首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
“U+L”型通风综采工作面采空区漏风特性研究   总被引:1,自引:0,他引:1  
为了掌握“U+L”型通风综采工作面采空区的漏风规律,以某矿综采工作面为试验地点,先采用Fluent软件对综采工作面采空区的漏风流场进行了数值模拟,后结合数值模拟结果制定了综采工作面示踪气体SF6的测漏风技术方案,并现场实测了“U+L”型综采工作面采空区的漏风风流分布特征.数值模拟结果与现场实测结果十分吻合.结果表明:1)“U+L”型综采工作面全程向采空区漏风,漏风汇至滞后联络巷后经专用排瓦斯巷排出;2)“U+L”型综采工作面漏风量随联络巷距离工作面距离增大而逐渐降低;3)“U+L”型综采工作面漏风量沿工作面倾向方向(从进风至回风)呈逐渐减少趋势.  相似文献   

2.
漏风对煤自燃有重要影响,研究漏风形成机制对工作面采空区防火具有重要的作用。针对采空区瓦斯抽采、上覆围岩裂隙发育对采空区漏风影响问题,以沙曲矿沿空留巷综放工作面为研究背景。根据采空区上覆煤岩特性选择经验公式计算采空区裂隙发育高度,分析了沿空留巷侧采空区上覆裂隙发育,现场实测了沿空留巷压埋管及高位钻孔中气体体积分数,并根据实测参数利用数值模拟分析了瓦斯抽采条件下采空区风流流场变化。结果表明:上覆裂隙成为采空区漏风通道,导通距离在27.2~37.2 m;在沿空留巷侧采空区回采距离100m,其氧气体积分数在10%以上,验证了采空区漏风去向;模拟结果显示,沿空留巷侧采空区立体空间范围内氧气体积分数均达到10%以上,模拟结果与实测基本保持一致。最终确定瓦斯抽采条件下沿空留巷的布置及煤岩裂隙发育是形成漏风通道的主要原因。  相似文献   

3.
基于通风网络理论模型演化得到采空区走向及倾向的漏风阻力系数分布,综合考虑了采面的回采速度、顶板岩性以及采空区倾向上顶板的沉降量不同等因素影响.采用专业的流体力学计算软件Fluent对桃园矿1033工作面及其采空区进行了流场数值模拟,得到了工作面的漏风量分布及采空区漏风流场分布.模拟结果表明,工作面向采空区漏风区域主要发生在倾回上靠进风侧0~10m范围,并有部分漏风量在工作面倾面从中间点前流回至工作面,采空区内的流场等值线并不完全呈对称分布. 采用工作面埋管取气分析采空区内氧气体保分数,得到了采空区内氧气体积分数分布规律.试验结果表明,沿着采空区走向,氧气体积分散逐渐下降;在采空区倾向上,回风卷氧气体积分数下降最快,进风巷氧气体积分数下降最慢.综合考虑采空区内的滤流速度和氧气体积分数分布,得到了采空区自燃“三 带”范围.在采空区回风巷,氧化带距离工作而范围为11~ 38 m;在采空区进风巷,距离工作面范围为23 ~ 76 m;在中部,距离工作面范围为12~66m.最后,计算得到工作面安全回采速度为2.2m/d.  相似文献   

4.
张睿卿    唐明云    戴广龙    申茂良   《中国安全生产科学技术》2016,12(1):102-106
针对采空区非线性渗流模型中颗粒平均粒径的取值问题,利用专业的流体力学软件fluent对刘庄矿151305工作面采空区不同颗粒粒径下的漏风流场进行了模拟,以此确定合适的平均粒径,并利用该采空区颗粒平均粒径对工作面供风量及采空区漏风的影响进行了模拟与分析。结果表明,采空区内平均粒径的取值对工作面风量分布影响较大,瓦斯抽采负压也相差一个数量级;通过与实测工作面风量及实际的瓦斯抽采负压作对比,当采空区颗粒平均粒径取0.1 m时,模拟结果与现场实际最为吻合;工作面供风量越大,采空区的漏风量也越大,两者为二次函数关系。该研究方法为工作面采空区漏风流场数值模拟提供了理论指导。  相似文献   

5.
为了研究“U+I”型工作面进风量和顶板巷抽采负压对工作面瓦斯浓度与采空区氧化带宽度的影响,协调瓦斯抽采和浮煤自燃之间的关系。以2306综放面为工程背景,基于“U”型冒落岩层孔隙率分布公式和流体通用控制方程建立采空区数值模拟解算模型。采用CFD软件对不同进风量、不同抽采负压下的工作面瓦斯浓度和采空区氧化带宽度进行模拟,结果表明:随着工作面风量的增加,工作面和顶板巷瓦斯浓度减小,但工作面处浓度减幅逐渐变小而顶板巷浓度减幅几乎不变;提高顶板巷抽采负压,对减少工作面瓦斯浓度效果明显,顶板巷自身瓦斯浓度先增加再减小,采空区进风侧氧化带宽度变窄,回风侧和采空区中部氧化带宽度增加,总体上增加了采空区浮煤自燃的危险性但影响程度有限。  相似文献   

6.
运用Y型通风方式可解决传统U型通风难以解决的上隅角和回风巷瓦斯浓度超限问题.为了对比分析U型和Y型通风采空区瓦斯运移及分布规律,建立了U型通风和Y型通风采空区物理模型,运用Fluent软件对U型通风和Y型通风方式采空区漏风流场、漏风量(沿采空区边界风速分布)和瓦斯体积分数分布进行数值模拟.结果表明,Y型通风回采工作面采空区漏风流场与U型通风分布有较大差别.Y型通风时工作面端头0~30 m时漏风约占工作面漏风量的50%,且总漏风量较U型通风时多,可避免采空区高浓度瓦斯积聚.采用两进一回Y型通风可从根本上解决上隅角瓦斯积聚和回风巷瓦斯超限问题.  相似文献   

7.
为获得不同煤层倾角条件下的采空区流场及瓦斯分布变化规律,以平煤六矿22310工作面为原型,通过建立采空区数学物理模型并设置边界条件,数值模拟了工作面采空区气体压力、漏风和瓦斯分布情况,并与该工作面现场实测通风参数对比,对模型可靠性进行验证。在已建立模型的基础上,模拟了煤层倾角分别为5.75°、35.75°、65.75°时的采空区气体压力、漏风和瓦斯分布,对比分析了三种煤层倾角下的采空区流场及瓦斯分布变化规律。结果表明:随着煤层倾角增加,采空区气体压力降低,压力梯度升高;工作面漏风量变化微小,漏风分布规律不变;采空区瓦斯浓度和采空区瓦斯总量降低。  相似文献   

8.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

9.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

10.
为实现保护层开采工作面生产过程中瓦斯不超限,在分析工作面瓦斯来源的基础上,提出了保护层开采工作面竖向分层治理瓦斯的思路。根据相似模拟结果,分析了采空区瓦斯流动范围和流动范围内孔隙率、风阻分布特征。采用数值模拟分析了Y型通风、Y型通风+采空区埋管及Y型通风+采空区埋管+高抽巷+高位钻场3种瓦斯治理方式下采空区瓦斯体积分数场,结果表明:采空区瓦斯体积分数在竖直方向和水平方向均具有典型的递变特征,距工作面越远,距煤层越高,瓦斯体积分数越大;合适位置的煤层顶板高抽巷对抽采来自上邻近层的瓦斯具有较好的效果,试验条件下高抽巷抽采瓦斯量达到了总量的36.4%~63.6%;沿充填墙的采空区埋管不能完全拦截下层采空区进入沿空巷的采空区瓦斯,随沿空巷长度增加,瓦斯体积分数增大,建议沿空巷长度控制在250 m范围内。  相似文献   

11.
针对大流量高位巷瓦斯抽采可能诱发采空区自燃问题,以南山矿18层5分段综放面为研究背景,构建采空区气体渗流分析模型。利用变渗透系数和Forchheimer方程,求解非线性流与层流并存下采空区三维氧气分布。结果表明:高位巷瓦斯抽采使工作面氧气更易沿漏风方向采空区纵深发展,氧化带总体宽度会随抽放流量的提高而增加。在进风侧氧气分布后移程度较小,而回风侧受抽放负压显著影响,出现明显氧气富集区。上下隅角封堵配合注氮,会降低抽放对氧气渗入的诱导影响。依据研究结论,利用综合防火措施消除了高位巷附近潜在的自燃危险。  相似文献   

12.
以提高瓦斯抽采效果为目标, 某矿Ⅲ4423工作面为研究对象,采用理论分析、 数值模拟、现场试验等研究方法,研究了顶板高位钻孔条件下瓦斯抽采的主要技术参数 ,数值模拟出高位钻孔抽采瓦斯前采空区的瓦斯分布情况与运移规律,以及负压分别为 8、10 kPa时的高位钻孔瓦斯抽采效果。依据瓦斯流动“O”型圈理论与FLUENT数值模拟 分析,优化设计高位钻孔抽采瓦斯工艺参数并进行现场试验。结果表明:当高位钻孔抽 采负压为8 kPa、终孔位置调整到采空区裂隙带回风巷侧15~35 m范围内时,高位钻孔抽 采瓦斯效果最佳,采空区内瓦斯最高浓度明显降低,单个钻场最大抽采瓦斯量为19 821.74 m3,钻孔瓦斯浓度稳定在 20%~30%之间,最大值达到50%,实现了工作面有效 治理瓦斯和安全生产的目标。  相似文献   

13.
为了进一步探究高抽巷抽采瓦斯效果,对高抽巷的最佳抽采层位进行分析。以常村矿为例,基于紧贴实际采空区碎胀系数分布的“O”型圈理论,依据采空区瓦斯的运移规律,运用FLUENT软件加载自定义UDF对采空区瓦斯分布进行数值模拟,从上隅角瓦斯浓度与抽采浓度2方面,对不同层位高抽巷的抽采效果进行分析,确定高抽巷的最佳层位,并用现场测试数据对数值模拟结果进行验证。研究结果表明:模拟计算结果与现场实测数据基本吻合,所提出的高抽巷最佳抽采层位的确定方法可有效应用于实际;合理的抽采层位不仅能够有效地降低上隅角瓦斯的浓度,而且能够提高抽采的效率。  相似文献   

14.
为解决某综放面采用顶板巷与上隅角联合抽采方式可能引起的煤自燃及瓦斯爆炸等重大安全隐患问题,采用数值模拟从瓦斯、氧气体积分数分布特点和温度场角度综合分析合理顶板巷位置与抽采流量,为协同预防瓦斯和煤自燃复合灾害提供指导。结果表明:抽采口、上隅角瓦斯体积分数随抽采流量增加而降低;抽采流量100m3/min是影响氧化带宽度变化幅度的拐点;抽采流量对采空区最高温度的影响较大,对高温范围宽度影响较小;综合确定合理顶板巷位置为内错回风巷15 m,合理抽采流量为100~150 m~3/min;现场应用表明该方案既能解决瓦斯超限问题,又能有效控制煤自燃威胁,表明数值模拟具有较好的可靠性。  相似文献   

15.
针对高抽巷抽采瓦斯可能诱发的采空区自燃问题,以大佛寺煤矿40108工作面构建采空区气体渗流模型,分析了不同垂距和平距下高抽巷抽采瓦斯时对采空区自燃危险性的影响。结果表明:高抽巷与煤层顶板的垂距越大,氧化升温带的宽度越大,采空区自燃危险性越高。高抽巷距回风巷平距为30m时,氧化升温带的宽度最小,采空区自燃危险性最低。依据研究结论,结合高抽巷抽采瓦斯时的层位要求,分析得出大佛寺煤矿40108工作面高抽巷最佳位置为距煤层顶板垂距30m,距回风巷平距30m处。  相似文献   

16.
工作面采用的通风方式对采空区流场和瓦斯运移有很大的影响.对工作面采用上、下行通风方式的采空区风流流场和瓦斯分布进行了数值模拟.结果表明:在煤层倾角不同时,工作面采用不同的通风方式下,采空区的漏风量、风流流场和瓦斯运移情况有很大差别.上行通风时漏风量随煤层倾角增大而增高.当下行通风工作面通风压力小于采空区自然风压时会发生采空区气体倒流现象,漏风量随煤层倾角增大而增高.上行通风采空区漏风量比下行通风大;下行通风工作面采空区瓦斯总量大于上行通风.随着煤层倾角增加,上行通风和下 行通风采空区瓦斯总最都减小.  相似文献   

17.
为了分析瓦斯与煤自燃多场耦合致灾特性,结合瓦斯抽采引起的采空区混合气体流动、气体组分渗流与采空区渗透率变化、固气两相热量传输等多物理过程,建立了基于综放采空区高位钻孔瓦斯抽采的热-流-化多场耦合数学模型,采用COMSOL软件模拟了综放采空区高位钻孔抽采瓦斯诱导煤自燃过程,阐明了瓦斯与煤自燃多场耦合致灾机理,得到了寸草塔二矿31102综放采空区氧化带范围与高温范围,并探讨了抽采强度对综放采空区氧浓度场与温度场的影响。研究结果表明:高位钻孔抽采瓦斯有效地降低了回风巷瓦斯浓度,保证了31102综放工作面安全高效回采。增大综放采空区高位钻孔抽采瓦斯强度不能保证煤自燃安全性,二者存在矛盾,在得到高效抽采瓦斯的同时,会造成进风侧氧化带宽度增加,采空区氧化带边界向深处蔓延,扩大煤自燃高温区域,漏风携氧充分的参与煤氧复合反应,采空区最高温度逐渐上升,煤自燃风险增大。  相似文献   

18.
高抽巷现已被广泛用于治理工作面采动裂隙带及采空区瓦斯,而现场实际实施存在一定经验性,影响了高抽巷的瓦斯治理效果。针对现场高抽巷抽采流量低、工作面瓦斯易超限等问题,为提高高抽巷的瓦斯抽采效果,以余吾煤业为例,通过理论计算、现场考察、数值模拟、抽采效果分析,系统地研究了综放面高抽巷抽采瓦斯的布置层位。研究结果表明:综放面顶板冒落带高度约为18 m,裂隙带高度约为40 m,同时结合现场抽采效果分析,高抽巷宜布置在距煤层顶板40 m,与回风顺槽平距30 m处。研究结论对于综放面高抽巷的合理布置、提高瓦斯抽采效果具有一定的借鉴意义。  相似文献   

19.
顶板瓦斯高抽巷合理抽放负压数值模拟研究   总被引:1,自引:0,他引:1  
顶板瓦斯高抽巷的抽采效果与抽放负压直接相关.结合阳煤三矿K8206大采长综放 面顶板瓦斯高抽巷实际抽采效果,通过数值模拟与现场实测数据分析,得出顶板瓦斯高抽巷 抽采正常期最优抽放负压,以期对高瓦斯矿区顶板瓦斯高抽巷的合理抽放参数确定提供科学依据,实现矿井的煤与瓦斯安全高效共采.  相似文献   

20.
基于采动裂隙椭抛带理论提出顶板超长定向钻孔治理技术,通过理论推导、数值模拟、现场应用相结合的方法对腾晖煤业2-100放顶煤工作面顶板超长定向钻孔的合理距离及合理层位进行研究。研究结果表明:1~5号顶板超长定向钻孔内错回风巷的合理距离为20~40 m;钻孔的合理终孔层位依次为60,60,60,61和63 m。顶板初次垮落后,顶板超长定向钻孔开始发挥作用,单孔的瓦斯抽采纯量随着工作面推进开始呈周期性变化,当顶板岩层发生周期性垮落时,钻孔瓦斯抽采纯量开始急剧升高;抽采纯量达到的最大值分别为13.88 ,13.92 ,13.96,14.24 和14.32 m3/min;顶板超长定向钻孔抽采期间,上隅角瓦斯浓度与回风流瓦斯浓度呈周期性变化趋势,上隅角瓦斯浓度为0.32%~0.8%,整个过程中上隅角瓦斯浓度均在可控范围内。顶板超长定向钻孔治理技术可有效解决放顶煤工作面采空区的瓦斯治理难题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号