首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
Photolysis behavior of a new herbicide propisochlor in water media as well as the effects of light sources, initial concentration of propisochlor, pH value, dissolved oxygen (DO) level, and salinity on the photolysis process was investigated. It was found that the relationship between initial concentration of propisochlor and its photodegradation rate was negatively correlated. The changes in acidity and alkalinity of the reaction medium influenced the photoreaction rate evidently. In the alkaline solution the degradation was accelerated. In the reaction media with different pH values, the photolysis followed the first-order kinetics. The presence of dissolved oxygen may promote the photolysis and there existed an optimum of dissolved oxygen concentrations. Increasing the DO level can weaken the promotion and even have an adverse effect. It was demonstrated that with dissolved oxygen the photodegradation of propisochlor followed the first-order kinetics equation. The addition of salt ions Ca2+ and Mg2+ changed the ionic strength and solvent polarity, resulting in the effect on propisochlor photolysis. The photoproducts were detected by both HPLC and GC-MS methods. It was found that photolysis products varied under different light sources. Conclusions may be reached that in the photodegradation of propisochlor, the benzene ring remained intact under irradiation of both solar light and high-pressure mercury lamp, and the amido link was relatively stable, while dechlorination was liable to take place; moreover, alpha-hydrogen at the substituent of benzene ring was active.  相似文献   

3.

Photolysis behavior of a new herbicide propisochlor in water media as well as the effects of light sources, initial concentration of propisochlor, pH value, dissolved oxygen (DO) level, and salinity on the photolysis process was investigated. It was found that the relationship between initial concentration of propisochlor and its photodegradation rate was negatively correlated. The changes in acidity and alkalinity of the reaction medium influenced the photoreaction rate evidently. In the alkaline solution the degradation was accelerated. In the reaction media with different pH values, the photolysis followed the first-order kinetics. The presence of dissolved oxygen may promote the photolysis and there existed an optimum of dissolved oxygen concentrations. Increasing the DO level can weaken the promotion and even have an adverse effect. It was demonstrated that with dissolved oxygen the photodegradation of propisochlor followed the first-order kinetics equation. The addition of salt ions Ca2+ and Mg2+ changed the ionic strength and solvent polarity, resulting in the effect on propisochlor photolysis. The photoproducts were detected by both HPLC and GC-MS methods. It was found that photolysis products varied under different light sources. Conclusions may be reached that in the photodegradation of propisochlor, the benzene ring remained intact under irradiation of both solar light and high-pressure mercury lamp, and the amido link was relatively stable, while dechlorination was liable to take place; moreover, α-hydrogen at the substituent of benzene ring was active.  相似文献   

4.
Adding sludge to agricultural soil results in added organic matter, nutrients and metallic and/or organic pollutants. These components may modify the behaviour of pesticides in the soil. We monitored possible changes in the degradation of the herbicide isoproturon (production of CO2 and degradation products) in soil amended with sludge, heavy metals or nitrogen and phosphorus. The treated and control soils were incubated under controlled conditions for 60 days. The nitrogen and phosphorus had the greatest effect on isoproturon degradation, independent of the presence of pollutants. Mineralisation of the herbicide to CO2 was slow and seemed to be linked to a fast degradation and to the accumulation of a complex degradation product that was neither catabolized nor adsorbed, 4,4'-diisopropylazobenzene. This degradation pathway also produced smaller amounts of non-extractable residues. Sewage sludge had no significant effect on isoproturon degradation, despite a large increase of organic matter mineralisation (factor 2).  相似文献   

5.
Ozcan A  Sahin Y  Oturan MA 《Chemosphere》2008,73(5):737-744
The removal of a carbamate herbicide, propham, from aqueous solution has been carried out by the electro-Fenton process. Hydroxyl radical, a strong oxidizing agent, was generated catalytically and used for the oxidation of propham aqueous solutions. The degradation kinetics of propham evidenced a pseudo-first order degradation. The absolute rate constant of second order reaction kinetics between propham and ()OH was determined as (2.2+/-0.10)x10(9)m(-1)s(-1). The mineralization of propham was followed by the organic carbon (TOC) removal. The optimal Fe(3+) concentration was found as 0.5mM at 300mA. The 94% of initial TOC of 0.25mM propham solution was removed in 8h at the optimal conditions by using the cathode area to solution volume ratio of 3.33dm(-1). The maximum mineralization current efficiency values were obtained at 60mA in the presence of 0.5mM Fe(3+). During the electro-Fenton treatment, several degradation products were formed. These intermediates were identified by using high performance liquid chromatography, liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry and ion chromatography analysis. The identified by-products allowed proposing a pathway for the propham mineralization.  相似文献   

6.
This research aimed to develop slow-release formulations (SRFs) of 2,4-dichlorophenoxyacetic acid (2,4-D) using zeolite and bentonite minerals modified with cetyltrimethylammonium (CTMA) surfactant. Adsorption–desorption, greenhouse bioassay and column experiments were carried out to assess the potential of the SRFs to control weeds while reducing the herbicide leaching losses to deep layers of soil. The results showed that only 6.5 mmol 2,4-D kg?1 was retained by Na-bent, and the herbicide was not adsorbed by Na-zeol at all. The surface modification with CTMA surfactant, however, improved the 2,4-D adsorption capacity of the zeolite and bentonite up to 207.5 and 415.8 mmol kg?1, respectively. The synthesized organo-minerals slowly released the retained 2,4-D discharging 22 to 64% of the adsorbed 2,4-D to the solution phase within 7 days. The SRFs significantly (P = 0.05) reduced the herbicide mobility within the soil columns keeping a great portion of the herbicide active ingredient in the upper 5 cm soil layer. The SRFs were significantly (P = 0.05) as effective as the free technical herbicide in weed control without harming the ryegrass as the main plant. Therefore, the synthesized SRFs could be considered as useful tools for weed control in sustainable agriculture.  相似文献   

7.
The effects of two humic acids (HAs) of different origins on the photodegradation of the chloroacetanilide herbicides acetochlor, propisochlor and butachlor were investigated in this study. One of the tested HAs was a standard sample that was purchased from a commercial source, and the other was isolated from the black soil of Northeast China. The photolysis of all three herbicides followed pseudo-first-order kinetics under ultraviolet (UV) irradiation conditions, regardless of whether HAs were present or not. Both HAs improved the photolysis rates of acetochlor in a dose-reversed way, whereas they inhibited butachlor degradation under all experimental concentrations. The two HAs differed in their effects on propisochlor photolysis, changing from enhancement to inhibition, depending on the origin and concentration of HAs. Element and Fourier Transform Infrared spectroscopy analyses showed that the isolated HAs had more polysaccharides and less aliphatic groups than the commercial HAs, and it was indicated that some characteristic radicals (C═O, O─H and phenolic hydroxyls) in HAs were involved in the photolysis of the herbicides. Gas chromatography/mass spectrometry (GC/MS) analyses indicated that the presence of HAs had no effects on the photolysis pathway and photoproduct species of the three herbicides.  相似文献   

8.
The effects of two humic acids (HAs) of different origins on the photodegradation of the chloroacetanilide herbicides acetochlor, propisochlor and butachlor were investigated in this study. One of the tested HAs was a standard sample that was purchased from a commercial source, and the other was isolated from the black soil of Northeast China. The photolysis of all three herbicides followed pseudo-first-order kinetics under ultraviolet (UV) irradiation conditions, regardless of whether HAs were present or not. Both HAs improved the photolysis rates of acetochlor in a dose-reversed way, whereas they inhibited butachlor degradation under all experimental concentrations. The two HAs differed in their effects on propisochlor photolysis, changing from enhancement to inhibition, depending on the origin and concentration of HAs. Element and Fourier Transform Infrared spectroscopy analyses showed that the isolated HAs had more polysaccharides and less aliphatic groups than the commercial HAs, and it was indicated that some characteristic radicals (C=O, O-H and phenolic hydroxyls) in HAs were involved in the photolysis of the herbicides. Gas chromatography/mass spectrometry (GC/MS) analyses indicated that the presence of HAs had no effects on the photolysis pathway and photoproduct species of the three herbicides.  相似文献   

9.
The degradation of thiamethoxam [(EZ)-3-(2-chloro-1,3-thiazol-5-yl-methyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene (nitro) amine] insecticide in buffers at different pH and temperature levels was investigated in laboratory studies. Acidic hydrolysis under conventional heating conditions and alkaline hydrolysis under both conventional heating and microwave conditions were carried out. Different hydrolysis products were found to form under alkaline and acidic conditions. Hydrolysis of thiamethoxam in acidic, neutral and alkaline buffers followed first-order reaction rate kinetics at pH 4, 7 and 9.2, respectively. Thiamethoxam readily hydrolyzed in alkaline buffer but was comparatively stable in neutral buffer solution. The main products formed under different conditions were characterized on the basis of infrared (IR), 1H-NMR and Mass spectroscopy. The possible mechanisms for the formation of these hydrolysis products have also been proposed.  相似文献   

10.
Abstract

The degradation of profluralin [N‐(cyclopropylmethyl)‐α,α,α‐trifluoro‐2,6‐dinitro‐N‐propyl‐]p‐toluidine] and trifluralin (α,α,α‐trifluoro‐2,6‐dinitro‐N,N‐dipropyl‐p‐toluidine) was studied under aerobic and anaerobic soil conditions. Three soils (Goldsboro loamy sand, Cecil loamy sand, Drummer clay loam) were each treated with 1 ppmw herbicide; anaerobic conditions were maintained by flooding. Soil samples were extracted monthly and subjected to TLC analysis. No degradation was detected in sterile controls. Aerobic degradation of both herbicides was greatest in the Cecil loamy sand soil over the entire incubation period. Degradation of profluralin in Cecil soil under aerobic conditions was 86 percent after 4 months with three products detected; 83 percent of the trifluralin was degraded with two products detected. Anaerobic degradation accounted for 72 percent of the profluralin and 78 percent of the trifluralin after 4 months. Degradation of both herbicides increased with incubation time for the first 3 months and decreased slightly thereafter. Generally there was more extensive degradation (percent and in number of products formed) of profluralin than trifluralin under the conditions tested. More degradation products were detected for both herbicides under aerobic conditions than under anaerobic conditions.  相似文献   

11.
The mobility of atrazine [6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine] from alginate-bentonite-based controlled release (CR) formulations was investigated by using soil columns. Two CR formulations based on sodium alginate (14.0 g kg(-1), atrazine (6.0 g kg(-1), natural or acid-treated bentonite (50 g kg(-1), and water (924 g kg(-1) were compared to technical grade product and commercial liquid (CL) formulation (Gesaprim 500FW). All herbicide treatments were applied to duplicate layered bed systems simulating the typical arrangement under a plastic greenhouse, which is composed of sand (10 cm), peat (2 cm), amended soil (20 cm) and native soil (20 cm). The columns were leached with 39 cm (1500 ml) and 156 cm (6000 ml) of 0.02 M CaCl2 solution to evaluate the effect of water volume applied on herbicide movement. When 39 cm of 0.02 M CaCl2 solution was applied, there was no presence of herbicide in the leachate for the alginate-bentonite CR treatments. However, 0.11% and 0.14% of atrazine appeared in the leachate when the treatment was carried out with technical grade and CL formulations, respectively. When 156 cm of 0.02 M CaCl2 solution was applied, the use of the alginate-acid treated bentonite CR formulation retards and reduces the presence of atrazine in the leachate as compared to technical product. Analysis of the soil columns showed the highest atrazine concentration in the peat layer. Alginate-bentonite CR formulations might be an efficient system for reducing atrazine leaching in layered soil and thus, it could reduce the risks of pollution of groundwater.  相似文献   

12.
Pyrazosulfuron-ethyl, a new herbicide belonging to the sulfonylurea group, is used for weed control in rice crops growing in areas varying from acidic to alkaline soils. This study was undertaken to determine the degradation behaviour of pyrazosulfuron-ethyl in distilled water and buffer solutions at pH 4, 7 and 9. Degradation was pH-dependent and herbicide was least persistent in acidic pH followed by alkaline and neutral pH. The half-life of pyrazosulfuron-ethyl varied from 2.6 days (pH 4) to 19.4 days (pH 7) and half-life in distilled water was comparable to half-life at pH 7 buffer. HPLC analysis of different pH samples showed the formation of three metabolites viz., 5-(aminosulfonyl)-1-methyl-1H-pyrazole-4-carboxylic acid; ethyl 5-(aminosulfonyl)-1-methyl-1H-pyrazole-4-carboxylate and 2-amino-4,6-dimethoxy pyrimidine. The formation of pyrazosulfuron acid [5-([([(4,6-dimethoxy-2 pyrimidinyl)-amino]-carbonyl) amino]-sulfonyl)-1-methyl-1H-pyrazole-4-carboxylic acid] was not observed at any pH. The study indicated that the herbicide was least stable under acidic conditions and the predominant degradation route of pyrazosulfuron-ethyl in water is hydrolysis of sulfonamide linkage.  相似文献   

13.
Static equilibrium measurements were performed for the study of propisochlor on three different kinds of soils at pH = 7.0 at 25 degrees C. The concentration of herbicide was changed from 30 to 300 mumol/l. The obtained two-step adsorption isotherms cannot be evaluated by using the Freundlich or Langmuir equations. New equation has been derived by making use of the usual mass balance and equilibrium relationships of the adsorption and by considering the possibility of the formation of associates of the hydrophobic solute molecules. The characteristic model parameters of each step of the adsorption isotherm were estimated for the studied systems by a non-linear least square regression. The calculated curves fit well to the experimentally obtained two-step isotherms and the parameters of the model can be used for the characterization of the pesticide-soil interactions and consequently the mobility of the propisochlor in soil/water systems.  相似文献   

14.
A fungal strain able to use atrazine (2-chloro-4-ethylamino-5-isopropylamino-1,3,5-triazine) as a source of nitrogen was isolated from a corn field soil that has been previously treated with the herbicide. This strain was purified and acclimatized to atrazine at a higher level in the laboratory. A supplemented N was required to trigger the reaction. Atrazine was degraded at a faster rate in inoculated mineral salt medium (MSM) than non-inoculated MSM. Within 20 days, nearly 34% of the atrazine was degraded in inoculated medium while only 2% of the herbicide was degraded in non-inoculated medium. Degradation of atrazine by the isolated fungal strain was also studied in sterile and non-sterile soil to determine the compatibility of the isolated strain with native microorganisms in soil. The degradation of atrazine was found to be more in inoculated sterile soil than in inoculated non-sterile soil. Cell free extract (CFE) of fungal mycelium degraded about 50% of the atrazine in buffer in 96 hours compared to the control. Four atrazine metabolites were isolated and characterized by LCMS. On the basis of morphological parameters the isolate was identified as Penicillium species. Results indicated that the microorganism may be useful for remediation of atrazine-contaminated soil.  相似文献   

15.
Crude enzyme from a soil fungus, Aspergillus flavus, was isolated from a field soil following repeated applications of metolachlor [2-Chloro-N-(methoxy-1-methylethyl)-2'-ethyl-6'-methyl acetanilide]. Metolachlor hydrolysis by the crude enzyme extract was determined by enzyme assay. The tests were performed in phosphate buffer, pH 7.5, and the reaction was carried out at two herbicide concentrations (20 and 100 microg mL(-1)) and two crude extract volumes (0.2 and 0.5 mL of the homogenized crude extract mixture). The rate of metolachlor degradation was found faster in samples containing higher volume of crude extract, (T(1/2), 5.7 h) for both concentrations of the herbicide. The activities of enzymes responsible for dechlorination coupled with hydroxylation, N-dealkylation, and breaking of amide linkage were found responsible in the degradation.  相似文献   

16.
Munier-Lamy C  Borde O 《Chemosphere》2000,41(7):1029-1035
The effect of flutriafol on the cellulose decomposition was studied in the laboratory as a dose-response experiment using a trade marked formulation. Cellulose degradation rates were determined by the weight loss from cellulose filter disks buried in soil samples and by the CO2 evolved during batch incubation experiments. To amounts recommended for field applications and ten-fold these dosages, flutriafol did not affect the cellulose decomposition ability of the soil-microflora. Highest dosages provoked an initial inhibitory effect, followed by a stimulation in cellulolytic activity. Possible reasons for the dose-response relationship were changes in the soil microflora in favour of bacteria, indicating the importance of the persistence and repeated applications of flutriafol.  相似文献   

17.
Hydrolytic degradation of azimsulfuron, a sulfonylurea herbicide   总被引:1,自引:0,他引:1  
The chemical degradation of the herbicide azimsulfuron was investigated in aqueous solutions at different pH values. The hydrolysis rate, determined by HPLC analyses, was pH dependent and was much faster in acidic than in neutral or weakly basic conditions. The metabolites formed at different pH values were compared with standards when possible or isolated and identified using ESI-LC-MS/MS, (1)H NMR and (13)C NMR. The two main products of hydrolysis in mild acidic solution were identified as 2-amino-4,6-dimethoxy-pyrimidine and 2-methyl-4-(2-methyl-2H-tetrazol-5-yl)-2H-pyrazole-3-sulfonamide, both produced as a result of the sulfonylurea bridge cleavage. Under basic conditions, a new product, a substituted 2-pyrimidinamine, deriving from the contraction of the sulfonylurea bridge, was isolated and completely characterized for the first time.  相似文献   

18.
The herbicide 2,4-D is often applied as a tank mixture in combination with other herbicide products. However, current information on 2,4-D sorption by soil is largely based on batch-equilibrium experiments without considering the competition of other herbicides for sorption sites by soil. This study quantified the effect of the herbicide propanil on the sorption of 2,4-D in soil. Results indicated that propanil competed with 2,4-D for sorption sites, particularly in soils with an organic carbon content greater than 3.6%. The decrease in 2,4-D sorption by soil, as a result of propanil competition, was most notably for herbicide concentrations that are typical of recommended field rates. We conclude that herbicide co-applications on agricultural fields have the potential to increase the mobility of herbicides in soil.  相似文献   

19.
Herbicide leaching through soil into groundwater greatly depends upon sorption-desorption and degradation phenomena. Batch adsorption, desorption and degradation experiments were performed with acidic herbicide MCPA and three soil types collected from their respective soil horizons. MCPA was found to be weakly sorbed by the soils with Freundlich coefficient values ranging from 0.37 to 1.03 mg1−1/n kg−1 L1/n. It was shown that MCPA sorption positively correlated with soil organic carbon content, humic and fulvic acid carbon contents, and negatively with soil pH. The importance of soil organic matter in MCPA sorption by soils was also confirmed by performing sorption experiments after soil organic matter removal. MCPA sorption in these treated soils decreased by 37-100% compared to the original soils. A relatively large part of the sorbed MCPA was released from soils into aqueous solution after four successive desorption steps, although some hysteresis occurred during desorption of MCPA from all soils. Both sorption and desorption were depth-dependent, the A soil horizons exhibited higher retention capacity of the herbicide than B or C soil horizons. Generally, MCPA sorption decreased in the presence of phosphate and low molecular weight organic acids. Degradation of MCPA was faster in the A soil horizons than the corresponding B or C soil horizons with half-life values ranging from 4.9 to 9.6 d in topsoils and from 11.6 to 23.4 d in subsoils.  相似文献   

20.
Sulfonylurea herbicides are widely used on a wide range of crops to control weeds. Chevalier® OnePass herbicide is a sulfonylurea herbicide intensively used on cereal crops in Algeria. No information is yet available about the biodegradation of this herbicide or about its effect on the bacterial community of the soil. In this study, we collected an untreated soil sample, and another sample was collected 1 month after treatment with the herbicide. Using a high-resolution melting DNA technique, we have shown that treatment with Chevalier® OnePass herbicide only slightly changed the composition of the whole bacterial community. Two hundred fifty-nine macroscopically different clones were isolated from the untreated and treated soil under both aerobic and microaerobic conditions. The strains were identified by sequencing a conserved fragment of the 16S rRNA gene. The phylogenetic trees constructed using the sequencing results confirmed that the bacterial populations were similar in the two soil samples. Species belonging to the Lysinibacillus, Bacillus, Pseudomonas, and Paenibacillus genera were the most abundant species found. Surprisingly, we found that among ten strains isolated from the treated soil, only six were resistant to the herbicide. Furthermore, bacterial overlay experiments showed that only one resistant strain (related to Stenotrophomonas maltophilia) allowed all the sensitive strains tested to grow in the presence of the herbicide. The other resistant strains allowed only certain sensitive strains to grow. On the basis of these results, we propose that there must be several biodegradation pathways for this sulfonylurea herbicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号