共查询到20条相似文献,搜索用时 15 毫秒
1.
van der Salm C van den Toorn A Chardon WJ Koopmans GF 《Journal of environmental quality》2012,41(1):229-241
In flat areas, transport of dissolved nutrients by water through the soil matrix to groundwater and drains is assumed to be the dominant pathway for nutrient losses to ground- and surface waters. However, long-term data on the losses of nutrients to surface water and the contribution of various pathways is limited. We studied nutrient losses and pathways on a heavy clay soil in a fluvial plain in The Netherlands during a 5-yr period. Average annual nitrogen (N) and phosphorus (P) losses to surface water were 15.1 and 3.0 kg ha(-1) yr(-1), respectively. Losses were dominated by particulate N (50%) and P (70%) forms. Rapid discharge through trenches was the dominant pathway (60-90%) for water and nutrient transport. The contribution of pipe drains to the total discharge of water and nutrients was strongly related to the length of the dry period in the preceding summer. This relationship can be explained by the very low conductivity of the soil matrix and the formation of shrinkage cracks during summer. Losses of dissolved reactive P through pipe drains appear to be dominated by preferential flow based on the low dissolved reactive P concentration in the soil matrix at this depth. Rainfall occurring after manure application played an important role with respect to the annual losses of N and P in spring when heavy rainfall occurred within 2 wk after manure application. 相似文献
2.
Manure water-extractable phosphorus (WEP) data are used in indices and models to assess P transport in runoff. Methods to measure WEP vary widely, often without understanding the effect on how much P is extracted. We conducted water extractions on five dairy, swine, and poultry manures to assess single and sequential extractions, drying manures, solution to solid (cm3 g(-1)) extraction ratios, and P determination method. We found little difference in WEP of single or sequential extractions. Increasing extraction ratio from 10:1 to 250:1 resulted in more WEP recovered, but in a diminishing fashion so that ratios of 200:1 and 250:1 were not significantly different. Patterns of increased WEP with extraction ratio varied with manure type, presence of bedding material, and drying treatment. Fresh and air-dried manures had similar patterns, but differed substantially from oven-dried (90 degrees C) manures. The differential effect of oven-drying on WEP was greatest for dairy and poultry manure, and less for swine manure. We analyzed water extracts colorimetrically before and after digestion, to examine the potential effect of P determination by inductively coupled plasma (ICP) spectroscopy. Digested extracts always contained more P. For manures with bedding, drying decreased the difference in P measured before and after digestion. The opposite was true for manures without bedding. Results highlight the influence of methodology on manure WEP measurement and caution needed when comparing data across studies using different WEP methods. Overall, our results point to a need for a standard manure water extraction method. 相似文献
3.
Selection of a water-extractable phosphorus test for manures and biosolids as an indicator of runoff loss potential 总被引:2,自引:0,他引:2
Kleinman P Sullivan D Wolf A Brandt R Dou Z Elliott H Kovar J Leytem A Maguire R Moore P Saporito L Sharpley A Shober A Sims T Toth J Toor G Zhang H Zhang T 《Journal of environmental quality》2007,36(5):1357-1367
The correlation of runoff phosphorus (P) with water-extractable phosphorus (WEP) in land-applied manures and biosolids has spurred wide use of WEP as a water quality indicator. Land managers, planners, and researchers need a common WEP protocol to consistently use WEP in nutrient management. Our objectives were to (i) identify a common WEP protocol with sufficient accuracy and precision to be adopted by commercial testing laboratories and (ii) confirm that the common protocol is a reliable index of runoff P. Ten laboratories across North America evaluated alternative protocols with an array of manure and biosolids samples. A single laboratory analyzed all samples and conducted a separate runoff study with the manures and biosolids. Extraction ratio (solution:solids) was the most important factor affecting WEP, with WEP increasing from 10:1 to 100:1 and increasing from 100:1 to 200:1. When WEP was measured by a single laboratory, correlations with runoff P from packed soil boxes amended with manure and biosolids ranged from 0.79 to 0.92 across all protocol combinations (extraction ratio, filtration method, and P determination method). Correlations with P in runoff were slightly lower but significant when WEP was measured by the 10 labs (r=0.56-0.86). Based on laboratory repeatability and water quality evaluation criteria, we recommend the following common protocol: 100:1 extraction ratio; 1-h shaking and centrifuge 10 min at 1500xg (filter with Whatman #1 paper if necessary); and determining P by inductively coupled plasma-atomic emission spectrometry or colorimetric methods. 相似文献
4.
The persistence and degradation of endosulfan isomers and their primary degradation product, endosulfan-sulfate, were studied in a clay soil from cotton farms of western Queensland. Endosulfan degradation in relation to soil moisture, temperature, day and night temperature fluctuation, waterlogging and re-application were studied. The results show that the degradation rates of both endosulfan isomers were greatly affected by changes in soil water content and temperature. Under a high water content-high temperature regime the concentration of alpha-endosulfan in the soil fell rapidly during the first 4 weeks of application, followed by a prolonged period of slower rate of degradation. Alpha endosulfan showed a bi-exponential form of degradation for all water content-temperature experiments except for extremes in both these two factors. In the submerged soils (and also in low-water content, low temperature, non-submerged experiments) no such rapid initial degradation of alpha-endosulfan was observed, and a single first-order rate equation describes the data. Degradation of beta-endosulfan was significantly slower than for the alpha-isomer under all conditions studied. A half-life of more than a year was recorded for the beta-isomer when both water content and temperature were low. The degradation of beta-endosulfan showed no sign of the bi-exponential function observed for alpha-isomer, and a single first order rate equation described the data obtained for each factor studied. Endosulfan-sulfate was the major degradation product in all non-submerged experiments. Its build up in the soil very closely followed the disappearance of alpha-endosulfan. Its highest build-up was in the high water content-low temperature experiments, but its persistence was primarily influenced by soil temperature. Both alpha and beta-isomers, and endosulfan sulfate, persisted longer in the submerged soil. Re-application of endosulfan, and day and night fluctuation of temperature had contrasting effects on the degradation of the two isomers. Both factors slowed down the degradation of alpha-endosulfan and enhanced that of beta-endosulfan, but their net effect was to prolong the overall persistence of this chemical in the soil. Submerged conditions reduced the net formation of endosulfan-sulfate and enhanced its degradation rate. 相似文献
5.
Soil chemical constituents influence soil structure and erosion potential. We investigated manure and inorganic fertilizer applications on soil chemistry (carbon [C] quality and exchangeable cations), aggregation, and phosphorus (P) loss in overland flow. Surface samples (0-5 cm) of a Hagerstown (fine, mixed, semiactive, mesic Typic Hapludalf) soil, to which either dairy or poultry manure or triple superphosphate had been applied (0-200 kg P ha(-1) yr(-1) for 5 yr), were packed in boxes (1 m long, 0.15 m wide, and 0.10 m deep) to field bulk density (1.2 g cm(-3)). Rainfall was applied (65 mm h(-1)), overland flow collected, and sediment and P loss determined. All amendments increased Mehlich 3-extractable P (19-177 mg kg(-1)) and exchangeable Ca (4.2-11.5 cmol kg(-1)) compared with untreated soil. For all treatments, sediment transport was inversely related to the degree of soil aggregation (determined as ratio of dispersed and undispersed clay; r = 0.51), exchangeable Ca (r = 0.59), and hydrolyzable carbohydrate (r = 0.62). The loss of particulate P and total P in overland flow from soil treated with up to 50 kg P ha(-1) dairy manure (9.9 mg particulate phosphorus [PPI, 15.1 mg total phosphorus [TP]) was lower than untreated soil (13.3 mg PP, 18.1 mg TP), due to increased aggregation and decreased surface soil slaking attributed to added C in manure. Manure application at low rates (<50 kg P ha(-1)) imparts physical benefits to surface soil, which decrease P loss potential. However, at greater application rates, P transport is appreciably greater (26.9 mg PP, 29.5 mg TP) than from untreated soil (13.3 mg PP, 18.1 mg TP). 相似文献
6.
The production of water-extractable organic carbon (WEOC) during arctic coastal erosion and permafrost degradation may contribute significantly to C fluxes under warming conditions, but it remains difficult to quantify. A tundra soil collected near Barrow, AK, was selected to evaluate the effects of soil pretreatments (oven drying vs. freeze drying) as well as extraction solutions (pure water vs. seawater) on WEOC yields. Both oven drying and freeze drying significantly increased WEOC release compared with the original moist soil samples; dried samples released, on average, 18% more WEOC than did original moist samples. Similar results were observed for the production of low-molecular-weight dissolved organic C. However, extractable OC released from different soil horizons exhibited differences in specific UV absorption, suggesting differences in WEOC quality. Furthermore, extractable OC yields were significantly less in samples extracted with seawater compared with those extracted with pure water, likely due to the effects of major ions on extractable OC flocculation. Compared with samples from the active horizons, upper permafrost samples released more WEOC, suggesting that continuously frozen samples were more sensitive than samples that had experienced more drying-wetting cycles in nature. Specific UV absorption of seawater-extracted OC was significantly lower than that of OC extracted using pure water, suggesting more aromatic or humic substances were flocculated during seawater extraction. Our results suggest that overestimation of total terrestrial WEOC input to the Arctic Ocean during coastal erosion could occur if estimations were based on WEOC extracted from dried soil samples using pure water. 相似文献
7.
Kleinman PJ Sharpley AN Veith TL Maguire RO Vadas PA 《Journal of environmental quality》2004,33(4):1413-1423
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport. 相似文献
8.
van der Salm C Dupas R Grant R Heckrath G lversen BV Kronvang B Levi C Rubaek G Schoumans OF 《Journal of environmental quality》2011,40(5):1617-1626
To reduce losses from agricultural soils to surface water, mitigation options have to be implemented as a local scale. For a cost-effective implementation of these measures, an instrument to identify critical areas for P leaching is indispensable. In many countries, P-index methods are used to identify areas as risk for P losses to surface water. In flat areas, where losses by leaching are dominant, these methods have their limitations because leaching is often not described in detail, PLEASE, is a simple mechanistic model designed to stimulate P Losses by leaching at the field scale using a limited amount of local field data. In this study, PLEASE, was applied to 17 lowland sites in Denmark and 14 lowland sites in the Netherlands. Results show that the simple model simulated measured fluxes and concentrations in water from pipe drains, suction cups, and groundwater quite well. The modeling efficiency ranged from 0.92 for modeling total-P fluxes to 0.36 fr modeling concentrations in groundwater. Poor results were obtained for heavy clay soils and eutrophic peat soils, where fluxes and concentration were strongly underestimated by the model. The poot performance for the heavy clay soil can be explained by the transport of P through macropores to the drain pipes and the underestimation of overland flow on this heavy-textured soil. In the eutrophic peat soils, fluxes were underestimated due to the release of P from deep soil layers. 相似文献
9.
Schroeder PD Radcliffe DE Cabrera ML Belew CD 《Journal of environmental quality》2004,33(4):1452-1463
Phosphorus loss in runoff from agricultural fields has been identified as an important contributor to eutrophication. The objective of this research was to determine the relationship between phosphorus (P) in runoff from a benchmark soil (Cecil sandy loam; fine, kaolinitic, thermic Typic Kanhapludult) and Mehlich III-, deionized water-, and Fe(2)O(3)-extractable soil P, and degree of phosphorus saturation (DPS). Additionally, the value of including other soil properties in P loss prediction equations was evaluated. Simulated rainfall was applied (75 mm h(-1)) to 54 1-m(2) plots installed on six fields with different soil test phosphorus (STP) levels. Runoff was collected in its entirety for 30 min and analyzed for total P and dissolved reactive phosphorus (DRP). Soil samples were collected from 0- to 2-, 0- to 5-, and 0- to 10-cm depths. The strongest correlation for total P and DRP occurred with DPS (r(2) = 0.72). Normalizing DRP by runoff depth resulted in improved correlation with deionized water-extractable P for the 0- to 10-cm sampling depth (r(2) = 0.81). The STP levels were not different among sampling depths and analysis of the regression equations revealed that soil sampling depth had no effect on the relationship between STP and P in runoff. For all forms of P in runoff and STP measures, the relationship between STP and runoff P was much stronger when the data were split into groups based on the ratio of oxalate-extractable Fe to Al. For all forms of P in runoff and all STP methods, R(2) increased with the inclusion of oxalate-extractable Al and Fe in the regression equation. The results of this study indicate that inclusion of site-specific information about soil Al and Fe content can improve the relationship between STP and runoff P. 相似文献
10.
The long-term mobility of trace metals has been cited as a potential hazard by critics of EPA 503 rule governing the land application of biosolids. The objectives of this study were to assess the accumulation of Cu, Ni, Cd, and Zn within the soil profile; the distribution of exchangeable, specifically adsorbed, organic, and oxide fractions of each metal; and mass balance of Cu, Ni, and Zn 17 yr after a single biosolids application. Biosolids were applied to 1.5- x 2.3-m confined plots of a Davidson clay loam (fine, kaolinitic, thermic Rhodic Kandiudult) in 1984 at 0, 42, 84, 126, 168, and 210 Mg ha(-1). The highest biosolids application supplied 4.5, 750, 43, and 600 kg ha(-1) of Cd, Cu, Ni, and Zn, respectively. Soils were sampled to a depth of 0.9 m and sectioned into 5-cm increments after separating the Ap horizon. Total (EPA-3050B), bioavailable (Mehlich-I), sequential extraction, and dispersible clay analyses were performed on samples from the control, 126 Mg ha(-1), and 210 Mg ha(-1) treatments. Trace metals are still concentrated in the top 0.2 m with slight enrichment down to 0.3 m. More than 85% of applied Cu, Ni, and Zn are still found in the topsoil where biosolids was incorporated and 95% or more of the applied metals were accounted for with mass balance calculations. Mehlich-I results showed a slight increase in metal concentration down to 0.35 m. Biosolids application increased the concentrations of trace metals in all the extracted fractions. The major portions of Cu, Zn, and Ni are associated with the metal-oxides fraction. Dispersible clay content and water-soluble metal contents were low and except for water-soluble Zn they were not affected by biosolids application. Results from this study showed that 17 yr after biosolids application there was negligible movement of trace metals through the soil profile and consequently there is little risk of contamination of ground water at this site. 相似文献
11.
Received for publication December 22, 2004. Research was initiated to study the interaction between soil amendments (lime, gypsum, and ferrous sulfate) and dissolved molybdate reactive phosphorus [RP(<0.45)] losses from manure applications from concentrated runoff flow through a sod surface. Four run-over boxes (2.2-m2 surface area) were prepared for each treatment with a bermudagrass [Cynodon dactylon (L.) Pers.] sod surface (using sod blocks) and composted dairy manure was surface-applied at rates of 0, 4.5, 9, or 13.5 Mg ha-1. The three soil amendments were then applied to the boxes. Two 30-min runoff events were conducted and runoff water was collected at 10-min intervals and analyzed for RP(<0.45). Results indicated that the addition of ferrous sulfate was very effective at reducing the level of RP(<0.45). in runoff water, reducing RP(<0.45) from 1.3 mg L(-1) for the highest compost rate with no amendment to 0.2 mg L(-1) for the ferrous sulfate in the first 10 min of runoff. Lime and gypsum showed a small impact on reducing RP(<0.45), with a reduction in the first 10 min to 0.9 and 0.8 mg L(-1), respectively. The ferrous sulfate reduced the RP(<0.45) in the tank at the end of the first runoff event by 66.3% compared with no amendment. In the second runoff event, the ferrous sulfate was very effective at reducing RP(<0.45) in runoff, with no significant differences in RP(<0.45) with application of 13.5 Mg ha(-1) compost compared with no manure application. The results indicate that the addition of ferrous sulfate may greatly reduce RP(<0.45) losses in runoff and has considerable potential to be used on pasture, turfgrass, and filter strips to reduce the initial RP(<0.45) losses from manure application to the environment. 相似文献
12.
The growing concerns about water eutrophication have made it urgent to restrict losses of phosphorus (P) from agricultural soils and to develop methods for predicting such losses. In this work, we used the paradigm of P sorption-desorption curves to confirm the hypothesis that the amount of dissolved reactive phosphorus (DRP) released to a dilute electrolyte tends to be proportional to the concentration of DRP in the soil solution raised to a power that decreases with increasing solution to soil ratio (W). The hypothesis was tested for a group of 12 widely ranging European agricultural soils fertilized with P in excess of crop needs. Phosphorus desorption was studied under near-static and turbulent conditions in laboratory experiments. The concentration of DRP in the 1:1 soil to water extract (P1:1) was used as a proxy for the DRP concentration in the soil solution. The amount of desorbed P was found to be correlated with P1:1 raised to a power that decreased from 0.7 to 0.9 at W=100 to 0.2 to 0.4 at W=10 000. Correlation was not improved by introducing additional variables related to P sorption-desorption properties. Olsen P was found to be of lower predictive value than P1:1. Also, the index of degree of soil saturation with phosphorus (DSSP) based on oxalate extraction failed to predict P desorption. The fact that P1:1 seemingly predicts P desorption accurately for a wide range of soils makes it potentially useful in areas of high soil diversity. 相似文献
13.
Franklin DH Butler DM Cabrera ML Calvert VH West LT Rema JA 《Journal of environmental quality》2011,40(2):312-319
Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement. 相似文献
14.
M. Chattopadhyay D. Mukherjee S. K. Bhattacharya S. C. Lahiri 《The Environmentalist》1995,15(3):211-219
Large quantities of sediment are transported by the River Ganga (The Ganges) particularly In its deltaic region. Attempts have been made to study the physicochemical parameters of the bottom sediments of the River Ganga at various depths at Kamarhati and along the banks of the River Ganga in the lower deltaic region. The results give vital information regarding the pollution load carried by the river and the enrichment of its sediments with nutrients such as P, N and other substances such as C and S (as sulphates). The mobilization of the P, N, C and S (as sulphates) in the sediments is compared with their natural abundance. The enrichment of the river beds with P, the interaction of the sediment and the characteristics of the sediments are ascertained. Some aspects of the phosphorus cycle and its importance are also discussed. The recycling and reuse of sediments for agricultural purposes have been proposed in order to restore ecological imbalances due to nutrient loss.Mrs M. Chattopadhyay (née Ray) and D. Mukherjee are both post-doctorate ex-senior research scholars within the Department of Chemistry, Kalyani University, where Professor S.C. Lahiri was until recently head of department. Mr S.K. Bhattacharya is director of the Ganga Action Plan Sector, Calcutta Metropolitan Development Authority, Unnayan Bhavan (1st floor), Salt Lake, Calcutta 700 091, India. The information given in this paper is supplementary to that provided by certain of the same authors inThe Environmentalist
13(3), 199–210. 相似文献
15.
The concentrations of copper (Cu) and lead (Pb) in, and the biomass of, the different parts of Persicaria glabra (Willd.) Gamez and Juncellus alopecuroides (Rottb.) C.B.Cl. were evaluated while grown in pots under laboratory conditions. Cu and Pb were added as sulphates (50, 100,
200, 400 mg/kg) to the pots. Heavy metal concentrations in the plants were measured by atomic absorption spectrometry. Results
reveal that the biomass of J. alopecuroides (particularly roots) was higher than P. glabra, and that the growth tendency of macrophytes decreased with increasing heavy metal concentration in the soil, while in P. glabra, biomass went on increasing with the increase in copper concentration. Heavy metal accumulation in the roots was more than
in aerial parts, and, therefore, barring two exceptions, the transfer factor of heavy metals from roots to aerial parts showed
as less than 1, suggesting less transfer of heavy metals from roots to aerial parts. Thus, these macrophytes are efficient
accumulators of trace elements, particularly J. alopecuroides, which can be recommended for biofiltration of heavy metals from contaminated soils. 相似文献
16.
Relationships between phosphorus levels in soil and in runoff from corn production systems 总被引:1,自引:0,他引:1
Phosphorus-enriched runoff from cropland can hasten eutrophication of surface waters. A soil P level exceeding crop needs due to long-term fertilizer and/or manure applications is one of several potential sources of increased P losses in runoff from agricultural systems. Field experiments were conducted at locations representative of three major soil regions in Wisconsin in corn (Zea mays L.) production systems to determine the effect of tillage, recent manure additions, soil P extraction method, and soil sampling depth (0-2, 0-5, and 0-15 cm) on the relationship between soil test P level and P concentrations in runoff. Runoff from simulated rainfall (75 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved phosphorus (DP), total phosphorus (TP), and sediment. The DP fraction of the TP concentration in runoff ranged from 5 to 17% among sites with most of the variation in TP due to varying sediment concentration on the well-drained silt loam soils and to soil test P level on the poorly drained silty clay loam soil. In 213 observations across a range of soils and managements, good relationships occurred between soil test P level and DP concentration in runoff for most of the tests and sampling depths used. Recent manure additions and high levels of surface cover from corn residue sometimes masked this relationship. The slope of DP relative to soil test P level was markedly higher on the silty clay loam soil than on the silt loam soils possibly due to soil permeability-infiltration rate differences. Agronomic soil P tests were as effective as environmentally oriented soil P tests for predicting DP concentrations in runoff. 相似文献
17.
Agricultural drainage ditches serve as P transport pathways from fields to surface waters. Little is known about the spatial variation of P at the soil-water interface within ditch networks. We quantified the spatial variation of surficial (0-5 cm) soil P within vegetated agricultural ditches on a farm in Princess Anne, MD with an approximately 30-yr history of poultry litter application. Ditch soils from 10 ditches were sampled at 10-m intervals and analyzed for acid ammonium oxalate-extractable P, Fe, Al (P(ox), Fe(ox), Al(ox)), and pH. These variables were spatially autocorrelated. Oxalate-P (min = 135 mg kg(-1), max = 6919 mg kg(-1), mean = 700 mg kg(-1)) exhibited a high standard deviation across the study area (overall 580 mg kg(-1)) and within individual ditches (maximum 1383 mg kg(-1)). Several ditches contained distinct areas of high P(ox), which were associated with either point- or nonpoint-P sources. Phosphorus was correlated with Al(ox) or Fe(ox) within specific ditches. Across all ditches, Al(ox) (r = 0.80; p < 0.001) was better correlated with P(ox) than was Fe(ox) (r = 0.44; p < 0.001). The high level of spatial variation of soil P observed in this ditch network suggests that spatially distributed sampling may be necessary to target best management practices and to model P transport and fate in ditch networks. 相似文献
18.
Relating soil phosphorus to dissolved phosphorus in runoff: a single extraction coefficient for water quality modeling 总被引:9,自引:0,他引:9
Phosphorus transport from agricultural soils contributes to eutrophication of fresh waters. Computer modeling can help identify agricultural areas with high potential P transport. Most models use a constant extraction coefficient (i.e., the slope of the linear regression between filterable reactive phosphorus [FRP] in runoff and soil P) to predict dissolved P release from soil to runoff, yet it is unclear how variations in soil properties, management practices, or hydrology affect extraction coefficients. We investigated published data from 17 studies that determined extraction coefficients using Mehlich-3 or Bray-1 soil P (mg kg(-1)), water-extractable soil P (mg kg(-1)), or soil P sorption saturation (%) as determined by ammonium oxalate extraction. Studies represented 31 soils with a variety of management conditions. Extraction coefficients from Mehlich-3 or Bray-1 soil P were not significantly different for 26 of 31 soils, with values ranging from 1.2 to 3.0. Extraction coefficients from water-extractable soil P were not significantly different for 17 of 20 soils, with values ranging from 6.0 to 18.3. The relationship between soil P sorption saturation and runoff FRP (microg L(-1)) was the same for all 10 soils investigated, exhibiting a split-line relationship where runoff FRP rapidly increased at P sorption saturation values greater than 12.5%. Overall, a single extraction coefficient (2.0 for Mehlich-3 P data, 11.2 for water-extractable P data, and a split-line relationship for P sorption saturation data) could be used in water quality models to approximate dissolved P release from soil to runoff for the majority of soil, hydrologic, or management conditions. A test for soil P sorption saturation may provide the most universal approximation, but only for noncalcareous soils. 相似文献
19.
Hydrological properties of a clay loam soil after long-term cattle manure application 总被引:2,自引:0,他引:2
Limited information exists on the effect of long-term application of beef cattle (Bos taurus) manure on soil hydrological properties in the Great Plains region of North America. A site on a clay loam soil (Typic Haploboroll) was used to examine the effect of manure addition on selected soil hydrological properties in 1997 and 1998. The manure was annually applied in the fall for 24 yr at one, two, and three times the recommended rates (in 1973) under dryland (0, 30, 60, and 90 Mg ha(-1) wet basis) and irrigation (0, 60, 120, and 180 Mg ha(-1)). Manure significantly (P < or = 0.05) increased soil water retention (0-5 and 10-15 cm) by 5 to 48% compared with the control at most potentials between 0 and -1500 kPa. Field soil water content (0-5 and 10-15 cm) was increased by 10 to 22% in the summers of 1997 and 1998. Manure increased ponded infiltration by more than 200% at 90 Mg ha(-1) under dryland (1998) and at rates > or = 120 Mg ha(-1) under irrigation (1997). Field-saturated hydraulic conductivity (Kfs) of surface soil (1-cm depth) was significantly increased by 76 to 128% under dryland (1998) and irrigation (1997), as were number of pores > 1120 microm in diameter (37-128% increase). In contrast, manure rate had little or no effect on unsaturated hydraulic conductivity [K(psi)] values (-0.3, -0.5, -0.7, and -1.0 kPa) in 1997 and 1998. Overall, soil hydrological parameters generally had a neutral or positive response to 24 yr of annual manure addition. 相似文献
20.
Mechri B Attia F Braham M Elhadj SB Hammami M 《Journal of environmental management》2007,85(4):1088-1093
Olive mill wastewater (OMW), a by-product of the olive-mill industry, is produced in large amounts in Mediterranean countries. The presence of indigenous phosphate deposits in some countries like Tunisia provides an incentive for direct application or local chemical treatment at low cost to improve the solubility of low reactive phosphate rocks (PRs). The use of naturally occurring low-molecular weight organic acids (LMWOAs) that are present in OMW represents a new perspective in PR research and a possible solution for the recycling of the OMW. The present work was aimed at evaluating, under natural situations (field of olive trees), the effects of agronomic application of OMW (amounts applied: 30, 60 m(3) ha(-1)) with PR (amounts applied: 150 kg ha(-1)) on olive trees soil properties. We measured organic C, nitrogen (N), extractable phosphorus (P), exchangeable calcium (Ca), and exchangeable potassium (K), as well as other properties (pH and electrical conductivity). Our data provide evidence that agronomic application of OMW with PR has important effects on soil properties. Increases in organic C, total N, extractable P and exchangeable potassium (K) were found after the first agronomic application of OMW and PR. These increases were only temporary, following the second agronomic application of OMW and PR, significant reductions were detected in the extractable soil P (19.67 mg kg(-1) in the control soil vs. 8.99 mg kg(-1) in the amended soil). Changes in the extractable soil P could alter plant productivity and plant community structure because shifts in nutriment availability can affect the balance between limiting and non-limiting nutrients. 相似文献