共查询到19条相似文献,搜索用时 93 毫秒
1.
在序批式膜生物反应器(SMBR)中投加溴氨酸(BAA)高效降解菌鞘氨醇单胞菌QYY,对BAA 模拟废水进行了生物强化降解研究.在驯化过程中加入链霉素促进菌株QYY 在污泥中生长.结果表明,经过30d 驯化后,保持BAA 浓度550mg/L,系统处理效果稳定,MLSS 保持稳定,并能连续运行90d 以上;降解11h 时,脱色率为98%左右,COD 去除率50%左右.当BAA 浓度为200~2600mg/L 时,降解时间与BAA 浓度呈线性关系(R2=0.9968).核糖体基因间区序列分析(RISA)显示,稳定期活性污泥菌落生物多样性下降,菌株QYY 在污泥中已存活并可能成长为优势菌. 相似文献
2.
3.
膜序批式生物反应器是将SBR与MBR结合,具有出水水质好,浊度低,生物浓度高,脱氮除磷效果好,减缓膜污染等优点。对膜序批式生物反应器的构造,特点及研究进展进行综述,并对未来研究前景进行展望。 相似文献
4.
5.
采用序批式动态膜生物反应器处理模拟生活污水,讨论不同反应周期、处理水量及不同的好氧、厌氧时间比对污水的处理效果。结果表明:序批式动态膜生物反应器(SDMBR)在反应周期为6h,处理水量为18L时,COD,NH4^+-N和TN平均去除率最高,分别达到92.0%,88.4%和70.9%,相同反应周期与处理水量条件下,好氧、厌氧时间比为4:2时,处理效果最佳,COD,NH4^+-N和TN平均去除率分别达到90.0%和85.0%和69.0%;滤饼层对浊度有很好的去除效果,稳定运行时出水浊度可降至2NTU以下。 相似文献
6.
序批式反应器(SBR)处理氨氮废水的初步研究 总被引:3,自引:0,他引:3
报道了序批式反应器对合成氨氮废水的处理效果。SBR运行工况为进水0.5h,缺氧搅拌3.0h,曝气7.0h,沉淀1.0h排水0.5h,水力停留时间HRT=0.73d,泥龄SRT=87.5D。 相似文献
7.
膜序批式生物反应器脱氮性能研究 总被引:2,自引:3,他引:2
采用厌-好氧交替膜序批式反应器,实验室人工合成配水,连续运行300 d,对反应器脱氮性能进行了研究.结果表明,污泥浓度达到18 g·L-1时,污泥粒径大小在100μm以上的占96%,污泥出现颗粒化.FISH-CLSM分析AOB及NOB的群落空间分布表明它们在污泥中大量存在.NH4 -N进水50 mg·L-1左右时出水在1 mg·L-1以下,硝化反应在180~210 min就可以完成.曝气强度与硝化反应速率密切相关,曝气强度为100 m3·(m2·h)-1时,NH4 -N降解速率最佳达24.25 mg·(L·h)-1,系统硝化性能稳定.影响系统脱氮的主要因素是反硝化速率,曝气强度为69 m3(m2·h)-1时,对NO3--N的利用率为10.98 mg·(L·h)-1,出水NO3--N浓度为4.4 mg·L-1,滞留在厌氧段的浓度3.5 mg·L-1为最低,反硝化效果最好.曝气过量或不足时反硝化速率都低.在保证系统处理能力的同时,大的交换比0.35有利于系统脱氮运行.C/N比为2时,反硝化速率最高,>2时出现NO2--N的积累. 相似文献
8.
膜生物反应器采取序批式运行方式,实验室人工配水,系统不排泥,运行220d。结果表明,系统对COD、氨氮的去除率均在96%以上,细菌胞外多聚物(EPS)以蛋白质为主,污泥浓度达到10g/L以上,污泥沉降性能得到改善时,跨膜压力(TMP)呈缓慢增长趋势,出现了相当数量的纤毛虫、轮虫等原后生动物。 相似文献
9.
10.
采取厌-好氧交替运行、实验室人工配水的方式,连续运行300 d,研究膜序批式间歇反应器运行过程的膜污染特性及其控制.结果表明,在运行初期的75 d内,污泥处于絮体状,SVI值64.6~110.6 mL·g-1,膜污染呈快速指数增长趋势,TMP平均增长速率为0.309 kPa·d-1,膜阻力变化在0.393×1011~1.298×1011 m-1·d-1之间,比膜通量从4.4 L·(m2·h·kPa)-1下降为0.52 L·(m2·h·kPa)-1,75 d时的临界膜通量为20 L·(m2·h)-1.从75~120 d对系统进行了调控,反应器培养出好氧颗粒污泥,SVI值逐渐下降,从170 d开始,SVI一直保持在40 mL·g-1左右,污泥粒径逐渐增大,220 d时污泥粒径分布大多在500~1 000 μm.120~300 d运行过程中的膜污染呈缓慢增长趋势,TMP平均增长率仅为0.062 kPa·d-1,膜阻力变化率在0.291×1011~0.404×1011m-1·d-1,比膜通量从4.4 L·(m2·h·kPa)-1下降为1.4 L·(m2·h·kPa)-1,220 d时的临界膜通量为40 L·(m2·h)-1.这些数据表明好氧颗粒污泥的培养对减缓膜污染发生具有极大作用.曝气强度为100 m3·(m2·h)-1时,比膜通量最大,曝气强度为69 m3·(m2·h)-1时,膜污染速率最小. 相似文献
11.
在序批式活性污泥(SBR)反应池内投加填料,形成流动床SBR,本试验对SBR和流动床SBR去除COD、TN的效果进行了对比研究,结果表明:流动床SBR对COD、TN的去除效果优于SBR,采用限制性曝气方式时TN的去除率较非限制性曝气方式高。 相似文献
12.
13.
14.
添加原水改善SBR工艺处理猪场废水厌氧消化液性能 总被引:19,自引:7,他引:19
采用序批式反应器(SBR)工艺直接处理猪场废水厌氧消化液,处理系统的效率较低,COD去除率仅有10%左右,NH4+-N去除率70%左右;处理出水水质较差,出水COD高于1 000mg/L,出水NH4+-N在200mg/L左右;处理系统的工作不稳定,效能逐渐恶化.在猪场废水厌氧消化液中添加部分未经厌氧消化的猪场废水(原水),处理系统的处理效率明显提高,COD去除率高于80%,出水COD降到250~350mg/L;NH4+-N去除率高于99%,出水NH4+-N小于10mg/L;处理系统的稳定性也得到增强.添加原水后,猪场废水厌氧消化液的BOD5/COD比值从0.19上升到0.54,BOD5/TN比值从0.28上升到2.04,增加了微生物生长和反硝化所需的碳源,强化了反硝化作用,不仅提高了总氮去除效率,而且通过回补碱度,维持了处理系统的pH值稳定. 相似文献
15.
16.
厌氧-好氧序列间歇式反应器处理生物制药废水的研究 总被引:21,自引:0,他引:21
采用厌氧序列间歇反应器与好氧序列间歇反应器相结合的技术,处理生物制药废水。结果表明,经7.0h厌氧搅拌处理和6.0h好氧曝气处理,进水COD为1180~3061mg/L,出水COD小于300mg/L,COD去除率在78.9%~92.8%之间,出水COD满足国家生物制药行业废水排放标准要求。 相似文献
17.
18.