首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
电化学氧化法去除微污染水中的氨氮   总被引:1,自引:1,他引:0  
以低氯离子浓度下微污染水中的氨氮(NH4+-N)为研究对象,采用电化学氧化法对污染水中的氨氮进行去除。通过静态和正交实验得到了极板的最佳运行参数。实验结果表明:Cl-浓度在各影响因素中对NH4+-N去除影响最大,且在其他影响因素不变的条件下,通过改变电解电流是解决动态运行时NH4+-N去除率下降较经济有效的方法。最佳运行工艺条件为:电流密度10 mA/cm2,电解时间10 min,极板间距1 cm,溶液初始pH为7,Cl-浓度100 mg/L,面体比102 m2/m3,氨氮的平均去除率在80%以上。  相似文献   

2.
悬浮填料生物膜反应器处理黑水的启动挂膜   总被引:1,自引:0,他引:1  
采用自然挂膜法在低碳氮比的黑水中启动悬浮填料生物膜反应器,探讨了进水有机物和氨氮负荷率对挂膜启动的影响,分析了挂膜过程中溶解性化学需氧量(SCOD)、氨氮(NH+4-N)和总氮(TN)的去除转化规律及填料上附着生物量和填料生物相的变化规律。研究结果表明,在DO为1.5~2.5 mg/L、温度为(21±2)℃等条件下可快速(43 d)启动生物硝化挂膜,SCOD、NH+4-N和TN去除率分别可达到84%、62%和46%,单个填料上的生物膜量达到0.49 g/个。进水SCOD、NH+4-N负荷率明显影响硝化细菌在填料上的成膜和生物硝化效率。研究认为,进水SCOD、NH+4-N负荷率分别保持5.34g/(m2·d)、1.44 g/(m2·d)左右,能够促快速挂膜并获得良好的短程硝化和同步硝化反硝化效果。  相似文献   

3.
常温CSTR部分亚硝化影响因素及工况优化研究   总被引:1,自引:0,他引:1  
为了更好地实现并维持稳定的部分亚硝化效果,以低氨氮人工配水为研究对象,采用连续流完全混合式活性污泥法(CSTR),在常温条件下对部分亚硝化工艺的影响因子和准佳工况进行了研究。结果表明,HRT=(3.0±0.2)h,DO为0.40~0.50 mg/L,回流比R=20%~30%时,平均氨氧化率为53%,且工艺出水NO2--N/NH4+-N平均为1.11∶1,适宜作为系统长期稳定运行的工况。若持续缩短HRT会导致反应器内污泥浓度降低,部分亚硝化效果受到影响。反应器在上述工况运行时,DO=0.50 mg/L是亚硝化率下降的临界浓度;系统进出水pH差值可良好表征出水亚硝酸盐氮与氨氮浓度的比例。  相似文献   

4.
对高浓度氨氮污泥脱滤液进行了半硝化实验研究。运行结果表明,反应器进水氨氮浓度在402 mg/L、HRT=5.5 h、温度为22~31℃、DO〈1.0 mg/L、pH值在7.4~8.2时,半硝化反应器出水的NO 2--N/NH3-N维持在1.13~1.32,且负荷达到1.76 kg N/(m3.d),NO2--N/NOx...  相似文献   

5.
以活性污泥3号模型(ASM3)为平台,通过引入厌氧氨氧化和甲烷化过程、以2步硝化-反硝化取代1步硝化-反硝化过程以及区分硝酸盐和亚硝酸盐条件下的内源呼吸过程,建立了同时具有甲烷化、厌氧氨氧化和2步硝化反硝化功能的EGSB-BAF工艺模型.该模型包括5种微生物、28个生物过程,同时考虑了温度、pH值和抑制性物质对生物过程的影响.以实验室EGSB-BAF集成工艺的实验数据,结合灵敏度分析对部分模型参数进行了校核.采用校核后的模型对集成工艺EGSB段和BAF段出水的COD、NH4+-N、NO2--N和NO3--N浓度进行模拟,结果表明,EGSB段和BAF段的出水中COD、NH4+-N、NO2--N和NO3--N浓度的模拟值与实测值的误差在可接受范围内.表明模型能够描述工艺的主要生物反应过程,可以作为指导工艺研究、设计和运行优化的手段.  相似文献   

6.
低C/N比水产养殖废水生物脱氮实验研究   总被引:5,自引:1,他引:4  
随着短程硝化-反硝化理论研究的发展,在低C/N比条件下,实现污水的生物脱氮处理已成为可能。为此,设计了水产养殖用水的三级生物膜短程硝化-反硝化处理工艺,并对该工艺在去除模拟水产养殖废水主要污染物的作用进行了初步研究。研究结果表明,在进水pH值7.5~8.5,温度为28~32℃,溶解氧为0.5~1 mg/L,游离氨浓度为5~10 mg/L的条件下,模拟废水的COD、NH4+-N和TN的平均去除率分别达到94.4%、91.6%和70.1%;并且低C/N比对出水氨氮NH4+-N的去除率影响不大,NO2--N的平均浓度控制在5.2 mg/L以下,低于鱼类的耐受浓度。表明该短程硝化-反硝化工艺设计,可用于低C/N比水产养殖废水主要污染物的生物处理,尤其是可消除NO2--N对水产养殖的潜在威胁,基本达到养鱼回用标准。  相似文献   

7.
污水生物脱氮硝化阶段是温室气体一氧化二氮(N2O)的重要释放源。采用连续流反应器在2种进水氨氮(NH4-N,低氮反应器60 mg/L和高氮反应器180 mg/L)浓度条件下驯化硝化菌,并研究了不同初始NH4-N浓度和不同初始亚硝酸盐(NO2-N)浓度条件下所驯化硝化菌释放N2O的特征。结果表明在反应器运行过程中2个反应器释放N2O较少,均小于去除NH4-N浓度的0.01%;N2O的释放均随着初始NH4-N浓度或初始NO2-N浓度的升高而增加;不同初始NH4-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在0.51%~1.40%之间,高氮反应器驯化硝化菌在0.29%~1.27%之间;不同初始NO2-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在1.38%~3.78%之间,高氮反应器驯化硝化菌在1.16-5.81%之间。  相似文献   

8.
污水生物脱氮硝化阶段是温室气体一氧化二氮(N2O)的重要释放源。采用连续流反应器在2种进水氨氮(NH4-N,低氮反应器60 mg/L和高氮反应器180 mg/L)浓度条件下驯化硝化菌,并研究了不同初始NH4-N浓度和不同初始亚硝酸盐(NO2-N)浓度条件下所驯化硝化菌释放N2O的特征。结果表明在反应器运行过程中2个反应器释放N2O较少,均小于去除NH4-N浓度的0.01%;N2O的释放均随着初始NH4-N浓度或初始NO2-N浓度的升高而增加;不同初始NH4-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在0.51%~1.40%之间,高氮反应器驯化硝化菌在0.29%~1.27%之间;不同初始NO2-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在1.38%~3.78%之间,高氮反应器驯化硝化菌在1.16-5.81%之间。  相似文献   

9.
常温条件下短程硝化反硝化生物脱氮影响因素的研究   总被引:7,自引:5,他引:7  
试验采用SBR工艺研究了不同盐度、NH 4-N、pH和温度等因素对含盐废水短程硝化反硝化的影响.发现在20~25 ℃,pH>8.5条件下,通过提高进水氨氮浓度可以使亚硝化率\达到90%以上.实验证明,亚硝酸菌有较高的耐盐性,能在高盐环境中保持良好的活性.  相似文献   

10.
采用弹性填料微孔曝气生物预处理方法净化受污染的某饮用水源,探讨了水源水环境中NH4+-N变化对生物预处理除NH4+-N作用效果的影响。结果表明,水源水环境中的NH4+-N对生物预处理工艺除NH4+-N有一定的影响作用。  相似文献   

11.
容积负荷对厌氧氨氧化反应器运行影响的研究   总被引:6,自引:0,他引:6  
采用1套有效容积为3 L的厌氧复合床作为厌氧氨氧化反应器,用提高进水基质浓度和缩短反应器水力停留时间2种方式提高反应器的容积负荷,进而研究反应器最佳的进水浓度和水力停留时间。结果表明,在HRT为24 h的条件下,反应器最佳进水浓度NH4+-N与NO2--N在110 mg/L左右;通过调节HRT发现,当HRT大于8 h时,NH4+-N与NO2--N的去除率都在80%以上。  相似文献   

12.
ASBR厌氧氨氧化反应器的快速启动及脱氮原理分析   总被引:3,自引:1,他引:2  
以城市生活污水为基本水质进行配水,采用ASBR研究了厌氧氨氧化反应器的快速启动过程及脱氮性能。实验条件如下:T为(35±1)℃、HRT为24 h、pH为7.2~7.5,进水NH4+-N、NO2--N浓度为40~160 mg/L,TN负荷为0.08~0.34 kg TN/(m3.d),按2∶1比例混合接种好氧短程硝化污泥和厌氧氨氧化污泥,经49 d运行成功启动厌氧氨氧化反应器,并实现稳定运行。实验结果表明:稳定运行期NH4+-N、NO2--N去除率分别达96%和98%;NH4+-N、NO2--N去除量与NO3--N生成量比值为1∶1.05∶0.29,较为接近理论值;成功启动的反应器出水pH高于进水;系统TN去除率平均值为79.7%;反应器内存在反硝化与厌氧氨氧化的协同作用,实现了部分COD去除;污泥由深棕色絮状变成红褐色颗粒状,经SEM扫描电镜观察污泥菌群种类单一,多为球状菌,有漏斗状缺口,具有典型氨氧化菌形态特征。  相似文献   

13.
Leachate samples with a high strength of ammonium-nitrogen (NH4+-N) were collected from a local landfill site in Hong Kong. Two experiments were carried out to study (1) the inhibition of microbial activity of activated sludge by NH4+-N and (2) the chemical precipitation of NH4+-N from leachate as a preliminary treatment prior to the activated sludge process. The experimental results demonstrated that the efficiency of COD removal decreased from 97.7% to 78.1%, and the dehydrogenase activity of activated sludge decreased from 9.29 to 4.93 microg TF/mg MLSS, respectively, when the NH4+-N concentration increased from 53 to 800 mg/l. The experiment also demonstrated that the NH4+-N in the leachate can be quickly precipitated as MgNH4PO4 x 6H2O after addition of MgCl2 x 6H2O + Na2HPO4 x 12H2O. The NH4+-N concentration was reduced from 5618 to 112 mg/l within 15 min when a molar ratio of Mg2+:NH+:PO4(3-) = 1:1:1 was used. The optimum pH to reach the minimum solubility of MgNH4PO4 x 6H2O was found to be in the range of 8.5-9.0. Attention should be given to the high salinity formed in the treated leachate by using MgCl2 x 6H2O + Na2HPO4 x 12H2O, which may affect microbial activity in the following biological treatment processes. Using two other combinations of chemicals [MgO + 85%H3PO4 and Ca(H2PO4)2 x H2O + MgSO4 x 7H2O] could minimise salinity generation after precipitation, while they were less efficient for NH4+-N removal.  相似文献   

14.
原位臭氧氧化污泥减量工艺的运行效能   总被引:1,自引:0,他引:1  
采用ASBR/SBR原位臭氧污泥减量工艺,重点研究了原位臭氧氧化对SBR段污泥产率和出水水质的影响。两个相同的ASBR/SBR组合工艺同时运行,每隔3个周期向臭氧投加组SBR的曝气阶段原位间歇投加臭氧,臭氧投加量为0.027 g O3/g MLSS,连续运行40 d;对照组不投加臭氧作为对比。结果表明,原位臭氧氧化实现污泥减量约43.9%,臭氧投加组SBR段平均污泥产率系数为0.1447 g SS/g SCOD,而对照组为0.2580 g SS/g SCOD,投加组没有惰性污泥的累积,并且污泥沉淀性能得到改善。原位臭氧氧化对出水水质影响不大,投加组与对照组相比,臭氧投加3周期后的出水COD、NH4+-N、TN和TP平均值分别为47.8、0.76、14.1和6.4 mg/L,去除率分别下降了4%、2%、3%和7.7%,其中COD、NH4+-N和TN均能达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。  相似文献   

15.
The effect of influent nitrogen composition on organic nitrogen production in a sequencing batch reactor (SBR) activated sludge process was investigated. A laboratory-scale SBR was fed with three different type synthetic wastewaters with varying nitrogen compositions (phase I = nitriloacetic acid + ammonium [NH4-N], phase II = NH(4-)N, and phase III = amino acid mixture + NH(4-)N) was operated. The effluent contained approximately 1 to 2 mg N/L organic nitrogen, even though there was no organic nitrogen in influent. The effluent organic nitrogen increased to approximately 4 mg N/L when the influent composition was changed and then stabilized at <2 mg N/L. The maximum nitrifier growth rate constants (microN) were calculated as 0.91+/-0.10 to 1.14+/-0.08 day-1, 0.82 +/-0.13 day-1, and 0.89+/-0.08 day-1 at 20 degrees C for the three different influent compositions. The effluent colloidal organic nitrogen (CON) was negligible, suggesting that the effluent CON found in full-scale plants may be the result of influent-derived suspended matter.  相似文献   

16.
Anaerobic granular sludge, obtained from an upflow anaerobic sludge bed reactor at a brewery waste treatment station, was cultured for 3 months under aeration conditions until the diameter of sludge was in the range 1.8 to 2.6 mm. The aerobic granular sludge gathered acquired the ability of catalyzing simultaneous nitrification and denitrification (SND) and was applied in the study of the process of nitrogen removal in a bioreactor. The ratio between chemical oxygen demand (COD) and ammonium-nitrogen (NH4(+)-N) concentration in the influent was found to be an important factor influencing the process of SND. The final percentage removal of NH4(+)-N reached 100% under the optimal condition of 500 mg/L COD and 0.39 NH4(+)-N/COD. Intermediate products, such as nitrite-nitrogen and nitrate-nitrogen, were also analyzed to clarify the SND process with the aerobic granular sludge.  相似文献   

17.
采用序批式反应器(SBR)与间歇曝气膜生物反应器(IAMBR)处理模拟生活污水,考察了进水盐度对两反应器污水处理效果的影响。研究表明,当进水盐度为0g/L(以NaCl质量浓度计,下同)时,SBR和IAMBR对总有机碳(TOC)、NH4+-N及TN的去除能力相当,IAMBR未表现出明显的优势;当进水盐度为10g/L时,SBR和IAMBR对TOC、NH4+-N及TN的去除产生明显的差异。IAMBR因为膜的截留与微生物富集作用,对污染物的去除无明显变化,依然保持了较高的污染物去除率,而SBR受盐度冲击影响较大,TOC、NH4+-N及TN的去除率均大幅降低,说明IAMBR具有较高的抗盐度冲击性能。  相似文献   

18.
分段进水多级生物膜反应器脱氮效能影响因素研究   总被引:2,自引:1,他引:1  
采用分段进水多级生物膜反应器处理高氮低碳小城镇污水,考察负荷、溶解氧和温度对反应器脱氮效能的影响。实验结果表明:负荷、溶解氧和温度对反应器脱氮效能有显著影响。在水温为20~25℃,DO为5 mg/L,负荷为1 kgCOD/(m3.d),挂膜密度为30%,第1、3、6级分段进水,流量分配比为2∶2∶1的条件下,在反应器中可成功构建出高效同时硝化反硝化系统,出水COD、NH4+-N和TN浓度分别为33 mg/L、2.6 mg/L和29.4 mg/L,去除率分别为90.1%、96.0%和63.9%。当水温≤15℃时,硝化速率受温度的影响显著。  相似文献   

19.
在连续流生物膜反应器中通过控制DO、pH和HRT,对低氨氮浓度废水进行了亚硝化的实验研究。结果表明,在进水氨氮浓度为35~45 mg/L,温度为34℃的情况下,当DO=1.4~1.5 mg/L,pH=8.3,HRT=6 h时,氨氮的去除率与亚硝态氮的积累率均可达到80%左右,实现了较好的氨氮降解及稳定的亚硝态氮的积累。  相似文献   

20.
A/O膜生物反应器处理高浓度氨氮废水试验研究   总被引:4,自引:0,他引:4  
对A/O膜生物反应器处理高浓度氨氮废水进行了研究,着重考察硝化液回流比和C/N对系统脱氮效能的影响.研究表明,当硝化液回流比为2、C/N为6时.系统对COD、氨氮、TN的平均去除率分别达96.17%、97.76%、76.29%;A/O膜生物反应器稳定运行期间,氨氮容积负荷去除量与进水氨氮容积负荷呈现良好的线性关系;当A/O膜生物反应器内MLSS稳定在9~13 g/L时,上清液COD较低,膜压差增长缓慢.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号