首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soils in Technical Area 16 at Los Alamos National Laboratory (LANL) are severely contaminated from past explosives testing and research. Our objective was to conduct laboratory and pilot-scale experiments to determine if zerovalent iron (Fe(0)) could effectively transform RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in two LANL soils that differed in physicochemical properties (Soils A and B). Laboratory tests indicated that Soil A was highly alkaline and needed to be acidified [with H2SO4, Al2(SO4)3, or CH3COOH] before Fe(0) could transform RDX. Pilot-scale experiments were performed by mixing Fe(0) and contaminated soil (70 kg), and acidifying amendments with a high-speed mixer that was a one-sixth replica of a field-scale unit. Soils were kept unsaturated (soil water content = 0.30-0.34 kg kg(-1)) and sampled with time (0-120 d). While adding CH3COOH improved the effectiveness of Fe(0) to remove RDX in Soil A (98% destruction), CH3COOH had a negative effect in Soil B. We believe that this difference is a result of high concentrations of organic matter and Ba. Adding CH3COOH to Soil B lowered pH and facilitated Ba release from BaSO4 or BaCO3, which decreased Fe(0) performance by promoting flocculation of humic material on the iron. Despite problems encountered with CH3COOH, pilot-scale treatment of Soil B (12 100 mg RDX kg(-1)) with Fe(0) or Fe(0) + Al2(SO4)3 showed high RDX destruction (96-98%). This indicates that RDX-contaminated soil can be remediated at the field scale with Fe(0) and soil-specific problems (i.e., alkalinity, high organic matter or Ba) can be overcome by adjustments to the Fe(0) treatment.  相似文献   

2.
Pesticide-contaminated soil may require remediation to mitigate ground and surface water contamination. We determined the effectiveness of zerovalent iron (Fe(0)) to dechlorinate metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl ethyl) acetamide] in the presence of aluminum and iron salts. By treating aqueous solutions of metolachlor with Fe(0), we found destruction kinetics were greatly enhanced when Al, Fe(II), or Fe(II) salts were added, with the following order of destruction kinetics observed: Al2(SO4)3 > AlCl3 > Fe2(SO4)3 > FeCl3. A common observation was the formation of green rusts, mixed Fe(II)-Fe(III) hydroxides with interlayer anions that impart a greenish-blue color. Central to the mechanism responsible for enhanced metolachlor loss may be the role these salts play in facilitating Fe(II) release. By tracking Al and Fe(II) in a Fe(0) + Al2(SO4)3 treatment of metolachlor, we observed that Al was readily sorbed by the corroding iron with a corresponding release of Fe(II). The manufacturing process used to produce the Fe(0) also profoundly affected destruction rates. Metolachlor destruction rates with salt-amended Fe(0) were greater with annealed iron (indirectly heated under a reducing atmosphere) than unannealed iron. Moreover, the optimum pH for metolachlor dechlorination in water and soil differed between iron sources (pH 3 for unannealed, pH 5 for annealed). Our results indicate that metolachlor destruction by Fe(0) treatment may be enhanced by adding Fe or Al salts and creating pH and redox conditions favoring the formation of green rusts.  相似文献   

3.
Permeable zerovalent iron (Fe0) barriers have become an established technology for remediating contaminated ground water. This same technology may be applicable for treating pesticides amenable to dehalogenation as they move downward in the vadose zone. By conducting miscible displacement experiments in the laboratory with metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide; a chloroacetanilide herbicide] under unsaturated flow, we provide proof-of-concept for such an approach. Transport experiments were conducted in repacked, unsaturated soil columns attached to vacuum chambers and run under constant matrix potential (-30 kPa) and Darcy flux (approximately 2 cm d(-1)). Treatments included soil columns equipped with and without a permeable reactive barrier (PRB) consisting of a Fe0-sand (50:50) mixture supplemented with Al2(SO4)3. A continuous pulse of 14C-labeled metolachlor (1.45 mM) and tritiated water (3H2O) was applied to top of the columns for 10 d. Results indicated complete (100%) metolachlor destruction, with the dehalogenated product observed as the primary degradate in the leachate. Similar results were obtained with a 25:75 Fe0-sand barrier but metolachlor destruction was not as efficient when unannealed iron was used or Al2(SO4)3 was omitted from the barrier. A second set of transport experiments used metolachlor-contaminated soil in lieu of a 14C-metolachlor pulse. Under these conditions, the iron barrier decreased metolachlor concentration in the leachate by approximately 50%. These results provide initial evidence that permeable iron barriers can effectively reduce metolachlor leaching under unsaturated flow.  相似文献   

4.
We compared the efficacy of matrix based fertilizers (MBFs) formulated to reduce NO3-, NH4+, and total phosphorus (TP) leaching, with Osmocoate 14-14-14, a conventional commercial slow release fertilizer (SRF) and an unamended control in three different soil textures in a greenhouse column study. The MBFs covered a range of inorganic N and P in compounds that are relatively loosely bound (MBF 1) to more moderately bound (MBF 2) and more tightly bound compounds (MBF 3) mixed with Al(SO4)3H2O and/or Fe2(SO4)3 and with high ionic exchange compounds starch, chitosan and lignin. When N and P are released, the chemicals containing these nutrients in the MBF bind N and P to a Al(SO4)3H2O and/or Fe2(SO4)3 starch-chitosan-lignin matrix. One milligram (8000 spores) of Glomus intradices was added to all formulations to enhance nutrient uptake. In all three soil textures the SRF leachate contained a higher amount of NH4+, NO3- and TP than leachate from all other fertilizers. In all three soils there were no consistent differences in the amount of NH4+, NO3- and TP in the MBF leachates compared to the control leachate. Plants growing in soils receiving SRF had greater shoot, root and total biomass than all MBFs regardless of Al(SO4)3H2O or Fe2(SO4)3 additions. Arbuscular mycorrhizal infection in plant roots did not consistently differ among plants growing in soil receiving SRF, MBFs and control treatments. Although the MBFs resulted in less plant growth in this experiment they may be applied to soils growing plants in areas that are at high risk for nutrient leaching to surface waters.  相似文献   

5.
Under anoxic conditions, zerovalent iron (Fe(0)) reduces nitrate to ammonium and magnetite (Fe3O4) is produced at near-neutral pH. Nitrate removal was most rapid at low pH (2-4); however, the formation of a black oxide film at pH 5 to 8 temporarily halted or slowed the reaction unless the system was augmented with Fe(2+), Cu(2+), or Al(3+). Bathing the corroding Fe(0) in a Fe(2+) solution greatly enhanced nitrate reduction at near-neutral pH and coincided with the formation of a black precipitate. X-ray diffractometry and scanning electron microscopy confirmed that both the black precipitate and black oxide coating on the iron surface were magnetite. In this system, ferrous iron was determined to be a partial contributor to nitrate removal, but nitrate reduction was not observed in the absence of Fe(0). Nitrate removal was also enhanced by augmenting the Fe(0)-H2O system with Fe(3+), Cu(2+), or Al(3+) but not Ca(2+), Mg(2+), or Zn(2+). Our research indicates that a magnetite coating is not a hindrance to nitrate reduction by Fe(0), provided sufficient aqueous Fe(2+) is present in the system.  相似文献   

6.
Application of organic manure (OM) amendments and nitrogen fertilizers can affect the sorption and movement of pesticides in soil. This study summarizes the sorption and leaching of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl) acetamide] in soils after cow (Bos taurus) manure (2.5 and 5.0%) and urea (60 and 120 kg N ha(-1)) amendments in batch and column experiments. Both cow manure and urea applications increased metolachlor sorption in soils. The values of the Freundlich adsorption parameter K(r)(1/n) for treatments T0, T1 (OM), and T2 (OM) were 2.31, 3.32, and 3.96 in Soil 1; 2.02, 2.77, and 3.32 in Soil 2; and 1.10, 1.46, and 2.02 in Soil 3, respectively. Similarly, K(f)(1/n) values for treatment T1 (urea) and T2 (urea) were 2.37 and 2.84 in Soil 1; 2.16 and 2.83 in Soil 2; and 1.50 and 1.70 in Soil 3, respectively. Column leaching studies using Soil 1 indicated that OM application drastically reduced the metolachlor leaching losses from 50% (natural soil) to < 1.0% (5.0% OM amendment). Likewise, urea application also decreased metolachlor mobility and leaching losses in columns treated with 60 and 120 kg N ha(-1) urea were 33 and 20%, respectively. The reduction in the metolachlor leaching losses was achieved through the increase in the sorption capability of the OM- and urea-amended soil. Therefore, coapplication of metolachlor with cow manure or urea fertilizers will not enhance metolachlor mobility and reduces metolachlor leaching losses in low-organic-matter soil.  相似文献   

7.
The half-lives, degradation rates, and metabolite formation patterns of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were determined in an anaerobic wetland soil incubated at 24 degrees C for 112 d. At 0, 7, 14, 28, 42, 56, and 112 d, the soil and water were analyzed for atrazine and metolachlor, and their major metabolites. The soil oxidation-reduction potential reached -200 mV after 14 d. Degradation reaction rates were first-order for atrazine in anaerobic soil and for metolachlor in the aqueous phase. Zero-order reaction rates were best fit for atrazine in the aqueous phase and metolachlor in anaerobic soil. In anaerobic soil, the half-life was 38 d for atrazine and 62 d for metolachlor. In the aqueous phase above the soil, the half-life was 86 d for atrazine and 40 d for metolachlor. Metabolites detected in the anaerobic soil were hydroxyatrazine and deethylatrazine for atrazine, and relatively small amounts of ethanesulfonic acid and oxanilic acid for metolachlor. Metabolites detected in the aqueous phase above the soil were hydroxyatrazine, deethylatrazine, and deisopropylatrazine for atrazine, and ethanesulfonic acid and oxanilic acid for metolachlor. Concentrations of metabolites in the aqueous phase generally peaked within the first 25 d and then declined. Results indicate that atrazine and metolachlor can degrade under strongly reducing conditions found in wetland soils. Metolachlor metabolites, ethanesulfonic acid, and oxanilic acid are not significantly formed under anaerobic conditions.  相似文献   

8.
To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30 degrees C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (N ava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH(4) production (P CH4). There was a significant relationship between decomposable C and available N (N ava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fe total) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: P CH4 = 1.593N(ava) - 2.460Fe total/1000 (each unit was mg kg(-1) soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).  相似文献   

9.
Composting may be a viable on-farm option for disposal of cattle carcasses. This study investigated greenhouse gas emissions during co-composting of calf mortalities with manure. Windrows were constructed that contained manure + straw (control compost [CK]) or manure + straw + calf mortalities (CM) using two technologies: a tractor-mounted front-end loader or a shredder bucket. Composting lasted 289 d. The windrows were turned twice (on Days 72 and 190), using the same technology used in their creation. Turning technology had no effect on greenhouse gas emissions or the properties of the final compost. The CO2 (75.2 g d(-1) m(-2)), CH4 (2.503 g d(-1) m(-2)), and N2O (0.370 g d(-1) m(-2)) emissions were higher (p < 0.05) in CM than in CK (25.7, 0.094, and 0.076 g d(-1) m(-2) for CO2, CH4, and N2O, respectively), which reflected differences in materials used to construct the compost windrows and therefore their total C and total N contents. The final CM compost had higher (p < 0.05) total N, total C, and mineral N content (NO3*+ NO2* + NH4+) than did CK compost and therefore has greater agronomic value as a fertilizer.  相似文献   

10.
Phosphorus dissolution often increases as soils become more reduced, but the mechanisms are not fully understood. The objectives of this research were to determine rates and mechanisms of P dissolution during microbial reduction of a surface soil from the North Carolina Coastal Plain. Duplicate suspensions of silt + clay fractions from a Cape Fear sandy clay loam (fine, mixed, semiactive, thermic Typic Umbraquult) were reduced in a continuously stirred redox reactor for 40 d. We studied the effects of three treatments on P dissolution: (i) 2 g dextrose kg(-1) solids added as a microbial carbon source at time 0 d; (ii) 2 g dextrose kg(-1) solids split into three additions at 0, 12, and 26 d; and (iii) no added dextrose. After 40 d of reduction, concentrations of dissolved reactive phosphorus (DRP) were similar for all treatments and increased up to sevenfold from 1.5 to 10 mg L(-1). The initial rate of reduction and dissolution of DRP was significantly greater for the 0-d treatment. A linear relationship (R(2) = 0.79) was found between DRP and dissolved organic carbon (DOC). Dissolved Fe and Al and pH increased, suggesting the formation of aqueous Fe- and Al-organic matter complexes. Separate batch experiments were performed to study the effects of increasing pH and citrate additions on PO(4) dissolution under aerobic conditions. Increasing additions of citrate increased concentrations of DRP, Fe, and Al, while increasing pH had no effect. Results indicated that increased dissolved organic matter (DOM) during soil reduction contributed to the increase in DRP, perhaps by competitive adsorption or formation of aqueous ternary DOM-Fe-PO(4) or DOM-Al-PO(4) complexes.  相似文献   

11.
A four-step novel sequential extraction procedure (SEP) was developed to assess Hg fractionation and mobility in three highly contaminated soils from chlor-alkali plants (CAPs). The SEP was validated using a certified reference material (CRM) and pure Hg compounds. Total, volatile, and methyl Hg concentrations were also determined using single extractions. Mercury was separated into four fractions defined as water-soluble (F1), exchangeable (F2) (0.5 M NH4Ac-EDTA and 1 M CaCl2 were tested), organic (F3) (successive extractions with 0.2 M NaOH and CH3COOH 4% [v/v]), and residual (F4) (HNO3 + H2SO4 + HClO4). The soil characterization revealed extremely contaminated (295 +/- 18 to 11 500 +/- 500 mg Hg kg(-1)) coarse-grained sandy soils having an alkaline pH (7.9-9.1), high chloride concentrations (5-35 mg kg(-1)), and very low organic carbon content (0.00-18.2 g kg(-1)). Methyl Hg concentrations were low (0.2-19.3 microg kg(-1)) in all soils. Sequential extractions indicated that the majority of the Hg was associated with the residual fraction (F4). In Soils 1 and 3, however, high percentages (88-98%) of the total Hg were present as volatile Hg. Therefore, in these two soils, a high proportion of volatile Hg was present in the residual fraction. The nonresidual fraction (F1 + F2 + F3) was most abundant in Soil 1 (14-42%), suggesting a higher availability of Hg in this soil. The developed and validated SEP was reproducible and efficient for highly contaminated samples. Recovery ranged between 93 and 98% for the CRM and 70 and 130% for the CAP-contaminated soils.  相似文献   

12.
Beneficial and environmentally safe recycling of flue gas desulfurization (FGD) products requires detailed knowledge of their chemical and physical properties. We analyzed 59 dry FGD samples collected from 13 locations representing four major FGD scrubbing technologies. The chemistry of all samples was dominated by Ca, S, Al, Fe, and Si and strong preferential partitioning into the acid insoluble residue (i.e., coal ash residue) was observed for Al, Ba, Be, Cr, Fe, Li, K, Pb, Si, and V. Sulfur, Ca, and Mg occurred primarily in water- or acid-soluble forms associated with the sorbents or scrubber reaction products. Deionized water leachates (American Society for Testing and Materials [ASTM] method) and dilute acetic acid leachates (toxicity characteristic leaching procedure [TCLP] method) had mean pH values of >11.2 and high mean concentrations of S primarily as SO(2-)4 and Ca. Concentrations of Ag, As, Ba, Cd, Cr, Hg, Pb, and Se (except for ASTM Se in two samples) were below drinking water standards in both ASTM and TCLP leachates. Total toxicity equivalents (TEQ) of dioxins, for two FGD products used for mine reclamation, were 0.48 and 0.53 ng kg(-1). This was similar to the background level of the mine spoil (0.57 ng kg(-1)). The FGD materials were mostly uniform in particle size. Specific surface area (m2 g(-1)) was related to particle size and varied from 1.3 for bed ash to 9.5 for spray dryer material. Many of the chemical and physical properties of these FGD samples were associated with the quality of the coal rather than the combustion and SO2 scrubbing processes used.  相似文献   

13.
Cultural management practices that reduce the off-site transport of herbicides applied to row crops are needed to protect surface water quality. A soybean [Glycine max (L.) Merr.] field study was conducted near Stoneville, MS on Sharkey clay to evaluate row spacing (50 cm vs. 100 cm) effects on metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(methoxy-1-methylethyl) acetamide] transport. One day after the foliar application of metolachlor to 2.03 m wide by 2.43 m long plots, 60 mm h(-1) of simulated rainfall was applied until 25 min of runoff was generated per plot. The calculated mass of metolachlor intercepted by the soybean foliage was greater in narrow-row than wide-row soybean, 0.39 kg ha(-1) vs. 0.23 kg ha(-1), respectively. Field and laboratory studies indicated that less than 2% of the metolachlor intercepted by the soybean foliage was available for foliar wash-off 1 d after application. Antecedent soil water content at the start of the simulations was lower in narrow-row soybean. In turn, there was a 1.7-fold greater time to runoff on narrow-row plots. The greater time to runoff likely contributed to lower metolachlor concentration in runoff from narrow-row plots. Cumulative metolachlor losses were significantly greater in wide-row than narrow-row soybean, 3.7% vs. 2.2%, respectively. Findings indicate that narrow-row planting systems may reduce metolachlor runoff following a post-emergence application.  相似文献   

14.
Drinking water treatment residuals: a review of recent uses   总被引:8,自引:0,他引:8  
Coagulants such as alum [Al2(SO4)3 x 14H2O], FeCl3, or Fe2(SO4)3 are commonly used to remove particulate and dissolved constituents from water supplies in the production of drinking water. The resulting waste product, called water-treatment residuals (WTR), contains precipitated Al and Fe oxyhydroxides, resulting in a strong affinity for anionic species. Recent research has focused on using WTR as cost-effective materials to reduce soluble phosphorus (P) in soils, runoff, and land-applied organic wastes (manures and biosolids). Studies show P adsorption by WTR to be fast and nearly irreversible, suggesting long-term stable immobilization of WTR-bound P. Because excessive WTR application can induce P deficiency in crops, effective application rates and methods remain an area of intense research. Removal of other potential environmental contaminants [ClO4-, Se(+IV and +VI), As(+III and +V), and Hg] by WTR has been documented, suggesting potential use of WTR in environmental remediation. Although the creation of Al plant toxicity and enhanced Al leaching are concerns expressed by researchers, these effects are minimal at circumneutral soil pH conditions. Radioactivity, trace element levels, and enhanced Mn leaching have also been cited as potential problems in WTR usage as a soil supplement. However, these issues can be managed so as not to limit the beneficial use of WTR in controlling off-site P losses to sensitive water bodies or reducing soil-extractable P concentrations.  相似文献   

15.
Agricultural drainage ditches serve as P transport pathways from fields to surface waters. Little is known about the spatial variation of P at the soil-water interface within ditch networks. We quantified the spatial variation of surficial (0-5 cm) soil P within vegetated agricultural ditches on a farm in Princess Anne, MD with an approximately 30-yr history of poultry litter application. Ditch soils from 10 ditches were sampled at 10-m intervals and analyzed for acid ammonium oxalate-extractable P, Fe, Al (P(ox), Fe(ox), Al(ox)), and pH. These variables were spatially autocorrelated. Oxalate-P (min = 135 mg kg(-1), max = 6919 mg kg(-1), mean = 700 mg kg(-1)) exhibited a high standard deviation across the study area (overall 580 mg kg(-1)) and within individual ditches (maximum 1383 mg kg(-1)). Several ditches contained distinct areas of high P(ox), which were associated with either point- or nonpoint-P sources. Phosphorus was correlated with Al(ox) or Fe(ox) within specific ditches. Across all ditches, Al(ox) (r = 0.80; p < 0.001) was better correlated with P(ox) than was Fe(ox) (r = 0.44; p < 0.001). The high level of spatial variation of soil P observed in this ditch network suggests that spatially distributed sampling may be necessary to target best management practices and to model P transport and fate in ditch networks.  相似文献   

16.
Data from 89 forested catchments and plots across Europe were used to define empirical relationships between aluminum leaching and input fluxes of major ions, output fluxes of major ions, ecosystem parameters such as soil pH, and combinations of these. Forests that release dissolved Al to seepage or surface waters are located primarily in areas receiving the highest loading of acid rain, and the output flux of Al shows the highest correlations to the throughfall flux of inorganic nitrogen, the output fluxes of NO3-, H+, and SO4(2-), and the mineral soil pH. If the speciation of Al is taken to be Al3+ (an overestimate), Al is released in a nearly 1:1 molar charge ratio with the sum of NO3- and SO4(2-) in runoff or seepage water over a wide range of basepoor bedrock types and acid deposition across Europe. The empirical data point to a threshold range of N deposition of 80 to 150 mmolc N m(-2) yr(-1) and a (less clearly defined) range of S deposition of 100 to 200 mmolc SO4(-2) m(-2) yr(-1) above which Al released from forests exceeds 100 mmolc Al m(-2) yr(-1). Within this threshold range, the sites that release little or no dissolved Al are those that continue to assimilate input N and/or have high soil pH (>4.5).  相似文献   

17.
Poultry litter treatment with alum (Al(2)(SO(4))(3) . 18H(2)O) lowers litter phosphorus (P) solubility and therefore can lower litter P release to runoff after land application. Lower P solubility in litter is generally attributed to aluminum-phosphate complex formation. However, recent studies suggest that alum additions to poultry litter may influence organic P mineralization. Therefore, alum-treated and untreated litters were incubated for 93 d to assess organic P transformations during simulated storage. A 62-d soil incubation was also conducted to determine the fate of incorporated litter organic P, which included alum-treated litter, untreated litter, KH(2)PO(4) applied at 60 mg P kg(-1) of soil, and an unamended control. Liquid-state (31)P nuclear magnetic resonance indicated that phytic acid was the only organic P compound present, accounting for 50 and 45% of the total P in untreated and alum-treated litters, respectively, before incubation and declined to 9 and 37% after 93 d of storage-simulating incubation. Sequential fractionation of litters showed that alum addition to litter transformed 30% of the organic P from the 1.0 mol L(-1) HCl to the 0.1 mol L(-1) NaOH extractable fraction and that both organic P fractions were more persistent in alum-treated litter compared with untreated litter. The soil incubation revealed that 0.1 mol L(-1) NaOH-extractable organic P was more recalcitrant after mixing than was the 1.0 mol L(-1) HCl-extractable organic P. Thus, adding alum to litter inhibits organic P mineralization during storage and promotes the formation of alkaline extractable organic P that sustains lower P solubility in the soil environment.  相似文献   

18.
Vertical distribution of phosphorus in agricultural drainage ditch soils   总被引:3,自引:0,他引:3  
Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices.  相似文献   

19.
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.  相似文献   

20.
Phosphorus loss in runoff from agricultural fields has been identified as an important contributor to eutrophication. The objective of this research was to determine the relationship between phosphorus (P) in runoff from a benchmark soil (Cecil sandy loam; fine, kaolinitic, thermic Typic Kanhapludult) and Mehlich III-, deionized water-, and Fe(2)O(3)-extractable soil P, and degree of phosphorus saturation (DPS). Additionally, the value of including other soil properties in P loss prediction equations was evaluated. Simulated rainfall was applied (75 mm h(-1)) to 54 1-m(2) plots installed on six fields with different soil test phosphorus (STP) levels. Runoff was collected in its entirety for 30 min and analyzed for total P and dissolved reactive phosphorus (DRP). Soil samples were collected from 0- to 2-, 0- to 5-, and 0- to 10-cm depths. The strongest correlation for total P and DRP occurred with DPS (r(2) = 0.72). Normalizing DRP by runoff depth resulted in improved correlation with deionized water-extractable P for the 0- to 10-cm sampling depth (r(2) = 0.81). The STP levels were not different among sampling depths and analysis of the regression equations revealed that soil sampling depth had no effect on the relationship between STP and P in runoff. For all forms of P in runoff and STP measures, the relationship between STP and runoff P was much stronger when the data were split into groups based on the ratio of oxalate-extractable Fe to Al. For all forms of P in runoff and all STP methods, R(2) increased with the inclusion of oxalate-extractable Al and Fe in the regression equation. The results of this study indicate that inclusion of site-specific information about soil Al and Fe content can improve the relationship between STP and runoff P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号