首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The San Francisco Bay Region of the California Regional Water Quality Control Board (SFB CRWQCB) and the San Francisco District of the US Army Corps of Engineers (US ACOE) are looking for an expeditious means to determine whether regulated wetland projects produce ecologically valuable systems and remain in compliance with their permits (i.e. fulfill their legal requirements) until project completion. A study was therefore undertaken in which 20 compensatory wetland mitigation projects in the San Francisco Bay Region were reviewed and assessed for both permit compliance and habitat function, and this was done using a rapid assessment method adapted for this purpose. Thus, in addition to determining compliance and function, a further goal of this study was to test the efficacy of the assessment method, which, if useful, could be applied not only to mitigation projects, but also to restoration projects and natural wetland systems. Survey results suggest that most projects permitted 5 or more years ago are in compliance with their permit conditions and are realizing their intended habitat functions. The larger restoration sites or those situated between existing wetland sites tend to be more successful and offer more benefits to wildlife than the smaller isolated ones. These results are consistent with regulatory experience suggesting that economies of scale could be realized both with (1) large scale regional wetland restoration sites, through which efforts are combined to control invasive species and share costs, and (2) coordinated efforts by regulatory agencies to track project information and to monitor the increasing number and size of mitigation and restoration sites. In regard to the assessment methods, we find that their value lies in providing a consistent protocol for evaluations, but that the ultimate assessment will rely heavily on professional judgment, regulatory experience, and the garnering of pre-assessment information.  相似文献   

2.
Selenium (Se) concentrations exceeding ecological guidelines for sediments and suspended particulate matter (SPM) have been observed in the northern reach of the San Francisco Bay estuary. Longterm availability of elevated Se in wetland sediments depends in part on the fluxes controlling Se distribution. The relative contribution of sedimentary vs. post-depositional Se fluxes in two San Francisco Bay intertidal wetlands was estimated. Selenium concentrations on surface wetland sediments were compared with levels on SPM, and with previously established background levels in San Francisco Bay sediments. Sediment Se fluxes to the wetlands were measured directly using sediment traps. Although dissolved Se concentrations are higher than particulate Se concentrations in San Francisco Bay water, sediment input into the system provides the major flux of Se. Strong correlation between Se and C on SPM (r2 = 0.81) indicates the importance of organic particulate deposition. Dependence on sediment texture was qualitatively established by measuring Se on particle-size separates. Normalization to Al showed that 65% of Se spatial variability is related to sediment texture. Selenium is further enriched in the marsh via post-depositional inputs, probably due to in situ adsorption from overlying water and chemical reduction. According to sediment flux measurements, enrichment in the marsh is equivalent to 20 to 25% of the particulate Se flux, thereby defining the marsh as a Se sink. These findings highlight the need for more intensive monitoring of SPM as the major source of Se to intertidal wetlands.  相似文献   

3.
Traditionally, wetland management strategies have focused on single familiar objectives, such as improving water quality, strengthening biodiversity, and providing flood control. Despite the relevant amount of studies focused on wetland creation or restoration with these and other objectives, still little is known on how to integrate objectives of wetland creation or restoration at different landscape scales. We have reviewed the literature to this aim, and based on the existing current knowledge, we propose a four step approach to take decisions in wetland creation or restoration planning. First, based on local needs and limitations we should elucidate what the wetland is needed for. Second, the scale at which wetland should be created or restored must be defined. Third, conflicts and compatibilities between creation or restoration objectives must then be carefully studied. Fourth, a creation or restoration strategy must be defined. The strategy can be either creating different unipurpose wetlands or multipurpose wetlands, or combinations of them at different landscape scales. In any case, in unipurpose wetland projects we recommend to pursue additional secondary objectives. Following these guidelines, restored and created wetlands would have more ecological functions, similar to natural wetlands, especially if spatial distribution in the landscape is considered. Restored and created wetlands could then provide an array of integrated environmental services adapted to local ecological and social needs.  相似文献   

4.
We studied the changes in wetland habitats and waterbird communities between the 1980s and the 2000s at Chongming Dongtan, a Ramsar site in the Yangtze River estuary, an ecologically important region. This region is an important stopover site for shorebirds along the East Asian–Australasian flyway and is extensively used by waterfowl. A net loss of 11% of the wetland area was estimated during study periods at Chongming Dongtan. The change was dependent on wetland types: while the area of artificial habitats such as paddy fields and aquacultural ponds more than doubled, more than 65% of natural habitats including sea bulrush (Scirpus mariqueter) and common reed (Phragmites australis) marshes were lost over the two decades. An exotic plant species introduced from North America, smooth cordgrass (Spartina alterniflora), occupied 30% of the vegetated intertidal zone by the 2000s. Although waterbird species richness did not change between the 1980s (110) and the 2000s (111), 13 species found in 1980s were replaced by 14 newly recorded species. Moreover, there were more species with declining trends (58) than with increasing trends (19). The population trends of species were affected by residential status and habitat types. Transients, wintering migrants, and habitat specialists were more likely to show declining trends compared to those breeding at Dongtan (including year-round and summer residents) and habitat generalists. Furthermore, species associated mainly with natural wetlands were more likely to decline than those associated mainly with artificial wetlands. These patterns suggest that the loss and change of wetland habitats at Chongming Dongtan adversely affected local population dynamics and might have contributed to the global decline of some waterbird species. Because Chongming Dongtan provides stopover and wintering habitats for many migratory waterbirds, protection and restoration of natural wetlands at Chongming Dongtan are urgently needed.  相似文献   

5.
Marsh creation is currently receiving wide attention in the United States as an important tool for mitigating the impacts of development in coastal wetlands. The perception that there is no net loss in valuable coastal wetlands when development is mitigated by the creation of man-made marshes can have a substantial impact on the permitting and decision-making processes. The effective result may be the trading of natural salt marshes for man-made marshes.Techniques for marsh creation were developed by the US Army Corps of Engineers to enhance and stabilize dredge spoil materials. Most research sponsored by the Corps has been directed at determining whether these goals have been accomplished. A survey of the research indicates that there is insufficient evidence to conclude that man-made marshes function like natural salt marshes or provide the important values of natural marshes. It is necessary, therefore, for decision-makers to understand the limitations of present knowledge about man-made marshes, realistically evaluate the trade-offs involved, and relegate mitigation to its proper role in the permitting process—post facto conditions imposed on developments that clearly meet state qualifications and policies.  相似文献   

6.
This paper examines causes and consequences of wetland losses in coastal Louisiana. Land loss is a cumulative impact, the result of many impacts both natural and artificial. Natural losses are caused by subsidence, decay of abandoned river deltas, waves, and storms. Artificial losses result from flood-control practices, impoundments, and dredging and subsequent erosion of artificial channels. Wetland loss also results from spoil disposal upon wetlands and land reclamation projects.Total land loss in Louisiana's coastal zone is at least 4,300 ha/year. Some wetlands are converted to spoil banks and other eco-systems so that wetland losses are probably two to three times higher. Annual wetland losses in the Barataria Bay basin are 2.6% of the wetland area. Human activities are the principal determinants of land loss. The present total wetland area directly lost because of canals may be close to 10% if spoil area is included. The interrelationship between hydrology, land, vegetation, substrate, subsidence, and sediment supply are complicated; however, hydrologic units with high canal density are generally associated with higher rates of land loss and the rate may be accelerating.Some cumulative impacts of land loss are increased saltwater intrusion, loss of capacity to buffer the impact of storms, and large additions of nutrients. One measure of the impact is that roughly $8–17 × 106 (U.S.A.) of fisheries products and services are lost annually in Louisiana.Viewed at the level of the hydrologic unit, land loss transcends differences in local vegetation, substrate, geology, and hydrology. Land management should therefore focus at that level of organization. Proper guideline recommendations require an appreciation of the long-term interrelations of the wetland estuarine system.  相似文献   

7.
The United States has lost about half its wetland acreage since European settlement, and the effectiveness of current wetland mitigation policies is often questioned. In most states, federal wetland laws are overseen by the U.S. Army Corps of Engineers, but Michigan administers these laws through the state's Department of Environmental Quality (MDEQ). Our research provides insight into the effectiveness of the state's implementation of these laws. We examined wetland mitigation permit files issued in Michigan's Upper Peninsula between 2003 and 2006 to assess compliance with key MDEQ policies. Forty-six percent of files were out of compliance with monitoring report requirements, and forty-nine percent lacked required conservation easement documents. We also conducted site assessments of select compensatory wetland projects to determine compliance with MDEQ invasive plant species performance standards. Fifty-five percent were out of compliance. We found no relationship between invasive species noncompliance and past site monitoring, age of mitigation site, or proximity to roads. However, we found wetland restoration projects far more likely to be compliant with performance standards than wetland creation projects. We suggest policy changes and agency actions that could increase compliance with wetland restoration and mitigation goals.  相似文献   

8.
ABSTRACT

The success of ecological restoration efforts is tightly coupled with the effectiveness of many U.S. environmental policies. Yet scholars have raised questions about the ability of restoration to produce intended results. We use a case study of tidal wetland restoration planning in Oregon to examine how neoliberal environmental governance exercises influence through a set of knowledge politics that produces subpar outcomes. We present three main findings: (1) restoration policies produce a restoration economy based on a conception of wetland as commodity (2) practitioners in this restoration economy exhibit competitive behavior resulting in a piecemeal rather than a landscape approach to restoration; and (3) limited monitoring prevents changes to existing policies. Practitioners offer insight into the challenge of treating wetlands as a commodity and call for more monitoring to challenge the assumptions of hegemonic knowledge practices that reinforce a neoliberal environmental governance regime. The divergent ideas of reflexive practitioners, though not yet manifest as action, show where changes to restoration governance might be possible.  相似文献   

9.
/ Investigation of a delta marsh restoration project proposed forthe Don River in Toronto, Ontario, underlines several concerns aboutconstructed wetland projects designed for water quality improvement andaquatic habitat enhancement. The Don is a highly urbanized river that hasundergone significant physiographic modifications and continually receives acomplex mixture of conventional, metallic, and organic contaminants frommultiple point and nonpoint sources. Rather than providing permanent removalof urban contaminants, wetland processes offer a limited capacity fortemporary storage of contaminant inputs, and potential reactions may actuallyproduce more toxic and/or bioavailable forms of some chemicals. Theseprocesses tend to result in the concentration of watershed contaminants inwetland vegetation and sediments. As the restored marsh would be availablefor spawning and feeding by aquatic fauna, the potential exists for chemicalbioconcentration and biomagnification through the aquatic community.Accordingly, wetland systems are not suited to the dual purposes of waterquality improvement and aquatic habitat enhancement. Upstream controls,including source reduction of contaminant inputs, are recommended asessential components of all constructed wetland projects.KEY WORDS: Constructed wetlands; Water quality; Ecological restoration;Don River  相似文献   

10.
Wang X  Yu J  Zhou D  Dong H  Li Y  Lin Q  Guan B  Wang Y 《Environmental management》2012,49(2):325-333
In this study, we compared ecological characteristics of wetland vegetation in a series of restoration projects that were carried out in the wetlands of Yellow River Delta. The investigated characteristics include plant composition structure, species diversity and community similarity in three kinds of Phragmites australis wetlands, i.e. restored P. australis wetlands (R1, R2, R3 and R4: restored in 2002, 2005, 2007 and 2009, respectively), natural P. australis wetland (N) and degraded P. australis wetland (D) to assess the process of wetlands restoration. The coverage of the R1 was 99%, which was similar to natural wetland. Among all studied wetlands, the highest and lowest stem density was observed in R1 and R2, respectively, Plant height and stem diameter show the same trend as N > R2 > R1 > R3 > D > R4. Species diversity of restored P. australis wetlands became closed to natural wetland. Both species richness and Shannon–Wiener index had similar tendency: increased first and then decreased with restored time. The highest species richness and species diversity were observed in R2, while the lowest values of those parameters were found in natural P. australis wetland. Similarity indexes between restored wetlands and natural wetland increased with the restoration time, but they were still less than 50%. The results indicate that the vegetation of P. australis wetlands has experienced a great improvement after several years’ restoration, and it is feasible to restored degraded P. australis wetlands by pouring fresh water into those wetlands in the Yellow River Delta. However, it is notable that costal degraded P. australis wetland in this region may take years to decades to reach the status of natural wetland.  相似文献   

11.
We inventoried wetland impoundments in the Louisiana, USA, coastal zone from the late 1900s to 1985. Historically, impoundment of wetlands for reclamation resulted in direct wetland loss after levees (dikes) failed and the impounded area was permanently flooded, reverting not to wetland, but to open-water habitat. A current management approach is to surround wetlands by levees and water control structures, a practice termed semi-impoundment marsh management. The purpose of this semi-impoundment is to retard saltwater intrusion and reduce water level fluctuations in an attempt to reduce wetland loss, which is a serious problem in coastal Louisiana. In order to quantify the total impounded area, we used historic data and high-altitude infrared photography to map coastal impoundments. Our goal was to produce a documented inventory of wetlands intentionally impounded by levees in the coastal zone of Louisiana in order to provide a benchmark for further research. We inventoried 370,658 ha within the coastal zone that had been intentionally impounded before 1985. This area is equal to about 30% of the total wetland area in the coastal zone. Of that total area, approximately 12% (43,000 ha) is no longer impounded (i.e., failed impoundments; levees no longer exist or only remnants remain). Of the 328,000 ha still impounded, about 65% (214,000 ha) is developed (agriculture, aquaculture, urban and industrial development, and contained spoil). The remaining 35% (114,000 ha) of impoundments are in an undeveloped state (wetland or openwater habitat). In December 1985, approximately 50% (78,000 ha) of the undeveloped and failed impoundments were open-water habitat. This inventory will allow researchers to monitor future change in land-water ratios that occur within impounded wetlands and thus to assess the utility of coastal wetland management using impoundments.  相似文献   

12.
The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.  相似文献   

13.
Coastal wetlands are a valuable resource to North Carolina, USA, representing important habitat for marine organisms and providing flood control areas and buffer zones from marine storms. An analysis of wetland development trends in coastal North Carolina from 1970 to 1984 was conducted using over 3000 files containing 15 years of permitting records. The total amount of coastal wetland area altered due to authorized development under the Coastal Area Management Act (CAMA), the Dredge and Fill Law, and Section 404 of the Federal Water Pollution Control Act is 1740 ha. This represents nearly 2% of the salt marsh wetlands along the coast of North Carolina. The number of permits issued steadily increased during the 1980s; however, the total amount of wetland loss decreased each year. A few large projects in the early 1970s accounted for nearly 70% of all wetland area developed during the 15-year period. Nearly two-thirds of all projects involving wetland destruction involved impacts on high marsh ecosystems. Bulkheads, canals, and filling activities made up 80% of the projects requiring permits; 62% of the permits were issued to private landowners, but this group accounted for only 16% of the losses of wetland area. Utility companies, which accounted for less than 1% of the permits issued, were responsible for 46% of the permitted wetland loss during the 15-year study period. Future studies should address agriculture and forestry practices which are exempt under CAMA laws and therefore their effects on wetland alteration have not been quantified.  相似文献   

14.
Data from a probability sample were used to estimate wetland and stream mitigation success from 2007 to 2009 across North Carolina (NC). “Success” was defined as whether the mitigation site met regulatory requirements in place at the time of construction. Analytical results were weighted by both component counts and mitigation size. Overall mitigation success (including preservation) was estimated at 74 % (SE = 3 %) for wetlands and 75 % (SE = 4 %) for streams in NC. Compared to the results of previous studies, wetland mitigation success rates had increased since the mid-1990s. Differences between mitigation providers (mitigation banks, NC Ecosystem Enhancement Program’s design-bid-build and full-delivery programs, NC Department of Transportation and private permittee-responsible mitigation) were generally not significant although permittee-responsible mitigation yielded higher success rates in certain circumstances. Both wetland and stream preservation showed high rates of success and the stream enhancement success rate was significantly higher than that of stream restoration. Additional statistically significant differences when mitigation size was considered included: (1) the Piedmont yielded a lower stream mitigation success rate than other areas of the state, and (2) recently constructed wetland mitigation projects demonstrated a lower success rate than those built prior to 2002. Opportunities for improvement exist in the areas of regulatory record-keeping, understanding the relationship between post-construction establishment and long-term ecological trajectories of stream and wetland restoration projects, incorporation of numeric ecological metrics into mitigation monitoring and success criteria, and adaptation of stream mitigation designs to achieve greater success in the Piedmont.  相似文献   

15.
Wetlands are attractive to vertebrates because of their abundant nutrient resources and habitat diversity. Because they are conspicuous, vertebrates commonly are used as indicators of changes in wetlands produced by environmental impacts. Such impacts take place at the landscape level where extensive areas are lost; at the wetland complex level where some (usually small) units of a closely spaced group of wetlands are drained or modified; or at the level of the individual wetland through modification or fragmentation that impacts its habitat value. Vertebrates utilize habitats differently according to age, sex, geographic location, and season, and habitat evaluations based on isolated observations can be biased. Current wetland evaluation systems incorporate wildlife habitat as a major feature, and the habitat evaluation procedure focuses only on habitat. Several approaches for estimating bird habitat losses are derived from population curves based on natural and experimentally induced population fluctuations. Additional research needs and experimental approaches are identified for addressing cumulative impacts on wildlife habitat values.  相似文献   

16.
Both permit requirements and ecological assessments have been used to evaluate mitigation success. This analysis combines these two approaches to evaluate mitigation required under Section 404 of the United States Clean Water Act (CWA) and Section 10 of the Rivers and Harbors Act, which allow developers to provide compensatory mitigation for unavoidable impacts to wetlands. This study reviewed permit files and conducted field assessments of mitigation sites to evaluate the effectiveness of mitigation required by the US Army Corps of Engineers for all permits issued in Orange County, California from 1979 through 1993. The 535 permit actions approved during this period allowed 157 ha of impacts. Mitigation was required on 70 of these actions, with 152 ha of enhanced, restored, and created habitat required for 136 ha of impacts. In 15 permit actions, no mitigation project was constructed, but in only two cases was the originally permitted project built; the two cases resulted in an unmitigated loss of 1.6 ha. Of the remaining 55 sites, 55% were successful at meeting the permit conditions while 11% failed to do so. Based on a qualitative assessment of habitat quality, only 16% of the sites could be considered successful and 26% were considered failures. Thus, of the 126 ha of habitat lost due to the 55 projects, only 26 ha of mitigation was considered successful. The low success rate was not due to poor enforcement, although nearly half of the projects did not comply with all permit conditions. Mitigation success could best be improved by requiring mitigation plans to have performance standards based on habitat functions.  相似文献   

17.
To test the effectiveness of the 404 permit program in preventing a net loss of wetland resources, 75 Section 404 projects permitted in the years 1987–1989 and located in a portion of southern California were evaluated. From this group of projects, 80.47 ha of wetlands were affected by Section 404 permits and the Army Corps of Engineers required 111.62 ha of wetland mitigation. To verify the successful completion of each mitigation project, all 75 project sites were visited and evaluated based on the amount of dead vegetation, growth and coverage, and the number of invasive species. Based on the field verification results, the actual amount of completed mitigation area was 77.33 ha, resulting in a net loss of 3.14 ha of wetland resources in the years 1987–1989. By comparing the types of wetlands lost to the types of wetlands mitigated, it is apparent that, in particular, freshwater wetlands are experiencing a disproportionately greater loss of area and that riparian woodland wetlands are most often used in mitigation efforts. The net result of these accumulated actions is an overall substitution of wetland types throughout the region. Results also indicate that, typically, large-scale mitigation projects are more successful compared to smaller projects and that successful compliance efforts are not evenly distributed throughout the region. We recommend that better monitoring, mitigation in-kind, mitigation banking, and planning on a regional or watershed scale could greatly improve the effectiveness of the Section 404 permitting program.  相似文献   

18.
Twenty-three Section 404 permits in central Pennsylvania (covering a wetland age range of 1–14 years) were examined to determine the type of mitigation wetland permitted, how the sites were built, and what success criteria were used for evaluation. Most permits allowed for mitigation out-of-kind, either vegetatively or through hydrogeomorphic class. The mitigation process has resulted in a shift from impacted wetlands dominated by woody species to less vegetated mitigation wetlands, a trend that appears to be occurring nationwide. An estimate of the percent cover of emergent vegetation was the only success criterion specified in the majority of permits. About 60% of the mitigation wetlands were judged as meeting their originally defined success criteria, some after more than 10 years. The permit process appears to have resulted in a net gain of almost 0.05 ha of wetlands per mitigation project. However, due to the replacement of emergent, scrub–shrub, and forested wetlands with open water ponds or uplands, mitigation practices probably led to a net loss of vegetated wetlands.  相似文献   

19.
Natural resource professionals are increasingly faced with the challenges of cultivating community-based support for wetland ecosystem restoration. While extensive research efforts have been directed toward understanding the biophysical dimensions of wetland conservation, the literature provides less guidance on how to successfully integrate community stakeholders into restoration planning. Therefore, this study explores the social construction of wetlands locally, and community members’ perceptions of the wetland restoration project in the Cache River Watershed of southern Illinois, where public and private agencies have partnered together to implement a large-scale wetlands restoration project. Findings illustrate that the wetlands hold diverse and significant meanings to community members and that community members’ criteria for project success may vary from those identified by project managers. The case study provides managers with strategies for building community commitment such as engaging local citizens in project planning, minimizing local burdens, maximizing local benefits, and reducing uncertainty.  相似文献   

20.
Hydrologic analysis for coastal wetland restoration   总被引:1,自引:0,他引:1  
Increasing recognition of the value of tidal wetlands has led to interest in how to restore and enhance areas that have been modified by human activity. The policy of recognizing restoration or enhancement as mitigation for destruction of other wetlands is controversial. Once policy questions are separated from technical questions, the steps in a successful project are straightforward A key element in the design of a successful project is quantitative hydraulic and hydrologic analysis of alternatives. Restoration projects at two sites in California used a combination of empirical geomorphic relationships, numerical modeling, and verification with field observations. Experience with these and other wetland restoration projects indicates the importance of longterm postproject monitoring, inspection, and maintenance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号