首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reviews the published literature that describes the phenological development of above and below ground organs of temperate fruit trees (top fruit), particularly with respect to apple (Malus domestica). Critical information is presented which is considered appropriate in developing an understanding of the potential for top fruit species to take up radionuclide contaminants from the atmosphere and the soil. Information is cited on how climatic and edaphic factors influence the growth and development of temperate fruit trees, the phenological production of their leaf area and the development and growth of their fruit and hence the potential for foliar and fruit uptake of radionuclides from the atmosphere. The study also reports on the importance of the distribution and phenological development of roots in the soil and the potential for their uptake of radionuclides from the soil. The effects of above and below ground management procedures, within temperate fruit orchards, on potential radionuclide uptake are also considered. It is concluded that the potential for the uptake of radionuclides by temperate fruit tree species will depend on a number of phenological and physiological factors. For uptake from the soil these factors include; root distribution and density in the soil profile, seasonal changes in the production and distribution of roots, and the presence and amount of water in the soil. These factors are themselves influenced by rootstock type and its growth vigour, scion type and its growth vigour, tree age, spacing of trees in the orchard, orchard management practices (presence or absence of weeds or grass under the trees) and soil type and depth. Direct uptake by the shoot, however, will be influenced by the climatic conditions at the time of exposure and the presence of foliage. Deposition and uptake are likely to change with leaf area development and the ability of radionuclides to penetrate the cuticle of the leaf changes with seasonal development. Transport of radionuclides to the fruit may also depend on the time of season, as the importance of the xylem and phloem transport routes can change with the growth and development of the fruit.  相似文献   

2.
An overview of BORIS: Bioavailability of Radionuclides in Soils   总被引:1,自引:0,他引:1  
The ability to predict the consequences of an accidental release of radionuclides relies mainly on the level of understanding of the mechanisms involved in radionuclide interactions with different components of agricultural and natural ecosystems and their formalisation into predictive models. Numerous studies and databases on contaminated agricultural and natural areas have been obtained, but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from incomplete knowledge about radionuclide interactions with the soil matrix, soil moisture, and biological elements in the soil and additional pollutants, which may be found in such soils. In the 5th European Framework Programme entitled Bioavailability of Radionuclides in Soils (BORIS), we investigated the role of the abiotic (soil components and soil structure) and biological elements (organic compounds, plants, mycorrhiza, and microbes) in radionuclide sorption/desorption in soils and radionuclide uptake/release by plants. Because of the importance of their radioisotopes, the bioavailability of three elements, caesium, strontium, and technetium has been followed. The role of one additional non-radioactive pollutant (copper) has been scrutinised in some cases. Role of microorganisms (e.g., K(d) for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (e.g., changes in plant physiology affect radionuclide uptake by plants), and the presence of mycorrhizal fungi (e.g., interferes with the uptake of radionuclides by plants) have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST and BIORUR, specifically modelling radionuclide sorption/desorption from soil matrices and radionuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance its prediction ability by introducing the concept of bioavailability factor for radionuclides.  相似文献   

3.
Measurements of soil-to-plant transfer of (134)Cs, (85)Sr and (65)Zn from two tropical red earth soils ('Blain' and 'Tippera') to sorghum and mung crops have been undertaken in the north of Australia. The aim of the study was to identify factors that control bioaccumulation of these radionuclides in tropical regions, for which few previous data are available. Batch sorption experiments were conducted to determine the distribution coefficient (K(d)) of the selected radionuclides at pH values similar to natural pH values, which ranged from about 5.5 to 6.7. In addition, K(d) values were obtained at one pH unit above and below the soil-water equilibrium pH values to determine the effect of pH. The adsorption of Cs showed no pH dependence, but the K(d) values for the Tippera soils (2300-4100 ml/g) exceeded those for the Blain soils (800-1200 ml/g) at equilibrium pH. This was related to the greater clay content of the Tippera soil. Both Sr and Zn were more strongly adsorbed at higher pH values, but the K(d) values showed less dependence on the soil type. Strontium K(d)s were 30-60 ml/g whilst Zn ranged from 160 to 1630 ml/g for the two soils at equilibrium pH. With the possible exception of Sr, there was no evidence for downward movement of radionuclides through the soils during the course of the growing season. There was some evidence of surface movement of labelled soil particles. Soil-to-plant transfer factors varied slightly between the soils. The average results for sorghum were 0.1-0.3 g/g for Cs, 0.4-0.8 g/g for Sr and 18-26 g/g for Zn (dry weight) with the initial values relating to Blain and the following values to Tippera. Similar values were observed for the mung bean samples. The transfer factors for Cs and Sr were not substantially different from the typical values observed in temperate studies. However, Zn transfer factors for plants grown on both these tropical soils were greater than for soils in temperate climates (by more than an order of magnitude). This may be related to trace nutrient deficiency and/or the growth of fungal populations in these soils. The results indicate that transfer factors depend on climatic region together with soil type and chemistry and underline the value of specific bioaccumulation data for radionuclides in tropical soils.  相似文献   

4.
Transfer factors of (40)K, (238)U, (210)Pb, and (210)Po from soil to some agriculture crops in various locations in south of Syria (Dara'a and Assuwaydaa districts) have been determined. Soil and vegetable crops (green pepper, cucumber, tomato, and eggplant), legumes crops (lentil, chickpea, and broad bean), fruit trees (apple, grape, and olives) and cereals (barley and wheat) were collected and analyzed for (238)U, (210)Pb, and (210)Po. The results have shown that higher transfer factors (calculated as Bqkg(-1) dry wt. plant material per Bqkg(-1) dry wt. soil) for (210)Po, (210)Pb and (238)U were observed in vegetable leaves than fruits and cereals leaves; the highest values of transfer factor (TF) for (238)U were found to be 0.1 for straw of chickpea. Transfer factors for (210)Po varied between 2.8x10(-2) and 2 in fruits of eggplant and grain of barley, respectively. In addition, several parameters affecting transfer factors of the radionuclides were evaluated. The results can be considered as base values for TF of natural radionuclides in the region.  相似文献   

5.
Compared to agricultural lands, forests are complex ecosystems as they can involve diverse plant species associations, several vegetative strata (overstorey, shrubs, herbaceous and other annual plant layer) and multi-layered soil profiles (forest floor, hemi-organic and mineral layers). A high degree of variability is thus generally observed in radionuclide transfers and redistribution patterns in contaminated forests. In the long term, the soil compartment represents the major reservoir of radionuclides which can give rise to long-term plant and hence food contamination. For practical reasons, the contamination of various specific forest products has commonly been quantified using the aggregated transfer factor (Tag in m2 kg−1) which integrates various environmental parameters including soil and plant type, root distribution as well as nature and vertical distribution of the deposits. Long lasting availability of some radionuclides was shown to be the source of much higher transfer in forest ecosystems than in agricultural lands. This study aimed at reviewing the most relevant quantitative information on radionuclide transfers to forest biota including trees, understorey vegetation, mushrooms, berries and game animals. For both radiocaesium and radiostrontium in trees, the order of magnitude of mean Tag values was 10−3 m2 kg−1 (dry weight). Tree foliage was usually 2–12 times more contaminated than trunk wood. Maximum contamination of tree components with radiocaesium was associated with (semi-)hydromorphic areas with thick humus layers. The transfer of radionuclides to mushrooms and berries is high, in comparison with foodstuffs grown in agricultural systems. Concerning caesium uptake by mushrooms, the transfer is characterized by a very large variability of Tag, from 10−3 to 101 m2 kg−1 (dry weight). For berries, typical values are around 0.01–0.1 m2 kg−1 (dry weight). Transfer of radioactive caesium to game animals and reindeer and the rate of activity reduction, quantified as an ecological half-life, reflect the soil and pasture conditions at individual locations. Forests in temperate and boreal regions differ with respect to soil type and vegetation, and a faster decline of muscle activity concentrations in deer occurs in the temperate zone. However, in wild boar the caesium activity concentration shows no decline because of its special feeding habits. In the late phase, i.e. at least a few months since the external radionuclide contamination on feed plants has been removed, a Tag value of 0.01 m2 kg−1 (fresh weight) is common for 137Cs in the muscles of adult moose and terrestrial birds living in boreal forests, and 0.03 m2 kg−1 (fresh weight) for arctic hare. Radiocaesium concentrations in reindeer muscle in winter may exceed the summer content by a factor of more than two, the mean Tag values for winter ranging from 0.02 to 0.8 m2 kg−1 (fresh weight), and in summer from 0.04 to 0.4 m2 kg−1. The highest values are found in the year of initial contamination, followed by a gradual reduction. In waterfowl a relatively fast decline in uptake of 137Cs has been found, with Tag values changing from 0.01 to 0.002 m2 kg−1 (fresh weight) in the three years after the contaminating event, the rate being determined by the dynamics of 137Cs in aquatic ecosystems.  相似文献   

6.
Transfer factors of 137Cs and 90Sr from soil to trees in arid regions   总被引:2,自引:0,他引:2  
Transfer factors of (137)Cs and (90)Sr from contaminated soil (Aridisol) to olive, apricot trees and grape vines were determined under irrigated field conditions for four successive years. The transfer factors (calculated as Bqkg(-1) dry plant material per Bqkg(-1) dry soil) of both radionuclides varied among tree parts and were highest in olive and apricot fruits. However, the values for (90)Sr were much higher than those for (137)Cs in all plant parts. The geometric mean of the transfer factors in olives, apricots and grapes were 0.007, 0.095 and 0.0023 for (137)Cs and 0.093, 0.13 and 0.08 for (90)Sr, respectively, and were negligible in olive oil for both radionuclides. The transfer factors of both radionuclides were similar to, or in the lower limits of, those obtained in other areas of the world. This could be attributed to differences in soil characteristics: higher pH, lower organic matter, high clay content, and higher exchangeable potassium and calcium.  相似文献   

7.
In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of (137)Cs and (40)K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisíaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of (137)Cs and (40)K in their growing parts. However, a significant correlation between activity concentrations of (137)Cs and (40)K was observed in these tropical plants. The (40)K/(137)Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species.  相似文献   

8.
The accumulation and long-term decline of radiocesium contamination in tropical plant species was studied through measurements of gamma-ray spectra from pomegranate (Punica granatum) and chili pepper (Capsicum fructescens) trees. The plants were originally grown at a (137)Cs contaminated site (where a radiological accident occurred in the city of Goiania, Brazil, in 1987), and transplanted to uncontaminated soil, so that the main source of contamination of the new leaves and fruits would be the fraction of the available radiocesium in the body of the plants. Measurements of (137)Cs and (40)K concentrations along the roots, main trunk, twigs, leaves and fruits before and after the transplant process of both plant species indicated a direct competition between Cs and K ions, suggesting that these elements could have a common accumulation mechanism. Cesium transfer factors from soil to pomegranate, green and red chili pepper fruits were evaluated as 0.4 +/- 0.1, 0.06 +/- 0.01 and 0.05 +/- 0.01, respectively. Biological half-life values due to (137)Cs translocation from the tree reservoir (BHL(T)) were calculated as 0.30 years for pomegranate, 0.12 years and 0.07 years for red and green peppers, respectively.  相似文献   

9.
This paper compares predictions of the foodchain model SPADE with experimental data for the transfer of (134)Cs and (85)Sr to strawberry plants following acute foliar and soil contamination. The transfer pathways considered in this exercise included direct deposition to fruit, leaf-to-fruit, soil-to-leaf and soil-to-fruit transfers. Following foliar contamination, the difference between predicted and measured radionuclide activity values varied between a factor of 0.5-10 for fruit and 4.5-7 for leaf. Following soil contamination, the difference between predicted and measured values varied between a factor of 3-74 for fruit and 32-44 for leaf. In all cases the difference between measured and predicted values was smaller for (85)Sr than (134)Cs. Measured and predicted activities were higher for leaf than fruit. Both measured and predicted (134)Cs concentrations in fruit and leaf are higher when deposition occurs at ripening than at anthesis. These results confirm the need for more data on fruit, even for Cs and Sr, to support models in predicting the transfer of radionuclides to fruit crops. Ongoing research projects funded by the UK Food Standards Agency aim to provide some data on radionuclide transfer to herbaceous, shrub and tree fruits, which will help improve radiological assessment models in order to provide better protection for consumers.  相似文献   

10.
Radium is one of the prominent potential contaminants linked with industries extracting or processing material containing naturally occurring radionuclides. In this study we investigate if 133Ba and 85Sr can be used as tracers for predicting 226Ra soil-to-plant transfer. Three soil types were artificially contaminated with these radionuclides and transfer to ryegrass and clover was studied. Barium is considered a better tracer for radium than strontium, given the significant linear correlation found between the Ra and Ba-TF. For strontium, no such correlation was found. The relationship between soil characteristics and transfer factors was investigated. Cation exchange capacity, exchangeable Ca+Mg content and soil pH did not seem to influence Ra, Ba or Sr uptake in any clear way. A significant relation (negative power function) was found between the bivalent (Ca+Mg) concentration in the soil solution and the Ra-TF. A similar dependency was found for the Sr and Ba-TF, although less significant.  相似文献   

11.
12.
An overview of original information available from Russian language papers on radionuclide transfer to milk is provided. Most of the data presented have not been taken into account in international reviews. The transfer coefficient (F(m)) values for radioactive isotopes of strontium, caesium and iodine are in good agreement with those previously published. The Russian language data, often based on experiments with many animals, constitute a considerable increase to the available data for many less well-studied radionuclides. In some instances, the Russian language data suggest changes in recommended values (e.g. Zr and Ru). The information presented here substantially increases the amount of available data on radionuclide transfer to milk and will be included in the current revision of the IAEA TRS Handbook of parameter values for radionuclide transfer.  相似文献   

13.
The results of an experimental study on the behaviour of 134Cs, 85Sr and 65Zn in processing tomato plants grown in peat substrate are presented. Plants were contaminated by wet deposition of 134Cs, 85Sr and 65Zn, either by sprinkling the above ground part at two phenological stages or by administering 134Cs, 85Sr and 65Zn to the soil. The plants contaminated at the second phenological stage intercepted 38.3% less than those contaminated at the first stage, although leaf area increased by more than double. Transfer coefficients from peat soil to ripe fruit for 134Cs are significantly higher than those for 85Sr and 65Zn. Leaf to fruit transfer coefficients for 134Cs are one order of magnitude higher than for 65Zn and two orders higher than for 85Sr. Only when deposition affects fruits, as at the second phenological stage, are transfer coefficients to fruits similar for the three radionuclides.  相似文献   

14.
15.
Data on the production and consumption of fruit are reviewed in the context of modelling the transfer of radionuclides to fruit, and the assessment of the consequent risks to the consumers. Mean consumption rates vary widely from country to country, from 150 g per day fresh weight to about 500 g per day. Consumption also varies with age, socio-economic class, and climate. In some countries there is a trend towards increased consumption of fruit, associated with a growing interest in a healthy diet, and these trends have been associated with changes in the incidence of cardio-vascular diseases and some forms of cancer. Assessment of the effects of radionuclides in fruit needs to take into account the use of wild growing fruits, the increasing trade in fruit between countries, and the contribution from natural radionuclides in fruit.  相似文献   

16.
Information on the transfer of radionuclides to fruits was almost absent in the former TRS 364 “Handbook of parameter values for the prediction of radionuclide transfer in temperate environments”. The revision of the Handbook, carried out under the IAEA Programme on Environmental Modelling for RAdiation Safety (EMRAS), takes into account the information generated in the years following the Chernobyl accident and the knowledge produced under the IAEA BIOMASS (Biosphere Modelling and Assessment) Programme in the years 1997–2000. This paper describes the most important processes concerning the behaviour of radionuclides in fruits reported in the IAEA TRS 364 Revision and provides recommendations for research and modelling.  相似文献   

17.
An experiment has been performed at the nuclear power plant of Garigliano (Caserta, Italy), aiming at the measurement of transfer factors of 137Cs and 60Co radionuclides from the irrigation water to a soil-plant system, with particular attention to the influence on such transfers of the irrigation technique (ground or aerial). Tomato plants were irrigated weekly with water contaminated with 137Cs and 60Co (about 375 Bq/m2 week), using both irrigation techniques. After 13 weeks, fruits, leaves, stems, roots and soil were sampled, and radionuclide concentrations were measured by high-resolution gamma spectroscopy. It was found that the activity allocated to the plant organs is significantly dependent upon the irrigation technique, amounting to 2.1% and 1.6% of the activity given in the cultivation for aerial treatment and 0.4% and 0.3% for the ground treatment, for 137Cs and 60Co respectively. The activity absorbed by plants is allocated mainly in leaves (> 55%), while less then 10% is stored in the fruits, for both irrigation techniques. Transfer factors (soil-plant and irrigation water-plant) of tomato plants and of weeds have been determined for 137Cs and 60Co, as well as for natural 40K in the soil.  相似文献   

18.
Fungi are one of the most important components of forest ecosystems, since they determine to a large extent the fate and transport processes of radionuclides in forests. They play a key role in the mobilization, uptake and translocation of nutrients and are likely to contribute substantially to the long-term retention of radiocesium in organic horizons of forest soil. This paper gives an overview of the role of fungi regarding the transfer and cycling of nutrients and radionuclides, with special emphasis on mycorrhizal symbiosis. Common definitions of transfer factors, soil-fungus and soil-green plant, including their advantages and limitations. are reviewed. Experimental approaches to quantify the bioavailability of radionuclides in soil and potential long-term change are discussed.  相似文献   

19.
Species turnover patterns can be inconsistent due to differences in the dispersal ability of different growth forms. Here, species of trees, shrubs, herbs, and bryophytes in the Xiaoqinling National Nature Reserve in China were analyzed to determine patterns of species turnover along an elevation and spatial gradient. Variance partitioning was used to assess the relative contribution of topographic heterogeneity and dispersal limitation to species turnover. Our results suggest that the effect of dispersal limitation is more important than topographic heterogeneity on species turnover in temperate mountane ecosystems in the study area. Dispersal limitation has a greater effect on trees species turnover than on shrubs, herbs or bryophytes species turnover.  相似文献   

20.
This paper presents results on the calibration and validation of a model (Ventomod) for leaf to fruit transfer of (134)Cs, (85)Sr and (65)Zn in processing tomato plants after leaf contamination. Several models (e.g. FARMLAND) that deal specifically with the transfer of radionuclides to fruits are adaptations of models that were developed for agricultural crops such as leafy green vegetables. "Ventomod" represents a dynamic evaluation model exclusively built for the short-term behaviour of radionuclide depositions. It forecasts the level of radionuclide contamination in ripe processing tomato fruits following an accidental radionuclide release into the atmosphere. A validation of the developed model by data sets from an independent experiment showed that the model successfully reproduced the observed radionuclide distribution and dynamics in tomato fruits. The level of uncertainty was within the normal range of similar assessment models. For a more general use of this model further testing with independent data sets from experiments obtained under different environmental conditions and data from other horticulturally important plant species would be desirable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号