首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Tundra-breeding birds face diverse conservation challenges, from accelerated rates of Arctic climate change to threats associated with highly migratory life histories. Here we summarise the status and trends of Arctic terrestrial birds (88 species, 228 subspecies or distinct flyway populations) across guilds/regions, derived from published sources, raw data or, in rare cases, expert opinion. We report long-term trends in vital rates (survival, reproduction) for the handful of species and regions for which these are available. Over half of all circumpolar Arctic wader taxa are declining (51% of 91 taxa with known trends) and almost half of all waterfowl are increasing (49% of 61 taxa); these opposing trends have fostered a shift in community composition in some locations. Declines were least prevalent in the African-Eurasian Flyway (29%), but similarly prevalent in the remaining three global flyways (44–54%). Widespread, and in some cases accelerating, declines underscore the urgent conservation needs faced by many Arctic terrestrial bird species.  相似文献   

2.
Plant species distributions are expected to shift and diversity is expected to decline as a result of global climate change, particularly in the Arctic where climate warming is amplified. We have recorded the changes in richness and abundance of vascular plants at Abisko, sub-Arctic Sweden, by re-sampling five studies consisting of seven datasets; one in the mountain birch forest and six at open sites. The oldest study was initiated in 1977-1979 and the latest in 1992. Total species number increased at all sites except for the birch forest site where richness decreased. We found no general pattern in how composition of vascular plants has changed over time. Three species, Calamagrostis lapponica, Carex vaginata and Salix reticulata, showed an overall increase in cover/frequency, while two Equisetum taxa decreased. Instead, we showed that the magnitude and direction of changes in species richness and composition differ among sites.  相似文献   

3.
Plant species distributions are expected to shift and diversity is expected to decline as a result of global climate change, particularly in the Arctic where climate warming is amplified. We have recorded the changes in richness and abundance of vascular plants at Abisko, sub-Arctic Sweden, by re-sampling five studies consisting of seven datasets; one in the mountain birch forest and six at open sites. The oldest study was initiated in 1977–1979 and the latest in 1992. Total species number increased at all sites except for the birch forest site where richness decreased. We found no general pattern in how composition of vascular plants has changed over time. Three species, Calamagrostis lapponica, Carex vaginata and Salix reticulata, showed an overall increase in cover/frequency, while two Equisetum taxa decreased. Instead, we showed that the magnitude and direction of changes in species richness and composition differ among sites.  相似文献   

4.
The terrestrial chapter of the Circumpolar Biodiversity Monitoring Programme (CBMP) has the potential to bring international multi-taxon, long-term monitoring together, but detailed fundamental species information for Arctic arthropods lags far behind that for vertebrates and plants. In this paper, we demonstrate this major challenge to the CBMP by focussing on spiders (Order: Araneae) as an example group. We collate available circumpolar data on the distribution of spiders and highlight the current monitoring opportunities and identify the key knowledge gaps to address before monitoring can become efficient. We found spider data to be more complete than data for other taxa, but still variable in quality and availability between Arctic regions, highlighting the need for greater international co-operation for baseline studies and data sharing. There is also a dearth of long-term datasets for spiders and other arthropod groups from which to assess status and trends of biodiversity. Therefore, baseline studies should be conducted at all monitoring stations and we make recommendations for the development of the CBMP in relation to terrestrial arthropods more generally.  相似文献   

5.
Radionuclide levels in vegetation from a High Arctic location were studied and compared to in situ soil concentrations. Levels of the anthropogenic radionuclide 137Cs and the natural radionuclides 40K, 238U, 226Ra and 232Th are discussed and transfer factor (TF) values and aggregated transfer (Tag) values are calculated for vascular plants. Levels of 137Cs in vegetation generally followed the order mosses > lichen > vascular plants. The uptake of 137Cs in vascular plants showed an inverse relationship with the uptake of 40K, with 137Cs TF and Tag values generally higher than 40K TF and Tag values. 40K activity concentrations in all vegetation showed little correlation to associated soil concentrations, while the uptake of 238U, 226Ra and 232Th by vascular and non-vascular plants was generally low.  相似文献   

6.
A first review on occurrence and distribution of pharmaceuticals and personal care products (PPCPs) is presented. The literature survey conducted here was initiated by the current Assessment of the Arctic Monitoring and Assessment Programme (AMAP). This first review on the occurrence and environmental profile of PPCPs in the Arctic identified the presence of 110 related substances in the Arctic environment based on the reports from scientific publications, national and regional assessments and surveys, as well as academic research studies (i.e., PhD theses). PPCP residues were reported in virtually all environmental compartments from coastal seawater to high trophic level biota. For Arctic environments, domestic and municipal wastes as well as sewage are identified as primary release sources. However, the absence of modern waste water treatment plants (WWTPs), even in larger settlements in the Arctic, is resulting in relatively high release rates for selected PPCPs into the receiving Arctic (mainly) aquatic environment. Pharmaceuticals are designed with specific biochemical functions as a part of an integrated therapeutically procedure. This biochemical effect may cause unwanted environmental toxicological effects on non-target organisms when the compound is released into the environment. In the Arctic environments, pharmaceutical residues are released into low to very low ambient temperatures mainly into aqueous environments. Low biodegradability and, thus, prolonged residence time must be expected for the majority of the pharmaceuticals entering the aquatic system. The environmental toxicological consequence of the continuous PPCP release is, thus, expected to be different in the Arctic compared to the temperate regions of the globe. Exposure risks for Arctic human populations due to consumption of contaminated local fish and invertebrates or through exposure to resistant microbial communities cannot be excluded. However, the scientific results reported and summarized here, published in 23 relevant papers and reports (see Table S1 and following references), must still be considered as indication only. Comprehensive environmental studies on the fate, environmental toxicology, and distribution profiles of pharmaceuticals applied in high volumes and released into the Nordic environment under cold Northern climate conditions should be given high priority by national and international authorities.  相似文献   

7.
8.
Changes in climate, land-use and pollution are having disproportionate impacts on ecosystems and biodiversity of arctic and mountain ecosystems. While these impacts are well-documented for many areas of the Arctic and alpine regions, some isolated and inaccessible mountain areas are poorly studied. Furthermore, even in well-studied regions, assessments of biodiversity and species responses to environmental change are biased towards vascular plants and cryptogams, particularly bryophytes are far less represented. This paper aims to document the environments of the remote and inaccessible Altai-Sayan mountain mires and particularly their bryofloras where threatened species exist and species new to the regional flora are still being found. As these mountain mires are relatively inaccessible, changes in drivers of change and their ecosystem and biodiversity impacts have not been monitored. However, the remoteness of the mires has so far protected them and their species. In this study, we describe the mires, their bryophyte species and the expected impacts of environmental stressors to bring attention to the urgency of documenting change and conserving these pristine ecosystems.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01596-w.  相似文献   

9.
Peñuelas J  Filella I 《Chemosphere》2002,46(4):501-505
We show here additional biological evidence of the alteration in global biogeochemistry by human activities during the twentieth century. The mineral concentration of herbarium specimens of 24 species of vascular plants and three species of bryophytes collected in North and East regions of Spain have substantially changed throughout the twentieth century. While V, a proxy tracer of oil pollution, exponentially increased in the last decades, other metals such as Cr, Ba, Sr, Al, Fe, Pb, Cd and Ti increased up to 1960-1970 and started to decrease in 1985-1995, when environmental legal regulations started to be effective. Multivariate principal component analysis showed an overall change in plant elemental concentrations throughout the different decades of the century and a clear separation of vascular plants and bryophytes. Likely important consequences for ecosystem structure and functioning and even for human health may be expected from these changes in mineral concentration.  相似文献   

10.
Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.  相似文献   

11.
Species individualistic responses to warming and increased UV-B radiation are moderated by the responses of neighbors within communities, and trophic interactions within ecosystems. All of these responses lead to changes in ecosystem structure. Experimental manipulation of environmental factors expected to change at high latitudes showed that summer warming of tundra vegetation has generally led to smaller changes than fertilizer addition. Some of the factors manipulated have strong effects on the structure of Arctic ecosystems but the effects vary regionally, with the greatest response of plant and invertebrate communities being observed at the coldest locations. Arctic invertebrate communities are very likely to respond rapidly to warming whereas microbial biomass and nutrient stocks are more stable. Experimentally enhanced UV-B radiation altered the community composition of gram-negative bacteria and fungi, but not that of plants. Increased plant productivity due to warmer summers may dominate food-web dynamics. Trophic interactions of tundra and sub-Arctic forest plant-based food webs are centered on a few dominant animal species which often have cyclic population fluctuations that lead to extremely high peak abundances in some years. Population cycles of small rodents and insect defoliators such as the autumn moth affect the structure and diversity of tundra and forest-tundra vegetation and the viability of a number of specialist predators and parasites. Ice crusting in warmer winters is likely to reduce the accessibility of plant food to lemmings, while deep snow may protect them from snow-surface predators. In Fennoscandia, there is evidence already for a pronounced shift in small rodent community structure and dynamics that have resulted in a decline of predators that specialize in feeding on small rodents. Climate is also likely to alter the role of insect pests in the birch forest system: warmer winters may increase survival of eggs and expand the range of the insects. Insects that harass reindeer in the summer are also likely to become more widespread, abundant and active during warmer summers while refuges for reindeer/caribou on glaciers and late snow patches will probably disappear.  相似文献   

12.
Dimethyl sulphide (DMS) and carbon monoxide (CO) are climate-relevant trace gases that play key roles in the radiative budget of the Arctic atmosphere. Under global warming, Arctic sea ice retreats at an unprecedented rate, altering light penetration and biological communities, and potentially affect DMS and CO cycling in the Arctic Ocean. This could have socio-economic implications in and beyond the Arctic region. However, little is known about CO production pathways and emissions in this region and the future development of DMS and CO cycling. Here we summarize the current understanding and assess potential future changes of DMS and CO cycling in relation to changes in sea ice coverage, light penetration, bacterial and microalgal communities, pH and physical properties. We suggest that production of DMS and CO might increase with ice melting, increasing light availability and shifting phytoplankton community. Among others, policy measures should facilitate large-scale process studies, coordinated long term observations and modelling efforts to improve our current understanding of the cycling and emissions of DMS and CO in the Arctic Ocean and of global consequences.  相似文献   

13.
Changes in Arctic vegetation can have important implications for trophic interactions and ecosystem functioning leading to climate feedbacks. Plot-based vegetation surveys provide detailed insight into vegetation changes at sites around the Arctic and improve our ability to predict the impacts of environmental change on tundra ecosystems. Here, we review studies of changes in plant community composition and phenology from both long-term monitoring and warming experiments in Arctic environments. We find that Arctic plant communities and species are generally sensitive to warming, but trends over a period of time are heterogeneous and complex and do not always mirror expectations based on responses to experimental manipulations. Our findings highlight the need for more geographically widespread, integrated, and comprehensive monitoring efforts that can better resolve the interacting effects of warming and other local and regional ecological factors.  相似文献   

14.
The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in super-dominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well adapted to the Arctic's climate: some can metabolize at temperatures down to -39 degrees C. Cyanobacteria and algae have a wide range of adaptive strategies that allow them to avoid, or at least minimize UV injury. Microorganisms can tolerate most environmental conditions and they have short generation times which can facilitate rapid adaptation to new environments. In contrast, Arctic plant and animal species are very likely to change their distributions rather than evolve significantly in response to warming.  相似文献   

15.
Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most incoming radiation, to summer when the ecosystem absorbs most incoming radiation. Vegetation profoundly influences the water and energy exchange of Arctic ecosystems. Albedo during the period of snow cover declines from tundra to forest tundra to deciduous forest to evergreen forest. Shrubs and trees increase snow depth which in turn increases winter soil temperatures. Future changes in vegetation driven by climate change are therefore, very likely to profoundly alter regional climate.  相似文献   

16.
Jin X  Zha J  Xu Y  Wang Z  Kumaran SS 《Chemosphere》2011,84(10):1506-1511
2,4-Dichlorophenol (2,4-DCP) is known as an important chemical intermediate and an environmental endocrine disruptor. There is no paper dealing with the predicted no-effect concentration (PNEC) of 2,4-DCP, mainly due to shortage of chronic and site-specific toxicity data. In the present study, toxicity data was obtained from the tests using six Chinese native aquatic species. The HC5 (hazardous concentration for 5% of species) was derived based on the constructed species sensitivity distribution (SSD), which was compared with that derived from literature toxicity data of non-native species. For invertebrates, the survival no-observed effect concentrations (NOECs) were 0.05 and 1.00 mg L−1 for Macrobrachium superbum and Corbicula fluminea, respectively. NOECs based on fishes’ growth were 0.10, 0.20 and 0.40 mg L−1 for Mylopharyngodon piceus, Plagiognathops microlepis and Erythroculter ilishaeformis, respectively. For aquatic plant Soirodela polyrhiza, NOEC based on concentration of chlorophyll was 1.00 mg L−1. A final PNEC calculated using the SSD approach with a 50% certainty based on different taxa ranged between 0.008 and 0.045 mg L−1. There is no significant difference between HC5 derived from native and that from non-native taxa.  相似文献   

17.
Levels and trends of brominated flame retardants in the Arctic   总被引:24,自引:0,他引:24  
de Wit CA  Alaee M  Muir DC 《Chemosphere》2006,64(2):209-233
Polybrominated diphenyl ethers (PBDEs) containing two to seven bromines are ubiquitous in Arctic biotic and abiotic samples (from zooplankton to polar bears (Ursus maritimus) and humans; air, soil, sediments). The fully brominated decabromodiphenyl ether (BDE-209), hexabromocyclododecane (HBCD), tetrabromobisphenol A (TBBPA) and polybrominated biphenyls (PBBs) are also present in biotic and abiotic samples. Spatial trends of PBDEs and HBCD in top predators are similar to those seen for polychlorinated biphenyls (PCBs) and indicate western Europe and eastern North America as source regions. Concentrations of tetra- to heptaBDEs have increased significantly in North American and Greenlandic Arctic biota and in Greenland freshwater sediments paralleling trends seen further south. For BDE-209, increasing concentrations in Greenlandic peregrine falcons (Falco peregrinus) and in dated lake sediment cores in the Canadian Arctic have been seen during the 1990s. BDE-47, -99, -100 and -153 are observed to biomagnify in Arctic food webs. summation operatorPBDE concentrations in Arctic samples are lower than in similar sample types from more southerly regions and are one or more orders of magnitude lower than summation operatorPCB concentrations except for some levels for air. Air and harbor sediment results for PBDEs indicate that there are local sources near highly populated areas within the Arctic. Findings of PBBs on moss and TBBPA on an air filter, and that both are found in biota at high trophic levels indicates that these compounds may also reach the Arctic by long-range atmospheric transport. Based on the evidence of their presence in the Arctic and indications that most if not all are undergoing long-range transport, these brominated flame retardants (BFRs) have characteristics that qualify them as POPs according to the Stockholm Convention.  相似文献   

18.
The Potential Source Contribution Function (PSCF) receptor model combines both chemical and meteorological information. In this study, PSCF was employed to identify the potential source emission regions for aerosol compositions measured at Tjörn, Sweden (58.01 °N, 11.36 °E). PSCF was for the first time applied on a European scale. One hundred and fifty-two four-day air parcel backward trajectories were combined with concentrations of sixteen elements determined in 33 coarse and fine aerosol samples. The observations were made between February 17 and March 26, 1985. The modeling results of the heavy metals V, Pb, Zn, and As are presented and compared with available emission inventory data. A number of known industrialized regions in the former USSR and Europe are found of high potential to be the emission source areas. These areas are in good agreement with the known emission information. The PSCF maps of total sulfur, Non-Seasalt-Sulfur (N.S.S.) and chlorine are also presented. High potential regions in the Arctic area exist in the PSCF map for total sulfur wheres they do not occur in that for N.S.S.  相似文献   

19.
Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at the same time can improve human health. This article reviews scientific studies of plants’ ability to remove VOCs from indoor air. The focus of the review is on pathways of VOC removal by the plants and factors affecting the efficiency and rate of VOC removal by plants. Laboratory based studies indicate that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants’ rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results.  相似文献   

20.
Tetracyclines and sulfonamides used in human and animal medicine are released to terrestrial ecosystems from wastewater treatment plants or by direct manure application. The interactions between plants and these antibiotics are numerous and complex, including uptake and accumulation, phytometabolism, toxicity responses, and degradation in the rhizosphere. Uptake and accumulation of antibiotics have been studied in plants such as wheat, maize, potato, vegetables, and ornamentals. Once accumulated in plant tissue, organic contaminants can be metabolized through a sequential process of transformation, conjugation through glycosylation and glutathione pathways, and ultimately sequestration into plant tissue. While studies have yet to fully elucidate the phytometabolism of tetracyclines and sulfonamides, an in-depth review of plant and mammalian studies suggest multiple potential transformation and conjugation pathways for tetracyclines and sulfonamides. The presence of contaminants in the vicinity or within the plants can elicit stress responses and defense mechanisms that can help tolerate the negative effects of contaminants. Antibiotics can change microbial communities and enzyme activity in the rhizosphere, potentially inducing microbial antibiotic resistance. On the other hand, the interaction of microbes and root exudates on pharmaceuticals in the rhizosphere can result in degradation of the parent molecule to less toxic compounds. To fully characterize the environmental impacts of increased antibiotic use in human medicine and animal production, further research is essential to understand the effects of different antibiotics on plant physiology and productivity, uptake, translocation, and phytometabolism of antibiotics, and the role of antibiotics in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号