首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effects of air pollution on plants downwind of a fertilizer factory at Udaipur, India, were studied using three woody perennials. Seedlings of these species including a shrub (Carissa carandas L.), a leguminous avenue tree (Cassia fistula L.) and a fruit tree (Psidium guajava L.) were grown in earthen pots at different study sites receiving varying levels of air pollution input. Changes in plant growth, morphological characteristics, photosynthetic pigment, ascorbic acid, N and S contents and in dry matter allocation were considered in relation to the status of ambient air quality. Observations with these parameters have indicated that the ambient air around the factory contained pollutants at phytotoxic levels. Plant height, basal diameter, conopy area, leaf area and chlorophyll, ascorbic acid and foliar-N concentrations decreased with increasing pollution load. However, foliar-S increased slightly at polluted sites. Air pollution load around the factory have also altered the biomass allocation. Root:shoot ratios increased in C. fistula and P. guajava at polluted sites. In contrast, for C. carandas the above ground parts, where foliage assumed predominance showed precedence over the root growth. This species responded characteristically to air pollution stress by allocating more of its photosynthate towards leaf production and shoot growth.  相似文献   

2.
Foliar Cd and Zn concentrations of hybrid poplars commonlyplanted on sediment-derived soils were assessed in field circumstances. Selected sites covered a range of soil types andplantation characteristics. Reference data for foliar concentrations were established from samples taken in a tree-nursery. Even in the reference situation a large variationin foliar Cd and Zn concentrations was observed, with relative standard deviations in the order of 15%. Foliar concentrations of Cd and Zn in poplars growing on sediment-derived soils increased during the growing season. The accumulation rate was markedly higher on polluted sediment-derived soils than in thereference situation. Poplars grown on polluted sedimentderived soils showed elevated and deviating foliar Cd and Znconcentrations (>7.5 mg Cd kg-1 DW and 320 mg Zn kg-1 DW). A thin unpolluted covering layer did not influence foliarconcentrations. Regardless of site characteristics, poplarage, species or clone, a significant positive relation wasfound between soil and foliar concentration for Zn and to alesser extent for Cd. Bioconcentration factors for Cd and Znwere higher than one in baseline situations, but mostly lowerthan one on polluted sediment-derived soils. Cd:Zn ratio wason the average twice as high as in the soil. Leaf beetlesshowed normal body concentrations for Zn, but higher Cdconcentrations than in reference situations. BCFs were lowerthan one on sediment-derived soils. Foliar results indicateda possible threat in long-term habitat development of poplarplantations. This conclusion was confirmed by the significanthigher Cd concentrations in leaf beetles grown on poplarswith deviant foliar concentrations. However, litterdecomposition rates were generally evaluated as normal.  相似文献   

3.
EDU (ethylenediurea) and non-EDU-treated bean plants (Phaseolus vulgaris) L. cv. Lit) were exposed to ambient air at four rural sites in the Netherlands during the growing seasonsof 1994 through 1996 to investigate the responses to ambient ozone. Ozone-induced foliar injury was observed each year anddifferences in injury between sites depended on year. On average,injury amounted to 27% in 1994, to 8% in 1995 and to 1% in 1996. Injury increased with increasing ozone exposure (AOT40) and the estimated AOT40 value corresponding with 5% injury wascirca 3650 nl l-1 h ozone. The highest ozone levels accumulated at each site for five consecutive days before injuryexceeded the proposed short-term critical level for injury development. EDU reduced injury and its protective effect was positively related to the injury intensity in non-EDU-treatedplants. Yield of green marketable pods (intermediate harvest) andmature pods (final harvest) was generally reduced in non-EDU-treated plants compared to EDU-treated plants and differences inyield reduction between harvests varied between years. The yield of mature pods was reduced in 1994 and 1996 while the yield ofgreen pods was reduced in 1995 by ozone only. Since yield reduction was not correlated with AOT40, the EDU method was notvalid to determine an ozone exposure-yield reponse relationshipfor bean.  相似文献   

4.
To study the impact of air pollution on the growth and elemental composition of conifers, 5 sample plots wereestablished at different distances and directions from theEstonian Power Plant (Northeast Estonia) in 1999–2000. Theselected stands were 75–80(85)-yr-old parts (0.05 ha) of(Oxalis)-Myrtillus site type forest of 0.7–0.8density. The soils of all sample plots were Gleyic Podzols(Lkg) on sands. The several times higher Ca concentration inthe humus horizon of the sample plot NE from the Estonian PPis caused by the prevailing westerly and southerly winds whichcarry more pollutants NE from the power plant than to SSW. Toascertain the effect of power plants on the growth of Scotspine (Pinus sylvestris L.), the length growth of theneedles and shoots formed in 1997–2000, dry weight of 100needles, and density of needles on the shoots were measured.As compared to the control, the strongest inhibition of growthwas revealed in the sample plots situated 22 km north-east and17 km south-west from the Estonian Power Plant. As compared tocontrol, the needles of trees growing on sample plots closerto the power plant showed higher contents of Ca, S and Zn. Thecontent of Mg in needles increased with distance from thepollution source. Current year needles had higher contents ofCu and Zn than older needles. Today the amounts of fly ashemitted from Narva power plants are fallen. Long-term fly ashemission has caused changes in the measurements ofmorphological parameters and chemical composition of needles.  相似文献   

5.
A field study was conducted around two thermal power plants of India to quantify the changes in foliar elemental concentrations due to emission in a low rainfall tropical area. Sulphur dioxide and particulates were at high levels which may cause serious ecological effects. Emission from the power plants has altered the elemental concentrations in the leaves of evergreen and deciduous plants. The foliar total-S and SO4 2–-S levels were significantly higher in all the plants growing at polluted sites. However, the organic-S content was more or less unaltered. In evergreen plants, the SO4 2–-S content increased gradually from summer through winter, whereas in the deciduous plants there was a higher magnitude of increase after onset of new leaves during summer. With the increasing pollution load, foliar Ca2+ and K+ contents increased, whereas N content decreased. The reduction in N content was greater during summer in evergreen plants and during winter in deciduous plants. The plants growing closer to the power plants accumulated more trace elements (Mn, Fe, Cd, Pb and Ni) as compared to those growing at distant sites. In deciduous plants the leaf fall during winter lowered down the trace element  相似文献   

6.
This study was conducted in the urban environment of Varanasi, India, to evaluate the plant responses to urban air pollution. Twenty sites were selected in four different zones of the city. At each site, seven woody perennials of same age classes were selected. Out of the four zones (I, II, III and IV), zone IV was used as a reference (control) zone as it received the minimum pollution input. Plant species growing in polluted and control areas were compared with respect to foliar dust load, per cent leaf area injury, leaf area, specific leaf weight and chlorophyll, ascorbic acid, SO 4 2– S and total N concentration in the leaves. Results indicated that the air pollution level in Varanasi causes leaf damage, reduces leaf area, specific leaf weight and chlorophyll, ascorbic acid and total N concentrations in the leaves. Sulphur concentration in leaves increased with increasing level of SO2 in the ambient air. The magnitude of such changes was maximum at the zone receiving maximum pollution load. Carissa carandas was found to be the most sensitive species and Bougainvillea spectabilis, the least. The study shows that the urban air pollution level in Varanasi is detrimental for the growth of plants involved in this study.  相似文献   

7.
Field experiments were conducted to study the impact of metal accumulation on malondialdehyde (MDA), cysteine and non-protein thiol (NPSH) contents in the plants of Prosopis juliflora grown on the fly ash (FA) amended with soil, blue green algae (BGA) biofertilizer, farm yard manure, press mud and Rhizobium inoculation. The analysis of data revealed that the level of MDA, cysteine and NPSH was higher in the roots of the plant than leaves, which was found positively correlated with metal accumulation. An increase of 361.14, 64.25 and 305.62% in MDA, cysteine and NPSH contents, respectively was observed after 45 days in the roots of the plants grown in 100% FA as compared to 100% garden soil (GS). The level of MDA, cysteine and NPSH was found less in the plants grown on various amendments of FA showing ameliorating effect on the toxicity induced due to the accumulation of metals. The decrease in MDA, cysteine and NPSH contents was higher in Rhizobium-inoculated plants as compared to uninoculated plants grown on 100% FA. The results showed a high tolerance potential of the plant, which is further increased by inoculating the plant with FA-tolerant Rhizobium showing feasibility of using P. juliflora in environmental monitoring of FA landfills.  相似文献   

8.
Plants of L. leucocephala were grown in 100%soil (as control), 100% fly-ash and fly-ash amendedwith 50% press mud for 80 days, and analysed withrespect to plant growth, elemental composition andphysiological changes in different parts of the plant.The results revealed that amending fly-ash with pressmud enhanced plant growth as well as otherphysiological responses such as chlorophyll, protein,in vivo nitrate reductase activity compared to100% fly-ash treated plants. The elements Fe, Zn, Cuand Mn accumulated in larger quantities in plantsgrown in 100% fly-ash, and followed the order ofaccumulation Fe > Zn > Cu > Mn. The results of thisstudy indicate that ash amending with press mud mayprovide more favourable conditions for the growth ofthis tree species.  相似文献   

9.
Vicia faba was grown in crude oil polluted soil and its roots were extracted for the detection and estimation of hydrocarbons. Saturated and unsaturated Aliphatic Hydrocarbons (AHs) ranging from C22 to C36 were identified in AHs fraction. However, PAHs were not present in the same extract. This could be due to the fact that PAHs being toxic compounds are not accumulated in the plant root extracts of V. faba grown in crude oil polluted soil. Three phytoalexins were identified and estimated by mass spectrometric analysis in the root extracts of V. faba. These three compounds are 2-t-butyl-4-(dimethyl benzyl) phenol, 2, 4-bis (dimethyl benzyl) phenol and 2,4-bis (dimethyl benzyl)-6-butyl phenol. These phenolics in V. faba are being reported for the first time. These compounds are presumably elicited as a direct stress on crude oil hydrocarbons on the roots of this plant.  相似文献   

10.
Leaves of the deciduous tree species, horse chestnut (Aesculus hippocastanum L.) and Turkish hazel (Corylus colurna L.) were used as accumulative biomonitors of trace metal pollution in the urban area of Belgrade. Using differential pulse anodic stripping voltametry, trace metal concentrations (Pb, Cu, Zn, Cd) were determined at the single leaf level (ten leaves per species, per month), during two successive years with markedly different atmospheric level of trace metals. Increased trace metal concentrations in the leaves of A. hippocastanum reflected elevated atmospheric trace metal pollution, whereas C. colurna L. did not respond accordingly. The contents of Pb and Zn in soil over the same period also followed this trend. Anatomical analyses, in young as well as in old leaves of both species, indicated typical foliar injuries of plants exposed to stressful air conditions. Water relations that correspond to leaf age may have contributed to the considerable trace metal accumulation in leaves.  相似文献   

11.
The evaluation of certain vascular plants that grow in the city of Madrid as biomonitors of SO2 air pollution in urban environments has been carried out. Total concentration of sulphur in leaves of the chosen higher plants as well as other parameters in close relation to this contaminant (visible injury symptoms, chlorophyll a- and b-content and peroxidase activity) have been determined in order to study the spatial distribution and temporal changes in SO2 deposition. Results obtained show that coniferous species such as Pinus pinea, were more sensitive to SO2 atmospheric concentration than leafy species as Quercux ilex subspecies ballota and, in the same way, bush species, such asPyracantha coccinea and Nerium oleander, were more sensitive than wooded species, such as Cedrus deodaraandPinus pinea, respectively. There is a higher accumulation of sulphur in vegetable species located near highways and dense traffic incidence roads and near areas with high density of population. The minimum values for accumulation of SO2 were registered in winter and spring seasons (from January to April) due to the vegetative stop; while maximum values are obtained during the summer season (from June to September), due to the stoma opening. The highest increments in sulphur concentration, calculated as the difference between two consecutive months, are obtained in May and June for all considered species except forCedrus deodara and Pyracantha coccinea, both species have few seasonal changes during the whole year. Some species are more sensitive to natural washing than others, showing a decrease in sulphur concentration after rainfall periods.  相似文献   

12.
Assessment of oxidative stress levels and tissue concentrations of elements in plants growing wild on fly ash basins is critical for realistic hazard identification of fly ash disposal areas. Hitherto, levels of oxidative stress markers in plants growing wild on fly ash basins have not been adequately investigated. We report here concentrations of selected metal and metalloid elements and levels of oxidative stress markers in leaves of Cassia occidentalis growing wild on a fly ash basin (Badarpur Thermal Power Station site) and a reference site (Garhi Mandu Van site). Plants growing on the fly ash basin had significantly high foliar concentration of As, Ni, Pb and Se and low foliar concentration of Mn and Fe compared to the plants growing on the reference site. The plants inhabiting the fly ash basin showed signs of oxidative stress and had elevated levels of lipid peroxidation, electrolyte leakage from cells and low levels of chlorophyll a and total carotenoids compared to plants growing at the reference site. The levels of both protein thiols and nonprotein thiols were elevated in plants growing on the fly ash basin compared to plants growing on the reference site. However, no differences were observed in the levels of cysteine, reduced glutathione and oxidized glutathione in plants growing at both the sites. Our study suggests that: (1) fly ash triggers oxidative stress responses in plants growing wild on fly ash basin, and (2) elevated levels of protein thiols and nonprotein thiols may have a role in protecting the plants from environmental stress.  相似文献   

13.
The present study demonstrates comparison of Cr accumulatingpotential by the plants of Najas indica Cham. (submerged),Vallisneria spiralis L. (rooted submerged) and Alternanthera sessilis R. Br. (rooted emergent) under repeatedmetal exposure and its effect on chlorophyll and protein concentrations. These plants were treated with different concentrations of Cr under repeated exposure in controlled laboratory conditions to assess the maximum metal accumulationpotential. The plants of V. spiralis accumulated significantly high amount of Cr under laboratory conditions incomparison to N. indica and A. sessilis. The maximumaccumulation of 1378, 458 and 201 g g-1 dw Cr was found in the leaves of V. spiralis, N. indica and A. sessilis, respectively at 8 mg L-1 after 9 day of Cr exposure. These plants have shown a decrease in chlorophyll andprotein concentrations with increase in Cr concentrations. In view of high accumulation of Cr in V. spiralis, the plantswere treated with different concentrations of tannery effluent collected from Common Effluent Treatment Plant, Unnao (UP). Theplants of V. spiralis treated with 100% tannery wastewatershowed the maximum accumulation (57.5 g g-1 dw) of Cr in the roots after 10 days of exposure. The plants were foundeffective in removing Cr from solution and tannery effluent.  相似文献   

14.
Plants can be used as both passive biomonitors and biomitigators in urban and industrial environments to indicate the environmental quality and to ameliorate pollution level in a locality. Many studies reveal that plants are negatively affected by the ambient levels of air pollutants. The present study was conducted to evaluate the impact of air pollution on comparative basis with reference to changes in photosynthetic pigments, plant height, leaves, as well as, biochemical parameters of plants of different sites around Udaipur city receiving varying levels of pollution load. The investigated tree species Dalbergia sissoo Roxb. (Family: Fabaceae) exhibited a reduction in various physiological and biochemical growth parameters that correspond with air pollution levels at different sites. The tree species growing in polluted and control areas were compared with respect to foliar dust load, leaf area, and chlorophyll and total carbohydrate and total protein concentration in the leaves. Our studies suggest that D. sissoo Roxb. can successfully be grown in an area for monitoring air pollution, where it is mild and droughts are common. It will prove as an ideal tree species to control pollution effectively beside acting as a shade tree and being a source of food for birds and animals. By plantation of D. sissoo Roxb., mitigative measure at the polluted sites to control generation of particulate matter and the air quality required can be ensured. Our results also confirm that industrial and vehicular air pollution level in Udaipur city is shifting beyond limits.  相似文献   

15.
The process of a bioindication of genotoxic effects of complex mixtures on the environment using higher plants is very appropriate and effective. We present the results of an in situ indication of the genotoxic effects of polluted environment near Žilina city. For a more complex monitoring we used: the Tradescantia micronucleus (Trad-MCN) assay, the Tradescantia microspore test and an evaluation of the abortivity of the pollen grains of native plant species. We found significant differences in the frequency of the micronuclei when using the Trad-MCN test in local of Dubeň. The Tradescantia pollen abortivity test showed significant differences in the frequency of the abortive pollen grains between the exposed groups and the control group. By using native plant species in the pollen abortivity test we found significant differences in both of the two locations for the four following species during two consecutive years: Artemisia vulgaris, Melilotus albus, Trifolium pratense, Typha latifolia.  相似文献   

16.
The stable nitrogen isotope ratios of some biota have been used as indicators of sources of anthropogenic nitrogen. In this study the relationships of the stable nitrogen isotope ratios of marsh plants, Iva frutescens (L.), Phragmites australis (Cav.) Trin ex Steud, Spartina patens (Ait.) Muhl, Spartina alterniflora Loisel, Ulva lactuca (L.), and Enteromorpha intestinalis (L.) with wastewater nitrogen and land development in New England are described. Five of the six plant species (all but U. lactuca) showed significant relationships of increasing δ 15N values with increasing wastewater nitrogen. There was a significant (P < 0.0001) downward shift in the δ 15N of S. patens (6.0 ± 0.48‰) which is mycorrhizal compared with S. alterniflora (8.5 ± 0.41‰). The downward shift in δ 15N may be caused by the assimilation of fixed nitrogen in the roots of S. patens. P. australis within sites had wide ranges of δ 15N values, evidently influenced by the type of shoreline development or buffer at the upland border. In residential areas, the presence of a vegetated buffer (n = 24 locations) significantly (P < 0.001) reduced the δ 15N (mean = 7.4 ± 0.43‰) of the P. australis compared to stands where there was no buffer (mean = 10.9 ± 1.0‰; n = 15). Among the plant species, I. frutescens located near the upland border showed the most significant (R 2 = 0.64; P = 0.006) inverse relationship with the percent agricultural land in the watershed. The δ 15N of P. australis and I. frustescens is apparently an indicator of local inputs near the upland border, while the δ 15N of Spartina relates with the integrated, watershed-sea nitrogen inputs.  相似文献   

17.
The concentrations of Cd, Cu, Pb, and Zn in sediments, water, and different plant organs of six aquatic vascular plant species, Ceratophyllum demersum L. Echinochloa pyramidalis (Lam.) Hitchc. & Chase; Eichhornia crassipes (Mart.) Solms-Laub; Myriophyllum spicatum L.; Phragmites australis (Cav.) Trin. ex Steud; and Typha domingensis (Pers.) Poir. ex Steud, growing naturally in the Nile system (Sohag Governorate), were investigated. The aim was to define which species and which plant organs exhibit the greatest accumulation and evaluate whether these species could be usefully employed in biomonitoring and phytoremediation programs. The recorded metals in water samples were above the standard levels of both US Environmental Protection Agency and Egyptian Environmental Affairs Agency except for Pb. The concentrations of heavy metals in water, sediments, and plants possess the same trend: Zn > Cu > Pb > Cd which reflects the biomonitoring potentialities of the investigated plant species. Generally, the variation of heavy element concentrations in water and sediments in relation to site and season, as assessed by two-way repeated measured ANOVA, was significant (p < 0.05). However, insignificant variations were observed in the concentrations of Pb and Cd in sediments in relation to season and of Cu and Zn in relation to site. Results also showed that the selectivity of the heavy elements for the investigated plants varied significantly (p < 0.05) with species variation. The accumulation capability of the investigated species could be arranged according to this pattern: C. demersum > E. crassipes > M. spicatum > E. pyramidalis > T. domingensis > P. australis. On the basis of the element concentrations, roots of all the studied species contain higher concentrations of Cu and Zn than shoots while leaves usually acquire the highest concentrations of Pb. Cd concentrations among different plant organs are comparable except in M. spicatum where the highest Cd concentrations were recorded in the leaves. Our results also demonstrated that all the studied species can accumulate more than 1,450-fold the concentration of the investigated heavy elements in water rendering them of interest for use in phytoremediation studies of polluted waters. Given the absence of systematic water quality monitoring, heavy elements in plants, rather than sediments, provide a cost-effective means for assessing heavy element accumulation in aquatic systems during plant organ lifespan.  相似文献   

18.
A comparative study of the physico-chemical properties of soil, leafmetal content and foliar surface traits in Lagerstroemia parviflora(L.) Roxb. plants, growing in an iron-rich mineralized and anon-mineralized area was carried out. Metal accumulation wasmaximum in summer; in the peak growing season, it declined duringthe rainy season but picked up again in winter. In leaves sampled froma mineralized region, epidermal cells were much smaller in size buthigher in number per unit area. Changes in the number and size of glandular papillae were also observed. Characteristic non-glandular,elongate trichomes with acute tip were also recorded in mineralizedpopulations. Scanning electron microscopic examination of the foliarsurface configuration revealed distortions in epicuticular wax structuresand wider cuticular striations with typically parallel arrangement inthese populations.The present study shows that high Fe-accumulation in leaves of L.parviflora during the exponential growth phase as well as changes inthe epicuticular structures may be indicators of metal stress in the populations of the mineralized area.  相似文献   

19.
Investigation of Pine (Pinus sylvestris L.)annual radial increment (width of annual tree rings) was carriedout in the surroundings of one of the largest pollution sources inLithuania – Jonava Nitrogen Fertilizers Plant. The main objectiveof investigation was to analyse different sides of anthropogenictransformations of tree-ring series in the polluted environment:changes in tree growth intensity; variance changes in tree-ringseries; changes in the relations with natural external factors.Three different periods of tree reaction to the environmentalpollution were singled out – fertilization period, depressionperiod and recovery period since annual emissions were essentiallyreduced. The variance of tree-ring series has increased severaltimes in the polluted environment. Reaction of trees to the impactof climatic factors (temperature, precipitation) has changedsignificantly in the polluted environment and their sensitivity hasalso increased.  相似文献   

20.
Most of the water bodies being used for the cultivation ofedible aquatic plants (Trapa natans and Ipomoeaaquatica) in Lucknow district, U.P., India, were found to becontaminated with a variety of toxic metals (Fe, Cu, Cr, Mn andPb). The concentration of metals Cr, Pb and Fe in water was muchhigher than recommended permissible limits of WHO (1995). Theedible parts of these plants bioconcentrated metals from theirsurrounding water significantly. Therefore, the present studywas planned to assess the metal concentration in edible part ofplants which was collected from various water bodies used forcultivation of these crops. Despite varying levels of metalsfound in various fruit parts of T. natans, the metalaccumulation in kernel was alarming. However, metal contentdecreased significantly in various parts after boiling thefruit. Similarly, I. aquatica also accumulatedsignificantly higher amounts of these metals in leaves, howeverthe metal accumulating potential varied considerably dependingupon level of metal contamination in the water body in which they were growing. The importance of these findings in theexploitation of these aquatic crops to meet the demand of foodand health perspectives for human beings is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号