutation rate within the control region of swordfish. Hierarchical analysis of molecular variance supported significant genetic structuring among Pacific populations. Northern and southern populations in the western Pacific were significantly divergent, while populations in the east appeared to be genetically continuous. Regression analysis supported a correlation of genetic differentiation with geographic distance along a U-shaped corridor of gene flow. These results reveal a pelagic biogeographic pattern heretofore unrecognized in the Pacific, and reject the null hypothesis that Pacific populations of swordfish are unstructured and comprise only a single homogeneous stock. Received: 10 November 1998 / Accepted: 4 February 2000  相似文献   

7.
Specimens of the abyssal grenadier Coryphaenoides armatus (Hector, 1875), from the western North Atlantic and eastern North Pacific Oceans were compared electrophoretically at 27 presumptive gene loci. At 6 of the 7 polymorphic loci there were only minor differences in allelic frequencies but a nearly fixed difference was found at one locus, phosphogluconate dehydrogenase. Eastern North Pacific grenadiers typically have a narrower interorbital space, a shorter dorsal interspace, more soft rays in the 1st dorsal fin (9–10 versus 8–9) and more pelvic fin rays (21–23 versus 18–21) than grenadiers from the western North Atlantic (as well as grenadiers from the eastern South Pacific, which were included in the biometric analysis). There is an apparent disjunction in the distribution of C. armatus in the eastern Pacific at the Gulf of Panamá which coincides with the change of morphology. It is suggested that North Pacific grenadiers comprise a subspecies, C. armatus variabilis Günther, 1878, which is morphologically distinct from the subspecies C. armatus armatus (Hector, 1875) of the other areas.  相似文献   

8.
We measured within- and among-population genetic variation in the green sea urchin (Strongylocentrotus droebachiensis) at 11 sites in the north Atlantic and northeast Pacific by using four-locus microsatellite genotypes. We found no differentiation among populations from Atlantic Canada, but strong differentiation across the north Atlantic and between the Atlantic and Pacific samples. High inbreeding coefficients at three loci are consistent with high variance in reproductive success. One population that was recently decimated by disease was strongly differentiated from some others, but there was little differentiation otherwise among populations in Atlantic Canada. On a larger scale, populations in Atlantic Canada were more similar to a population from the north Pacific than to populations in the northwest Atlantic. Differentiation among populations at this large spatial scale is consistent with biogeographical hypotheses of: (1) Pleistocene population reduction and isolation in the northeast Atlantic, but (2) extinction in the northwest Atlantic followed by extensive recolonization from the Pacific. In contrast to other recent studies of trans-Atlantic organisms, we found no evidence of extensive gene flow across the north Atlantic.Communicated by R.J. Thompson, St. John's  相似文献   

9.
Escolar (Lepidocybium flavobrunneum) is a large, mesopelagic fish that inhabits tropical and temperate seas throughout the world, and is a common bycatch in pelagic longline fisheries that target tuna and swordfish. Few studies have explored the biology and natural history of escolar, and little is known regarding its population structure. To evaluate the genetic basis of population structure of escolar throughout their range, we surveyed genetic variation over an 806 base pair fragment of the mitochondrial control region. In total, 225 individuals from six geographically distant locations throughout the Atlantic (Gulf of Mexico, Brazil, South Africa) and Pacific (Ecuador, Hawaii, Australia) were analyzed. A neighbor-joining tree of haplotypes based on maximum likelihood distances revealed two highly divergent clades (δ = 4.85%) that were predominantly restricted to the Atlantic and Indo-Pacific ocean basins. All Atlantic clade individuals occurred in the Atlantic Ocean and all but four Pacific clade individuals were found in the Pacific Ocean. The four Atlantic escolar with Pacific clade haplotypes were found in the South Africa collection. The nuclear ITS-1 gene region of these four individuals was subsequently analyzed and compared to the ITS-1 gene region of four individuals from the South Africa collection with Atlantic clade haplotypes as well as four representative individuals each from the Atlantic and Pacific collections. The four South Africa escolar with Pacific mitochondrial control region haplotypes all had ITS-1 gene region sequences that clustered with the Pacific escolar, suggesting that they were recent migrants from the Indo-Pacific. Due to the high divergence and geographic separation of the Atlantic and Pacific clades, as well as reported morphological differences between Atlantic and Indo-Pacific specimens, consideration of the Atlantic and Indo-Pacific populations as separate species or subspecies may be warranted, though further study is necessary.  相似文献   

10.
Vermilion snapper (Rhomboplites aurorubens) were collected from four sites off the Atlantic coast of the USA and one site in the Gulf of Mexico to evaluate effective population size and genetic stock structure. Previous studies had suggested geographic variation in the ratio of males to females, so this population characteristic was explored in conjunction with the genetic analysis. Sex ratio varied greatly among the five sample sites; males comprised 57% of samples in the Gulf of Mexico, while within the South Atlantic Bight they comprised between 36% (Morehead City, North Carolina) and 53% (Carolina Beach, North Carolina) of samples. No clear geographic trends in the sex ratio emerged; instead, it was found to vary with fish length, the percentage of males decreasing with increasing size. Allelic variation assessed at seven dinucleotide microsatellite loci was large; gene diversities ranged from 0.43 to 0.95 and allelic counts from 7 to 39. Estimates of the effective population size ranged from 24 500 (based on the infinite-alleles model) to 150 500 (based on the stepwise-mutation model). There was evidence for excess homozygosity within samples: estimates of F IS (the correlation of alleles within individuals) ranged from 0.01 to 0.03 among the seven loci, and three estimates were significantly greater than zero. Differentiation among localities was very weak, as estimates of F ST (the correlation of alleles within populations) were on the order of 0.001 to 0.002 and genetic distance estimates between localities were not related to geographic distances. This suggested that vermilion snapper in the South Atlantic Bight (Cape Hatteras, North Carolina to Cape Canaveral, Florida) and Gulf of Mexico are likely to consist of one genetic stock. Despite the overall homogeneity, there were indications of a temporally dynamic local structure that would bear further examination. Received: 6 July 1998 / Accepted: 9 February 1999  相似文献   

11.
Eurythoe complanata (Pallas 1766) has been considered a cosmopolitan species with a great morphological similarity across its geographic range. To elucidate whether E. complanata is actually a single species, genetic (cytochrome oxidase subunit I and allozymes) and morphological differences were compared among specimens from the Pacific, Caribbean, and South Atlantic Oceans. Large levels of COI divergence (10–22%) and diagnostic allozyme loci identified three cryptic species: one in the eastern Pacific and two in the Atlantic, with one being morphologically differentiated and found only in islands. COI sequences between Pacific and Atlantic lineages were much more divergent than those of other transisthmian invertebrates, indicating their split before the Panama Isthmus closure or a faster evolutionary rate of COI for this species. The existence of two Atlantic species may be a consequence of parapatric speciation followed by a secondary invasion or even a sympatric speciation in the Atlantic oceanic islands.  相似文献   

12.
A thorough knowledge on the genetic connectivity of marine populations is important for fisheries management and conservation. Using a dense population sampling design and two types of neutral molecular markers (10 nuclear microsatellite loci and a mtDNA cytochrome b fragment), we inferred the genetic connectivity among the main known spawning grounds of sole (Solea solea L.) in the North-East Atlantic Ocean. The results revealed a clear genetic structure for sole in the North-East Atlantic Ocean with at least three different populations, namely the Kattegat/Skagerrak region, the North Sea and the Bay of Biscay, and with indications for a fourth population, namely the Irish/Celtic Sea. The lack of genetically meaningful differences between biological populations within the southern North Sea is likely due to a large effective population size and sufficient connection (gene flow) between populations. Nevertheless, an isolation-by-distance pattern was found based on microsatellite genotyping, while no such pattern was observed with the cytochrome b marker, indicating an historical pattern prevailing in the latter marker. Our results demonstrate the importance of a combined multi-marker approach to understand the connectivity among marine populations at region scales.  相似文献   

13.
The tellinid bivalve Macoma balthica (L.) has an extensive geographic range that reaches from temperate to arctic coastal waters in the North Atlantic and North Pacific oceans. Recent studies have indicated that eastern and western North Atlantic populations are morphologically and genetically different from one another, and that they may have diverged as sibling species. To determine the genetic relationship between M. balthica from the Pacific and Atlantic coasts of North America, populations from each coast were examined at 11 enzyme loci using standard starch gel electrophoresis. Allele frequency data indicate that M. balthica populations from San Francisco Bay, California appear more closely related to western North Atlantic populations than to populations from Oregon. We suggest that San Francisco Bay populations were introduced relatively recently from western North Atlantic populations. The Oregon populations are probably a natural extension of northern populations that occur along Northern Asia and in the eastern North Atlantic.  相似文献   

14.
Lane snappers (Lutjanus synagris), sampled from eight localities in the northern Gulf of Mexico (Gulf) and one locality along the Atlantic coast of Florida, were assayed for allelic variation at 14 nuclear-encoded microsatellites and for sequence variation in a 590 base-pair fragment of the mitochondrially encoded ND-4 gene (mtDNA). Significant heterogeneity among the nine localities in both microsatellite allele and genotype distributions and mtDNA haplotype distributions was indicated by exact tests and by analysis of molecular variance (AMOVA). Exact tests between pairs of localities and spatial analysis of molecular variance (SAMOVA) for both microsatellites and mtDNA revealed two genetically distinct groups: a Western Group that included six localities from the northwestern and northcentral Gulf and an Eastern Group that included three localities, one from the west coast of Florida, one from the Florida Keys, and one from the east (Atlantic) coast of Florida. The between-groups component of molecular variance was significant for both microsatellites (Φ CT = 0.016, P = 0.009) and mtDNA (Φ CT = 0.208, P = 0.010). Exact tests between pairs of localities within each group and spatial autocorrelation analysis did not reveal genetic heterogeneity or an isolation-by-distance effect among localities within either group. MtDNA haplotype diversity was significantly less (P < 0.0001) in the Western Group than in the Eastern Group; microsatellite allelic richness and gene diversity also were significantly less in the Western Group (P = 0.015 and 0.013, respectively). The difference in genetic variability between the two groups may reflect reduced effective population size in the Western Group and/or asymmetric rates of genetic migration. The relative difference in variability between the two groups was substantially greater in mtDNA and may reflect one or more mtDNA selective sweeps; tests of neutrality of the mtDNA data were consistent with this possibility. Bayesian analysis of genetic demography indicated that both groups have experienced a historical decline in effective population size, with the decline being greater in the Western Group. Maximum-likelihood analysis of microsatellite data indicated significant asymmetry in average, long-term migration rates between the two groups, with roughly twofold greater migration from the Western Group to the Eastern Group. The difference in mtDNA variability and the order-of-magnitude difference in genetic divergence between mtDNA and microsatellites may reflect different demographic events affecting mtDNA disproportionately and/or a sexual and/or spatial bias in gene flow and dispersal. The spatial discontinuity among lane snappers in the region corresponds to a known zone of vicariance in other marine species. The evidence of two genetically distinct groupings (stocks) has implications for management of lane snapper resources in the northern Gulf.  相似文献   

15.
Discrete estuary subpopulations of the mud crab Hemigrapsus oregonensis (Dana, 1851) are connected via larval dispersal. Sequence variation at the mtDNA COI locus was examined in eight populations sampled in 2001–2002 from central California through northern Oregon in the northeast Pacific (36.6–45.8°N) to infer patterns of dispersal and historical connectivity in the region. Strong evidence for persistence since the mid-Pleistocene, with no range truncation resulting from southward shifting temperature isoclines, was provided by a phylogeographic pattern of haplotypes of an older clade distributed throughout the sampled range. A recently derived clade became widespread only north of Cape Blanco after the last glacial maximum. Its clear pattern of restriction to the northern area, in the absence of similarly restricted southern clades, suggests that contemporary dispersal around Cape Blanco is rare (population F ST = 0.192). Low pairwise differentiation within Oregon and within central California, as well as contrasts between northern and southern groups in the shape of the pairwise mismatch distribution, nucleotide diversity, and Tajima’s D suggest that these regions reflect different demographic histories. Potential mechanisms explaining this latitudinal break include contemporary coastal circulation patterns, selection, and ancient patterns of larval dispersal in the California Current.  相似文献   

16.
The existence of three distinct populations is widely accepted for the finless porpoise (Neophocaena phocaenoides) in Chinese waters: the Yellow Sea, Yangtze River, and South China Sea populations. Here, we use nine species-specific microsatellite loci, the complete mitochondrial DNA control region (912 bp), and the complete mitochondrial cytochrome b gene (1,140 bp) to further investigate potential population stratification in the Yellow Sea using 147 finless porpoise samples from the Bohai Sea and adjacent northern Yellow Sea, two regions that were largely underrepresented in previous genetic studies. Our F-statistics analyses confirm the previously described three populations, but further demonstrate significant genetic differentiation between the [Bohai + northern Yellow] Sea and the southern Yellow Sea. On the other hand, median-joining network analyses do not exhibit well-differentiated haplotype groups among different geographic populations, suggesting the existence of shared ancestral haplotypes. Levels of microsatellite diversity are moderate to high (mean H E = 0.794) among the 147 [Bohai + northern Yellow] Sea finless porpoises and no recent bottleneck was detected, whereas mtDNA control region and cytochrome b gene diversity is low to moderate. The microsatellite genotypic and mtDNA haplotypic data also confirm the presence of mother-calf pairs in single-net bycatch cases. The results presented here highlight the necessity to treat the [Bohai + northern Yellow] Sea population (highly impacted by anthropogenic threats) as a separate Management Unit.  相似文献   

17.
 We describe three highly polymorphic microsatellite loci which have been isolated from the giant tiger prawn Penaeus monodon. The number of alleles present among 312 samples at the loci Pmo9, Pmo25 and Pmo27 were 84, 34 and 35, respectively, with heterozygosities all >90%. Analyses of the distribution of length variation at three microsatellite loci among five Australian P. monodon populations revealed strong differentiation between populations from the west and those from the northern and eastern coasts. Tests for population differentiation (F st) values and an analogous measure for microsatellite loci (R st) all demonstrated that Western Australian P. monodon are a separate genetic stock which exhibits reduced genetic variation relative to the other populations. Reduced variability is consistent with a recent population bottleneck or colonization by a small founding population from the east when sea links between Indonesia, New Guinea and Australia were re-established following the last ice age. The results of this study are in agreement with previous surveys of P. monodon conducted with allozymes and mtDNA. Received: 18 December 1998 / Accepted: 27 August 1999  相似文献   

18.
Allozyme electrophoresis was used to characterize genetic variation within and among natural populations of the red sea urchin Strongylocentrotus franciscanus. In 1995 to 1996, adult urchins were sampled from twelve geographically separated populations, seven from northern California and five from southern California (including Santa Rosa Island). Significant population heterogeneity in allelic frequencies was observed at five of six polymorphic loci. No geographic pattern of differentiation was evident; neighboring populations were often more genetically differentiated than distant populations. Northern and southern populations were not consistently distinguishable at any of the six loci. In order to assess within-population genetic variation and patterns of recruitment, large samples were collected from several northern California populations in 1996 and 1997, and were divided into three size classes, roughly representing large adults (>60 mm), medium-sized individuals (31 to 60 mm, “subadults”) and individuals <2 yr of age (≤30 mm test diam, referred to as “recruits”). Comparisons of allelic counts revealed significant spatial and temporal differentiation among size-stratified population samples. Recruit samples differed significantly from adult samples collected at the same locale, and showed extensive between-year variation. Genetic differentiation among recruit samples was much higher in 1997 than in 1996. Between-year differences within populations were always greater for recruits than for adults. Potential explanations for the differentiation of recruit samples include pre- and post-settlement natural selection and high interfamily variance in reproductive success or “sweepstakes” recruitment. Unless recruit differentiation can be attributed to an improbable combination of strong and spatially diverse selection, such differentiation across northern California populations indicates that the larval pool is not well mixed geographically (even on spatial scales <20 km), despite long planktonic larval duration. Received: 6 July 1999 / Accepted: 25 January 2000  相似文献   

19.
Morphologically plastic, cryptic, or geographically widespread species pose similar challenges to the evolutionary biologist: their taxonomic status is often unclear yet must be known to study almost any aspect of their biology, ecology, evolution, or biogeography. The marine bryozoan Membranipora membranacea (L.) is morphologically plastic and geographically widespread in temperate oceans of the Northern and Southern Hemispheres, and its taxonomy is unclear. This study examined genetic relationships among allopatric populations and sympatric morphs of this species, or species complex. Colonies were collected from 1992 to 1995. Allozymes were used to elucidate the relationships among four widely separated populations, two in the North Atlantic and two in the North Pacific Ocean. Allozymes and mtDNA sequencing were used to clarify the genetic relationships among three sympatric morphs that might correspond to the species M. villosa Hincks and M. membranacea in the northeastern Pacific (Washington State). Populations in the North Atlantic and North Pacific had no fixed allelic differences at the loci tested but were separated by an average Nei's genetic distance of 0.581, suggesting their near-sibling species status. Populations from Friday Harbor (Washington) and Catalina Island (California) were not significantly differentiated, which was attributed to high gene flow. Populations on either side of the North Atlantic were genetically indistinguishable, which is most likely due to the recent establishment of the West Atlantic populations from European founders. At Friday Harbor, sympatric morphs varying in their spination and spine inducibility were genetically indistinguishable, supporting the hypothesis that M. villosa is an induced phenotype of M. membranacea and not a distinct species in the northeastern Pacific. Since such phenotypic plasticity is common in cheilostome bryozoans, the morphospecies concept must be used with caution. Received: 31 August 1998 / Accepted: 10 August 1999  相似文献   

20.
Genetic differentiation ofMytilus edulis in eastern North America   总被引:1,自引:0,他引:1  
There is significant differentiation at five polymorphic loci ofMytilus edulis among certain geographical areas of the Atlantic coast of North America. Non-metric multidimensional numerical methods distinguished three population groups: (I) populations south of Cape Cod, (II) populations throughout the Gulf of Maine, Gulf of St. Lawrence, areas of both southern and northern Newfoundland, and southern Hudson Bay, and (III) populations in southeastern Nova Scotia, northern Newfoundland and Hudson Strait, Quebec. Each subset consists of populations that exhibit characteristic multilocus, multiple allele genotypes. Populations in Groups II and III are spatially interdigitated among each other. At least one geographical area of mixing between genetically distinct populations occurs in northeastern Newfoundland. There is no evidence for interbreeding among genetically distinct individuals in mixed populations, suggesting the possibility that populations in the Atlantic Canadian Provinces and areas of northern Canada may consist of two distinct species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号