首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of several factors on the assimilation efficiency (AE) of Cd and Zn from food in the common carp (Cyprinus carpio) was studied. Tested prey species were midge larvae (Chironomus riparius), zebra mussels (Dreissena polymorpha) and oligochaetes (Tubifex tubifex). The Cd load of the larvae did not affect the Cd AE in the carp. The Zn AE however, was negatively related to the Zn load of the prey. Food quantity and starvation of the carp did not significantly affect the Cd AE. For Zn, a significant decrease in AE was found when carp were fed ad libitum. Decreasing the temperature from 25 degrees C to 15 degrees C did not influence the Cd AE, while for Zn a significant decrease of the AE was measured. Carp assimilated Cd from both zebra mussels and oligochaetes with a significantly lower efficiency in comparison to the midge larvae, although Zn AEs was prey independent.  相似文献   

2.
This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal.  相似文献   

3.
Experiments were conducted to determine the kinetics and relative importance of aqueous and dietary uptake of cadmium by the freshwater isopod Asellus aquaticus (L.). Test animals were exposed during 30 days to aqueous Cd in a continuous flow system (exposure levels: 0.2 - 10 microg litre(-1)) and kept on a diet of previously contaminated Elodea sp. (range of Cd concentrations: 2-350 microg g(-1), dry weight). Preceding semi-static experiments on dosage-control of the dietary factor revealed a rapid uptake of Cd by Elodea, with relatively high concentration factors (CF), which ranged from 4.8 to 5.5 (dry weight log (CF) after 16 days). For Asellus uptake from water appeared to be the predominant route. Highly significant bioconcentration of cadmium from water was observed in the animals, even at exposure levels below 1.0 microg litre(-1). In the various treatments, direct uptake from water accounted for 50-98% of the body burdens after 30 days exposure. The experimental results were described with a first order one-compartment bioaccumulation model. Model parameter estimates (mean +/- standard error) were obtained for rate constant of uptake (560 +/- 110 day(-1)), rate constant of elimination (0.032 +/- 0.017 day(-1)) and assimilation efficiency of Cd uptake from food (1.1 +/- 0.7%). The (dry weight) bioconcentration factor (BCF) and bioaccumulation factor (BAF) for extrapolated steady state conditions were estimated at 18 000 (BCF) and 0.08 (BAF). Experiments conducted at two different pH levels (5.9 versus 7.6) revealed no significant effects of pH on the uptake of aqueous Cd by the isopods. The results are discussed in relation to their potential significance to the field situation.  相似文献   

4.
Tobacco is able to accumulate cadmium and reduction of cadmium content can reduce health hazards to smokers. Soil pH and form of N fertilizers are among the factors affecting Cd uptake by tobacco. This hypothesis was tested in an acid soil in northern Greece by a four year field experiment. The variability of Cd uptake by tobacco was attributed to the variation of soil Cd availability as affected by soil pH. Liming with 3000 kg Ca(OH)(2) ha(-1) increased soil pH by 0.8 units and decreased extractable with DTPA soil and leaf Cd by 40% and 35%, respectively. The ammonium fertilizer caused the opposite, but weaker, effects. Liming reduced soil Cd more in the ammonium treatment than in nitrate or combined N treatments. The year of cultivation strongly affected soil and leaf Cd. Four years after tobacco cultivation, soil pH was reduced by 0.5 units, whereas soil and leaf Cd reduction was more than 60% in the limed treatments. Liming affected Cd uptake only in the first three years of cultivation.  相似文献   

5.
We studied the compartmentalization of cadmium and zinc in the oligochaete Tubifex tubifex. The subcellular distribution was followed over time and levels of metallothionein-like proteins were measured. The impact of the speciation on the trophic transfer was studied by calculating the assimilation efficiencies of metals from Tubificidae fed to carp. It was found that carp were able to assimilate 9.8% of the cadmium. The expected assimilated amount of cadmium, based on the subcellular fractions which are thought to be trophically available, is however 72%. The zinc assimilation results suggest that the debris fraction is at least partially available to predators. Differential centrifugation techniques provide information about the tissue compartmentalization in aquatic organisms but it is not straightforward to directly link internal speciation in prey items to the actual assimilation in the predator. The possible impact that the compartmentalization of cadmium in T. tubifex will have on the toxicity to the organism is also discussed.  相似文献   

6.
Environmental hazard of heavy metals in soils depends to a large extent on their bioavailability. The approach used in this study enables the determination of bioavailable metals in solid-phase samples. Two recombinant bacterial sensors, one responding specifically to cadmium and the other to lead and cadmium by increase of luminescence (firefly luciferase was used as a reporter) were used to determine the bioavailability of these metals in soil-water suspensions (a contact assay) and respective particle-free extracts. Fifty agricultural soils sampled near zinc and lead smelters in the Northern France containing up to (mg/kg) 20.1 of Cd, 1050 of Pb and 1390 of Zn were analysed. As the soil matrix interferes with the assay, recombinant luminescent control bacteria lacking the metal recognizing protein and corresponding promoter (thus, being not metal-inducible) but otherwise comparable to the sensor bacteria (the same host bacterium and plasmid encoding luciferase) were used in parallel to take into account the possible quenching and/or stimulating effects of the sample on the luminescence of the sensor bacteria. Both, chemical and sensor analysis showed that only microg/l levels of metals were extracted from the soil into the water phase (0.1% of the total Cd, 0.07% of Pb and 0.5% of Zn). However, 115-fold more Cd and 40-fold more Pb proved bioavailable if the sensor bacteria were incubated in soil suspensions (i.e., in the contact assay). The bioavailability of metals in different soils varied (depending probably on soil type) ranging from 0.5% to 56% for cadmium and from 0.2% to 8.6% for lead.  相似文献   

7.
To examine the Cd, Hg, Ag, and Zn accumulation in the green mussel Perna viridis affected by previous exposure to Cu, Ag, or Zn, the dietary metal assimilation efficiency (AE) and the uptake rate from the dissolved phase were quantified. The mussel's filtration rate, metallothionein (MT) concentration, and metal tissue burden as well as the metal subcellular partitioning were also determined to illustrate the potential mechanisms underlying the influences caused by one metal pre-exposure on the bioaccumulation of the other metals. The green mussels were pre-exposed to Cu, Ag, or Zn for different periods (1-5 weeks) and the bioaccumulation of Cd, Hg, Ag, and Zn were concurrently determined. Pre-exposure to the three metals did not result in any significant increase in MT concentration in the green mussels. Ag concentration in the insoluble fraction increased with increasing Ag exposure period and Ag ambient concentration. Our data indicated that Cd assimilation were not influenced by the mussel's pre-exposure to the three metals (Cu, Ag, and Zn), but its dissolved uptake was depressed by Ag and Zn exposure. Although Hg assimilation from food was not affected by the metal pre-exposure, its influx rate from solution was generally inhibited by the exposure to Cu, Ag, and Zn. Ag bioaccumulation was affected the most obviously, in which its AE increased with increasing Ag tissue concentration, and its dissolved uptake decreased with increasing tissue concentrations of Ag and Cu. As an essential metal, Zn bioaccumulation remained relatively stable following the metal pre-exposure, suggesting the regulatory ability of Zn uptake in the mussels. Zn AE was not affected by metal pre-exposure, but its dissolved uptake was depressed by Ag and Zn pre-exposure. All these results indicated that the influences of one metal pre-exposure on the bioaccumulation of other metals were metal-specific due to the differential binding and toxicity of metals to the mussels. Such factors should be considered in using metal concentrations in mussel's soft tissues to evaluate the metal pollution in coastal waters.  相似文献   

8.
Zödl B  Wittmann KJ 《Chemosphere》2003,52(7):1095-1103
In order to obtain basic information for designing standardized test preparation methods, the heavy metals Zn, Cu, Cd and Pb were measured in gastropods (Xerolenta obvia), oligochaetes (Lumbricus terrestris), isopods (Armadillidium vulgare, Trachelipus rathkei) and carabids (Harpalus rubripes, Calathus fuscipes) using different sampling methods and different modes of sample treatment. In some of the experiments, higher Zn, Cd and Pb, and lower Cu-contents were observed in isopods and carabids trapped with formalin-pitfalls compared to manually collected specimens (which were allowed to defecate). Defecation had marked effects on the levels of all four metals investigated in oligochaetes, and on Cd and Pb in gastropods and isopods. Cellulose was fed as an accelerator of gut passage and showed a significant effect on the Pb concentration in the soft body of gastropods. Deionate-washed isopods (A. vulgare) showed higher Cd concentrations than ultrasonic-cleaned individuals. No marked differences were observed between heat-dried and freeze-dried isopods. Carabids showed strong sex-specific differences in metal concentrations. Based on these and previous results, invertebrates should be: collected in vivo, allowed to defecate, be freeze-fixed and (at least in arthropods) ultrasonic-cleaned, determined to species level and in certain groups (carabids) also to sex, and then be sized or sorted by size (age) before further preparation and analysis. If any of these treatments is impractical, comparable sampling and preparation methods are recommended as a minimum requirement in order to avoid bias in the results and/or interpretation.  相似文献   

9.
Accumulation of Zn, Cu, Pb and Cd was studied in snails fed for 120 days on diets contaminated with each metal separately and with all metals mixed together. The concentrations of Zn in food were in the range 39 to 12 200 mg kg(-1), Cu 9-1640 mg kg(-1), Pb 0.4-12 700 mg kg(-1), and Cd 0.16-146 mg kg(-1) on a dry weight basis. At the highest concentrations of all metals the consumption rates decreased significantly. For the remaining concentrations, Zn and Cu were accumulated in soft tissue in proportion to their concentrations in food. The lowest treatments of Pb and Cd did not cause any increase in soft tissue concentrations of these metals but at average treatments, a clear increase was observed. Copper was accumulated especially efficiently, exceeding concentrations in food throughout the whole range of treatments. Except for the lower end of experimental treatments, Zn was accumulated approximately in direct proportion to its concentration in the diet. Lead was the most efficiently regulated metal, with soft tissue concentrations always substantially lower than in food. Approximately 60% of Zn, 90% of Cu, 43% of Pb and 68% of Cd on average was assimilated from food. The assimilation efficiency of food alone was ca 74%. The concentrations of metals in shells increased significantly with exposure, but (with one exception) the concentrations in shells did not exceed 5% of those found in soft tissue. We argue that snails are more important as agents of food-chain transport of Cu and Cd, than of Zn or Pb. Our results indicate also that snails are not able to deposit significant quantities of metals in their shells, at least during the time scale of our laboratory experiment.  相似文献   

10.
11.
巯基化合物在万寿菊镉解毒中的作用   总被引:2,自引:0,他引:2  
采用水培实验方法研究了万寿菊体内镉积累和解毒与巯基化合物含量的关系。万寿菊植株分别在镉浓度为0、0.1、0.5、2和8 mg/L的营养液中暴露7 d,测定了根、茎、叶中镉、非蛋白巯基(NPT)、半胱氨酸(Cys)、γ-谷氨酰半胱氨酸(γ-EC)、谷胱甘肽(GSH)和植物络合素(PCs)的含量。植物根、茎、叶中镉含量都随着镉暴露浓度的增加而增加。当溶液中镉浓度较低(0.1~2 mg/L)时,茎叶中NPT、PCs、Cys和γ-EC含量随着镉浓度增加而增大;当镉浓度较高(8 mg/L)时,茎叶中PCs含量迅速降低,GSH含量大幅度增高。在根部,这些巯基化合物的含量几乎不受镉处理影响,且含量较低。以上研究结果表明:PCs在万寿菊镉的解毒机制中发挥一定的作用,暴露于高浓度的镉,GSH比PCs起着更为重要的解毒作用。  相似文献   

12.
Despite the great concerns about dioxins in the marine environments, the biokinetics and bioaccumulation of these compounds in marine organisms remains little known. Using radioactive tracers the aqueous uptake, dietary assimilation efficiency, and elimination of dioxins were measured in marine phytoplankton, copepods and seabream. The calculated uptake rate constant of dioxins decreased with increasing trophic levels, whereas the dietary assimilation efficiency (AE) was 28.5-57.6% in the copepods and 36.6-70.2% in the fish. The dietary AE was highly dependent on the food concentrations and food type. The elimination rate constant of dioxin in the copepods varied with different exposure pathways as well as food concentration and food type. Biokinetic calculation showed that dietary accumulation was the predominant pathway for dioxin accumulation in marine copepods and fish. Aqueous uptake can be an important pathway only when the bioconcentration of dioxins in the phytoplankton was low.  相似文献   

13.
Populations of American black ducks have declined and it has been hypothesized that wetland acidification, which can alter food quality by increasing availability of cadmium and decreasing that of calcium, may have contributed. We tested whether low-level cadmium and reduced calcium intake affect tissue cadmium concentrations and behaviour of captive black ducks. Adults received diets that mimicked cadmium and calcium concentrations in invertebrate prey from acid and from circumneutral wetlands for three spring and summer months in 1991 and 1992. Behaviours were monitored both when birds were fed experimental diets and control (commercial) diets. Cadmium in kidneys and liver differed significantly among groups and low calcium facilitated cadmium uptake. After two breeding seasons, levels of accumulated Cd were not lethal. However, birds that received Cd were significantly more active than control birds. Increased activity may have implications for survival of birds in the wild.  相似文献   

14.
Larval stages of bivalve molluscs are highly sensitive to pollutants. Oysters from a hatchery from Normandy (English Channel) were induced to spawn, and fertilized eggs were exposed to copper or cadmium for 24 h. Metal accumulation (from 0.125 to 5 microg Cu L(-1) and from 25 to 200 microg Cd L(-1)) and MT concentrations were measured in larvae. Compared to controls, larvae accumulated copper and cadmium with an increase in MT concentrations particularly with cadmium (i.e. 130.96 ng Cu (mg protein)(-1) and 12.69 microg MT (mg protein)(-1) at 1 microg Cu L(-1) versus 23.19 ng Cu (mg protein)(-1) and 8.92 microg MT (mg protein)(-1) in control larvae; 334.3 ng Cd (mg protein)(-1) and 11.70 microg MT (mg protein)(-1) at 200 microg Cd L(-1) versus 0.87 ng Cd (mg protein)(-1) and 4.60 microg MT (mg protein)(-1) in control larvae). Larvae were also obtained from oysters of a clean area (Arcachon Bay) and a polluted zone (Bidassoa estuary) and exposed to copper in the laboratory, their MT concentration was measured as well as biomarkers of oxidative stress. Biomarker responses and sensitivity to copper for the larvae from Arcachon oysters were higher than for those from Bidassoa.  相似文献   

15.
Availability of cadmium to Synechocystis aquatilis (estimated by 109Cd sorption and cadmium toxicity-14C method) in solutions containing cadmium and complexing (KCl) or non-complexing (KNO3) salts, in the range of 0-0.5 m was investigated. Both cadmium surface adsorption and transport into the cells were lower in solutions containing cadmium chloride complexes (CdCl+, CdCl2, CdCl3-) than in those containing cadmium in the form of Cd2+. Also, cadmium toxicity in solutions of higher KCl concentrations, in which CdCl+ and CdCl2 forms predominated, was significantly limited.  相似文献   

16.
Juvenile yellow perch (Perca flavescens) were caught in a reference lake and transplanted to cages held within a lake impacted by mining activities, with elevated levels of aqueous bioavailable copper (Cu(2+)), zinc (Zn(2+)) and cadmium (Cd(2+)). Fish were sampled from the cages over 70 d and changes in metal concentrations were followed over time in the gills, gut, liver and kidney. In addition, the hepatic sub-cellular partitioning of the three metals was determined by differential centrifugation of liver samples, yielding the following fractions: cellular debris; organelles; heat-denaturable proteins (HDP); and heat-stable proteins (HSP) (including metallothionein). In transplanted fish, Cd concentrations increased in all the organs sampled, whereas Cu mainly increased in the gills, gut and liver but not the kidney; some slight accumulation of Zn occurred in the kidneys and gills of the transplanted fish. The sub-cellular partitioning results demonstrated that metal-handling strategies in juvenile yellow perch differed among metals. Cellular sequestration in the HSP fraction was an important strategy used by these fish in response to increased ambient Cd. Accumulation of Zn was not seen in the organs examined, indicating that transplanted perch were able to either reduce influx, or increase efflux rates of this metal. The response of yellow perch to elevated ambient Cu appeared to combine the strategies used for Cd and Zn, as both cellular sequestration and reduced accumulation were observed in transplanted fish.  相似文献   

17.
Metals have been reported to inhibit organic pollutant biodegradation; however, widely varying degrees and patterns of inhibition have been reported. To investigate the roles of medium composition and metal bioavailability on these different degrees and patterns of inhibition, we assessed the impact of cadmium on naphthalene biodegradation by a newly isolated strain of Comamonas testosteroni in three chemically-defined minimal salts media (MSM): Tris-buffered MSM, PIPES-buffered MSM, and Bushnell-Haas medium. Cadmium (total concentrations of 100 and 500 microM) inhibited biodegradation in each medium. Degrees of inhibition were different in each medium. Cadmium was most inhibitory in PIPES-buffered MSM and least inhibitory in Bushnell-Haas. For example, in Bushnell-Haas medium, 100 microM cadmium reduced the cell yield more than 4-fold compared to controls not containing cadmium. The same concentration of cadmium completely inhibited growth in PIPES-buffered MSM. No difference in inhibition was observed in any medium when cadmium was added 24 h before inoculation rather than when added within one minute of inoculation. Two patterns of inhibition were observed. Inhibition occurred in a dose dependent pattern in Tris- and PIPES-buffered MSM and in a non-dose dependent pattern in Bushnell-Haas. Specifically, in Bushnell-Haas, 100 microM total cadmium extended the lag phase by 23+/-8.66 h, whereas 500 microM did not extend the lag phase. Soluble, ionic cadmium (Cd2+) concentrations were measured and modeled in each medium to assess cadmium bioavailability. In media containing 500 microM total cadmium, bioavailability was highest in Tris- and PIPES-buffered MSM and lowest in Bushnell-Haas. In Bushnell-Haas, cadmium bioavailability was initially higher in the 500 microM treatments (196+/-21.2 microM) than in the 100 microM treatments (78.2+/-2.04 microM); however, after 12 h, bioavailability was higher in the 100 microM treatments (56.4+/-24.8 micro) than the 500 microM treatments (13.3+/-1.2 microM). These data suggest that the type of medium determines the degrees and patterns by which metals inhibit biodegradation and emphasize the importance of coupling metal toxicity and bioavailability data.  相似文献   

18.
Soil testing procedures to address metals bioavailability currently use air-dried soil rewetted almost until saturation. Such practices may influence the redox state of soil and the related dynamics of metals. To assess this potential impact, a metal-contaminated soil was air-dried and rewetted to 90% water holding capacity. We monitored over a 21-day incubation period the temporal changes of soil redox potential and solution Cd concentration (either total or free). Other physico-chemical parameters were followed notably pH, ionic strength (I) and the concentrations of NO(3)(-), Mn, Fe and SO(4)(2-) in solution. Soil redox potential showed the progressive establishment of strong reducing conditions in soil, in agreement with the temporal changes of NO(3)(-), Mn, Fe and SO(4)(2-) concentrations. It decreased by 13 pe units over the culture period leading to sulphate-reducing conditions (pe<-3) within only 21days. Solution Cd concentration increased transitorily over the first 100-150h of incubation (2-fold increase) in relation with the parallel increase in the concentration of competing cations for adsorption (Ca, Mg). It steeply decreased over the last 300h of incubation (30-fold decrease) as a result of Cd precipitation as Cd sulphides. This biphasic evolution of Cd dynamics was related to the temporal changes of Cd resupply from the solid phase. Using the technique of DGT we described the kinetics of Cd resupply over time and needed to invoke the existence of two pools of Cd.  相似文献   

19.
To better understand the fate of metals in the environment, numerous parameters must be studied, such as the soil properties and the different sources of contamination for the organisms. Among bioindicators of soil quality, the garden snail (Cantareus aspersus) integrates multiple sources (e.g. soil, plant) and routes (e.g. digestive, cutaneous) of contamination. However, the contribution of each source on metal bioavailability and how soil properties influence these contributions have never been studied when considering the dynamic process of bioavailability. Using accumulation kinetics, this study showed that the main assimilation source of Cd was lettuce (68 %), whereas the main source of Pb was the soil (90 %). The plant contribution increased in response to a 2-unit soil pH decrease. Unexpectedly, an increase in the soil contribution to metal assimilation accompanied an increase in the organic matter (OM) content of the soil. For both metals, no significant excretion and influence of source on excretion have been modelled either during exposure or depuration. This study highlights how the contribution of different sources to metal bioavailability changes based on changes in soil parameters, such as pH and OM, and the complexity of the processes that modulate metal bioavailability.  相似文献   

20.
The proton and Cd binding capacities of microbially produced exopolysaccharides, EPS, were quantified by the determination of stability constants and the concentration of complexing sites using H(+) or Cd(2+) selective electrodes in dynamic titrations. The influence of ionic strength, pH and the Cd to EPS ratio was evaluated over large concentration ranges. The applicability of the non-ideal competitive adsorption isotherm combined with a Donnan electrostatics approach was tested with respect to the EPS. Proton and cadmium binding data were compared with literature data examining other ubiquitous environmental ligands including humic substances, alginate, bacteria, etc. Subsequent modelling of Cd speciation in aquatic (fresh and marine waters) and soil systems suggested that the exopolysaccharides would play non-negligible role, under most conditions. The quantitative information provided in this paper thus represents an important advance in our understanding of Cd transport, bioavailability and impact in aquatic and terrestrial systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号