共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
建筑动力学作用对近地面短历时点源污染扩散的影响 总被引:1,自引:0,他引:1
利用一次示踪剂扩散外场实验获得的数据,对城市小区尺度模式USSM在模拟短历时点源方面的能力进行了验证,结果表明USSM能较为合理地描述城区短历时点源的扩散特征。利用USSM进行了3个案例的情景模拟分析,得出结论:1)街区内建筑群的平均高度越高,建筑群之间的流场越紊乱,并且越容易形成涡旋型环流,同时建筑群之间的风速会变得越来越小。除此之外,随着建筑群平均高度的增加,受建筑群影响风场出现扰动现象的范围越大。2)建筑群平均高度的增高会显著降低街区内的扩散能力,并且这种影响可能是非线性的,当街区由小高层建筑为主变为高层建筑为主时,污染物输送扩散效率会急剧下降。 相似文献
4.
基于2017年中国NO_2环境监测站点数据,综合运用全局莫兰指数(Global Moran's I)和热点分析(Getis-Ord G_i~*)方法对中国NO_2污染空间分布特征进行分析,并应用地理加权回归模型(GWR)探讨NO_2污染空间分布的社会经济影响因素。结果表明,(1)2017年,NO_2质量浓度年均值为31.28μg·m~(-3)。NO_2浓度分布在东西方向上大致以胡焕庸线为界,东部地区高于西部地区;南北方向上大致以长江为界,北部地区高于南部地区。(2)NO_2的季节变化规律为冬季秋季春季夏季。秋冬季节,NO_2高污染区由京津冀、河南、陕西等地扩大至山西中部、新疆东南部以及内蒙古的包头、呼和浩特、乌兰察布等地区,其高值与中高值区域面积占比之和分别为13.47%与24.00%,显著高于春夏季。(3)NO_2质量浓度存在以京津冀及周边河南、山西等地区为主的高值集聚,低值区主要分布在在云南、西藏、广西、海南一带。(4)利用地理加权回归模型(GWR)分析NO_2的空间分布与社会经济因素之间的关系,经计算调整后的R~2为0.74,该模型能解释NO_2空间分布的74%,拟合效果较好。在该模型中,城镇化率、森林覆盖率、第二产业占比以及人均电力消费量对NO_2质量浓度影响较大,城镇化率和第二产业占比与NO_2质量浓度呈正相关关系,森林覆盖率和人均电力消费量与NO_2质量浓度呈负相关关系。另外,城镇化率是对NO_2影响最显著的因素,城镇化率的提高对NO_2的影响程度由西向东逐渐递减。(5)NO_2与人均私家车保有量的相关系数r为0.403,华北、东南沿海、东三省及西部新疆、西藏地区,人均私家车保有量与NO_2空间分布情况基本一致,河南、陕西、湖北以及川渝地区则出现了人均私家车保有量与NO_2质量浓度不匹配的情况。 相似文献
5.
6.
《湖南环境生物职业技术学院学报》2020,(2)
利用2010年~2019年衡阳市城区大气硫酸盐化速率监测数据,研究分析硫酸盐化速率时间、空间污染特征,并采用秩相关系数法定量分析污染变化趋势.结果表明:大气硫酸盐化速率在2013年~2017年污染较重(相对于参考评价值),基本上呈倒V型变化,大多数年份下半年硫酸盐化速率要高于上半年,各功能区硫酸盐化速率污染特征表现为工业区交通区居民区商业区.各功能区及全市总体硫酸盐化速率污染呈减轻趋势,但是污染减轻趋势没有显著意义,变化趋势不明显. 相似文献
7.
我国地面臭氧污染及其生态环境效应 总被引:15,自引:1,他引:15
地面臭氧是一种重要的二次大气污染物.由于工业化和城市化的迅速发展,我国臭氧前体物排放量不断增加,地面臭氧污染问题尤为突出.在高速发展的城市群区域,地面臭氧已经成为其主要的大气污染物之一.文章论述了我国地面臭氧的来源、特性、污染现状和发展趋势,着重介绍了地面臭氧污染所带来的生态环境效应及其可能的经济损失,包括人体健康危害、建筑材料腐蚀老化、农作物减产以及树木生长抑制等方面.此外,从研究对象与研究区域两方而分析了研究中存在的不足,指出当前我国地面臭氧污染研究的瓶颈是缺乏全国范围的臭氧监测网络.在此基础上对我国今后的研究进行了展望,以期为我国地而臭氧污染的生态环境效应研究起到一定促进作用. 相似文献
8.
为了阐明大城市中心城区不同高度的空气质量差异及其成因,为大气污染防治工作提供科学支撑,该研究基于广州塔大气污染物垂直梯度观测平台的监测数据,采用环境空气质量综合指数和环境空气质量指数(AQI),分别对广州城区近地面层不同高度的空气质量进行评价。结果表明,2015年广州塔4个高度(地面、118 m、168 m和488 m)的空气质量综合指数分别为4.96、5.01、4.83和3.64,AQI超标率分别为27%、30%、25%和40%。总体上,中、低层(168 m以下)的空气质量差异较小,其中118 m点位的综合指数和AQI超标率相对较高;高层(488 m)因O_3污染尤其显著导致其AQI超标率为各高度最高,但O_3质量浓度上升的贡献被其他污染物质量浓度的大幅下降所抵消,故其综合指数反而最低。随着高度增加,PM_(2.5)和NO_2超标程度下降,O_3超标程度上升,导致高层的PM_(2.5)和NO_2几乎不超标,而O_3超标率达40%且其超标天数占AQI超标天数的比例高达99%。随着污染级别上升,PM_(2.5)和NO_2成为首要污染物的比例减少,O_3比例增加,O_3成为各高度AQI超标时最主要的首要污染物。当低层空气质量处于优或重度污染级别时,各层等级一致性相对较好;但在其他情况下,低层与高层的空气质量最多可相差3个级别。因PM_(2.5)和NO_2以低矮源排放贡献为主,而O_3来源于复杂的二次反应,使PM_(2.5)和NO_2质量浓度随高度上升而递减,而O_3质量浓度随高度上升而递增,最终形成了中、低层以PM_(2.5)、NO2和O_3复合污染为主、高层以O_3单一污染为主的空气质量垂直分布特征。 相似文献
9.
对上海地区降水pH值与地面风向、混合层平均风向、地面风速以及通风系数进行实例分析和统计表明:在离市区较远的地区,酸雨的出现与混合层平均风向的变化有关,而与地面风向的变化关系不大;在市区下风方向,随着地面风速或通风系数的增大,降水pH值逐渐降低,当通风系数增加到一定量级后,下风方向才显著地出现酸雨。 相似文献
10.
地面苔藓对成都大气沉降重金属污染的监测 总被引:1,自引:0,他引:1
采用微波消解、ICP-AES对成都市一环至三环区域内15个取样点处5种地面苔藓植物体内重金属质量分数进行测定和分析,以监测和研究成都市大气沉降重金属污染状况及区域差异。结果表明:苔藓植物对重金属的富集在种间及种内差异显著,5种苔藓对Pb、Cd、Cu、Zn、Cr、As及Ni有较强的吸收能力,大小顺序为立碗藓(Physcomitrium sphaericum (Ludw.) Fuernr.)>地钱(Marchantia polymorpha L.)>鳞叶藓(Taxiphyllum taxirameum(Mitt.) Fleisch.)>柔叶青藓(Brachythecium moriense Besch.)>尖叶美喙藓(Eurhynchium eustegium(Besch.)Dix.)。对其中具有代表性的3种苔藓植物进行种内比较发现,对于立碗藓,人民公园的 Cd、Zn 质量分数最高,三洞古桥公园有最高质量分数的 Cr、Ni、Cu 及较高的 Pb,而塔子山公园的Pb、Cd、Zn、Cr及As质量分数最小;地钱对Pb、Cd、Cu、及As的积累量在人民公园达到最大,大多数重金属质量分数的最小值出现在成都理工大学;在鳞叶藓中,新阵地高尔夫俱乐部的Cd、Zn、Cr及Pb质量分数高于其余样点,东陂体育公园As质量分数最高,相反三洞古桥公园处多数重金属质量分数最小。各样点以Ni污染最重,Pb、Cr、Cu、As属污染中等,Cd和Zn污染较轻,且大气沉降重金属质量分数表现为中心城区、交通繁忙区及工业区高,郊区较低的特点。与2005年相比,成都市大气重金属污染依旧严峻,重金属质量分数呈现新的空间分布,Ni、Cr质量分数明显增加。因此,立碗藓、地钱和鳞叶藓可作为良好的生物指示植物,以此来监测成都市大气重金属污染状况。 相似文献
11.
城市近地面大气颗粒物空间分布的监测与分析 总被引:1,自引:0,他引:1
城市近地面环境与人呼吸带高度范围相当,近地面大气颗粒物对行人健康有直接影响.当常规环境监测点位置和数量不足以全面反映近地表大气颗粒物空间分布状况时,选择合适的颗粒物载体显得十分必要.植物叶片的滞尘效应使之成为大气颗粒物的良好指标,尤其是常绿灌木叶片更能直接反映近地表环境悬浮颗粒物状况.以大气颗粒物污染严重的代表性城市石家庄市为研究区域,选择道路绿篱灌木大叶黄杨,于连续晴朗干燥天气条件下采集了3个5 d周期内、63处样点的滞尘叶片样品,测试叶片滞尘量和滞尘颗粒物粒度,利用ArcGIS讨论叶片滞尘量和滞尘颗粒粒度的空间分布及空间变异特征.结果显示,石家庄市大叶黄杨叶片平均滞尘量为0.3843 g·m-2·d-1 (变化于0.09310.9155 g·m-2·d-1),滞尘颗粒物粒度均值为1.9185μm(变化于1.30672.2500 μm),98.27%的颗粒小于10 μm,表明大叶黄杨叶片在城市近地表环境中对可吸入颗粒物有较好滞留性能,对行人呼吸健康有益.空间变异性分析表明,大叶黄杨叶片滞尘量和滞尘颗粒物粒度均具有空间自相关性,其中滞尘颗粒物粒度的块金值/基台值更小,即空间自相关性更强,表明滞尘颗粒物尺度除受局地污染源影响外,叶片表面属性因素起更重要作用;而滞尘量相对较大的块金值说明局地小尺度过程的影响不容忽视,即更易受到局地起尘源的影响.通过PM1、PM2.5、PM5、PM10等不同粒级颗粒物的分析表明,颗粒物越细其空间分布差异越大,这种细颗粒物的空间变化为进一步探讨城市不同地区人对大气颗粒物的暴露风险研究提供了基础. 相似文献
12.
垃圾渗滤液污染地下水中硫酸盐还原菌种群结构多样性分析 总被引:2,自引:0,他引:2
实验样本取自上海老港垃圾填埋场两处受垃圾渗滤液和海水双重污染的地下水监测井.通过PCR扩增异化型亚硫酸盐还原酶(Dissimilatory sulfite reductase,DSR)基因,建立dsrAB基因克隆文库,用系统发育分析的方法研究了两口污染程度不同的地下水监测井水样中硫酸盐还原菌(Sulfate-reducing bacteria,SRB)的种群结构.结果表明,Desulfobacter-aceae在两口地下水监测井G和I井中均占主导地位(分别为40.5%和49.0%),在海水混入比例更高、污染程度更重的I井文库中有40.6%类Desulfobacteraceae克隆子具有嗜盐或适盐性,相比较,G井中有31.0%克隆子具有嗜盐或适盐性.实验还发现,I井中次优势菌群是Syntrophobacteraceae(30.9%),而G井中次优势菌群是Desulfobulbaceae(29.8%).表明海水混入比例和污染程度的不同会导致地下水系统中SRB的种群结构差别.研究结果也体现了老港地下水系统特殊的物理化学环境导致了其与国内外其它垃圾填埋场地下水中主要SRB种群的差别.图2表2参18 相似文献
13.
《环境化学》2015,(5)
考察太原城区10个国控点O3日浓度变化,并分析了其与相关气象因子(能见度、大气压、空气温度、空气湿度、风速和风向)的关系.研究结果表明,夏季平均O3浓度变化最大;春季O3平均浓度变化次之,冬季变化最小;全年O3平均浓度均低于国家环境空气质量的最高标准.对各国控点日O3浓度的相关性进行聚类分析,结果显示,城市新兴繁荣区和传统重工业区等人类活动频繁的区域(GroupⅠ)的O3浓度变化的持续时间要明显高于过渡区域(GroupⅡ).城区全年时间尺度上,O3均与能见度、空气温度、空气湿度和风速存在极显著的相关性(n=365,P0.001).小波分析结果显示城区O3时间序列的变化周期为以4 d的短周期为主(P0.05),且在6—7月与空气温度和空气湿度存在严格的线性同步变化特征,在11月则与可见度存在近似严格的线性同步变化特征.西西北风对O3浓度影响最大,全年影响频率达50%;而夏季受此影响频率高达60%,秋季西西北风和西北北风对O3浓度的影响频率相近(约40%). 相似文献
14.
15.
高浓度臭氧对人体健康造成伤害,还会影响植物生长;臭氧也是一种重要的温室气体,影响全球气候变化。本文利用塔克拉玛干沙漠腹地塔中地区2010年6月1日至2012年12月31日和北缘城市库尔勒2010年7月1日至2012年12月31日地表臭氧质量浓度连续观测数据,结合PM10和气象资料,对地表臭氧质量浓度的日、周、月、季节与不同天气条件下日变化特征进行了分析,同时探讨了影响臭氧变化的主要因素。结果表明,(1)臭氧质量浓度日变化具有明显的单峰型日变化规律,夜间变化平缓,白天变化剧烈。09:00前后达到最低值,18:00前后达到最高值,出现时间稍迟于沿海城市。(2)臭氧质量浓度变化具有周末效应现象。最高值出现在星期日,最低值出现在星期三;星期一至星期三浓度逐渐降低,星期四又逐渐上升。(3)塔中最高月平均浓度出现在2010年6月,质量浓度为89.6μg·m-3,最低质量浓度出现在2012年12月,为22.1μg·m-3;库尔勒最高月平均质量浓度出现在2010年8月,为82.1μg·m-3,最低为2012年12月的12.5μg·m-3。月平均质量浓度以6月份为中心对称分布,两边月份逐渐降低。(4)春、夏季臭氧质量浓度较高,秋季和冬季明显低于春季和夏季,与沿海大中型城市变化特征基本一致。(5)4种天气中,日变化最剧烈的是晴天,其次为小雨天气,阴天较平缓。沙尘天气出现前,臭氧质量浓度变化较小,沙尘天气开始后质量浓度下降,且下降速度较快。(6)辐射变化具有单峰型日变化规律,臭氧质量浓度变化明显晚于辐射变化,太阳辐射的强弱直接影响光化学反应速度,从而导致臭氧质量浓度的变化;臭氧质量浓度日变化与PM10质量浓度日变化具有相反变化趋势,但在时间变化上有一定的滞后性,臭氧质量浓度变化明显早于PM10的变化。(7)晴天少云的天气情况下臭氧质量浓度明显要高于阴雨(雪)天,气温、相对湿度、风速、风向、日照时数共同影响近地面臭氧质量浓度的变化,臭氧污染的发生是多种因素共同作用的结果。 相似文献
16.
《生态环境学报》2020,(1)
利用2018年1—12月西安市13个环境空气质量监测点的六项大气污染常规分析指标(PM_(10)、PM_(2.5)、O_3、SO_2、NO_2和CO)逐小时监测数据,结合气象条件(温度、相对湿度、风向、风速、大气压、光照、紫外辐射、混合层高度及大气能见度)和颗粒物样品采集,对西安市近地面大气污染物浓度特征进行分析,结果表明,西安市近地面大气污染物浓度呈现明显的季节变化特征,冬季空气污染物主要为颗粒物(PM_(10)、PM_(2.5))对应质量浓度分别为:(154.04±92.88)、(101.84±60.11)μg·m~(-3),PM_(2.5)/PM_(10)的值为0.66,夏季空气污染物主要为O_3,质量浓度为(89.07±20.62)μg·m~(-3);西安市冬季PM_(2.5)数浓度、表面积浓度、质量浓度分别为(51 890±14 619)cm~(-3)、(2 882.21±939.83)μm~2·cm~(-3)、(0.32±0.13)mg·m~(-3),PM_(10)数浓度、质量浓度、表面积浓度分别为(51 897±14 618)cm~(-3)、(3 410.50±1 060.31)μm~2·cm~(-3)、(0.86±0.29)mg·m~(-3),数浓度粒径分布集中在0.010≤d_p≤0.484μm,占总数浓度的99.13%,表面积浓度粒径分布集中在0.072≤d_p≤8.136μm,占总表面积浓度的98.32%,质量浓度粒径分布集中在0.316≤dp≤8.136μm,占总质量浓度的98.75%。颗粒物数浓度对大气能见度影响最大的3个粒径段分别为d_p=0.762μm、d_p=1.956μm、d_p=1.232μm,3个粒径段与能见度的R~2(拟合优度)分别为:0.840、0.789、0.775;西安市夏季,在近地面环境温度大于30.23℃,相对湿度小于58.09%,光照强度大于107.83 W·m~(-2),紫外辐射强度大于324.10μW·cm~(-2)时,有利于近地大气层中高质量浓度O_3((112.16±53.01)μg·m~(-3))的生成与累积。研究结果可为西安市及汾渭平原其他城市大气污染物减排、大气污染防治策略的制定提供数据支持。 相似文献
17.
18.
为探究室内地面灰尘中15种多环芳烃(PAHs)污染的时间变化规律,于2012年3—7月对北京市一座办公楼内的某办公室进行了每周一次的连续高密度灰尘样品采集。利用高效液相色谱-荧光检测器检测15种PAHs含量。结果表明,该办公室内灰尘样品中∑PAHs浓度范围为1 180~24 300 ng·g~(-1),平均浓度为8 960 ng·g~(-1)。总体上,检出的PAHs以3环PAHs为主,其中菲占PAHs总量的59%以上,其次是4环和5环PAHs,4环PAHs中占的比重最高,约占4环PAHs总量的34%。该办公室内灰尘中∑PAHs的浓度存在显著的时间变化差异,总体表现为∑PAHs浓度随气温升高而降低的趋势。源解析结果显示,机动车排放源、石油源、木材与煤燃烧是北京市室内灰尘中PAHs的主要来源。健康风险评估结果显示,ILCR皮肤接触ILCR手口摄入,且CR均值大于10-6,说明该采样点的PAHs污染存在"潜在致癌风险"。 相似文献
19.
20.
针对食品加工过程中产生的高SO42-的高浓度有机物废水,采用膜生物反应器(MBR)工艺对其进行处理研究,分别考察了1.6%和2.6%SO42-浓度下反应器运行性能、污泥性质和膜污染变化情况.经过110 d的运行时间对比发现,1.6%SO42-浓度下MBR获得的最大有机负荷为1.0kg·(m3·d)-1 COD,其化学需氧量(COD)、氨氮和总氮的去除率分别为97.2%、92.5%和89.5%.2.6%SO42-浓度下微生物受到的抑制更强,其获得的最大有机负荷仅为0.5 kg·(m3·d)-1 COD,其COD、氨氮和总氮的去除率分别为96.3%、82.6%和80.7%.此外,SO42-浓度为1.6%的反应器在更高的膜运行通量下,膜污染速率反而比2.6%系统更慢.进一步分析其污泥性质发... 相似文献