首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The control mechanisms within the pelagic microbial food web of the oligotrophic Gulf of Aqaba and the northern Red Sea were investigated in the spring of 1999. Nutrient conditions and potential grazer impact were manipulated in a series of dilution experiments. Ambient nutrient concentrations and autotrophic biomass were very low (0.23–1.21 µmol NO3 l–1, 0.06–0.98 µmol NH4 l–1, 1.08–1.17 µmol Si l–1, 0.08–0.12 µmol P l–1, 0.15–0.36 µg chlorophyll a l–1). The planktonic community was characterized by low abundances [3.0–5.5×105 heterotrophic bacteria ml–1, 0.58–7.2×103 ultraphytoplankton <8 µm ml–1 (small eukaryotic photoautotrophs and Prochlorococcus sp., excluding Synechococcus sp.), 0.45–4.4×104 Synechococcus sp. ml–1, 0.32–1.2×103 heterotrophic nanoflagellates ml–1, 1.3–3.8×103 phytoplankton >8 µm l–1, 0.93–5.4×102 microzooplankton l–1] and dominated by small forms (0.2–8 µm). Dinoflagellates and oligotrichous ciliates were the most common groups in initial samples among the phytoplankton >8 µm and microzooplankton, respectively. Results show that bottom-up and top-down control mechanisms operated simultaneously. Small organisms were vulnerable to grazing, with maximum grazing rates of 1.1 day–1 on heterotrophic bacteria and 1.3 day–1 on ultraphytoplankton. In contrast, algae >8 µm showed stronger signs of nutrient limitation, especially when the final assemblages were dominated by diatoms. Synechococcus sp. were not grazed and only showed moderate to no response to nutrient additions. The high spatial and temporal variation of our results indicates that the composition of the planktonic community determines the prevailing control mechanisms. It further implies that, at this transitional time of the year (onset of summer stratification), the populations fluctuate about an equilibrium between growth and grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

2.
A dual-isotope method was developed to measure grazing rates and food preferences of individual species of heterotrophic dinoflagellates from natural populations, collected from the Slope, Gulf Stream, and Sargasso Sea and from a transect from Iceland to New England, in 1983. The isotope method measures the grazing rates of microzooplankton which cannot be separated in natural populations on the basis of size. Tritiated-thymidine and 14C-bicarbonate were used to label natural heterotrophic and autotrophic food, respectively. Nine oceanic dinoflagellate species in the genera Protoperidinium, Podolampas, and Diplopsalis fed on both heterotrophic and autotrophic food particles with clearance rates of 0.4 to 8.0 l cell-1 h-1, based on 3H incorporation, and 0.0 to 28.3 l cell-1 h-1, based on 14C incorporation. Two dinoflagellate species, Protoperidinium ovatum and Podolampas palmipes, fed only on 3H-labelled food particles. Several species of dinoflagellates fed on bacteria (<1 m) which had been prelabelled with 3H-thymidine. The clearance rates of heterotrophic dinoflagellates and ciliates were similar and within the range of tintinnid ciliate clearance rates reported in the literature. As heterotrophic dinoflagellates and ciliates can have comparable abundances in oceanic waters, we conclude that heterotrophic dinoflagellates may have an equally important impact as microheterotrophic grazers of phytoplankton and bacteria in oceanic waters.Partially supported by a grant from the National Science Foundation, OCE-81-17744  相似文献   

3.
Growth and grazing loss rates of naturalPhaeocystis sp. single cells were measured using a seawater dilution technique. Measurements were performed during an intensePhaeocystis sp. bloom in the North Sea between 19 April and 5 May 1988. Experimental results yielded rapid carbon turnover rates. Population growth rates varied from 0.033 to 0.098 h–1, grazing loss rates from 0.037 to 0.174 h–1. From measured growth rates, average doubling rages of 1.3 doublings d–1 were calculated. The growth rates would have resulted in maximum carbon production rates of 146 mg C m–3 d–1. Grazing rates increased in the course of the bloom and exceeded growth rates at the end. Grazing loss was caused primarily by microzooplankton feeding. Ciliates and heterotrophic dinoflagellates were identified as the major potential consumers of single cells ofPhaeocystis sp. at the beginning of the bloom. The grazing impact of larger microzooplankton species appeared to increase during the progressing bloom.  相似文献   

4.
Interactions between mercury and selenium accumulation and subcellular binding inAsterias rubens (L.), collected in 1987 from Lille Bælt at Middelfart, Funen, Denmark, were investigated in laboratory experiments. Sea stars exposed to 10µg Hg l–1 for 30 d accumulated mercury in body wall, tube feet and stomach linearly with time at 1.2, 1.2 and 0.5µg Hg g–1 dry wt d–1, respectively. Mercury was accumulated in pyloric caeca and coelomic fluid initially at 1.4µg Hg g–1 dry wt d–1 and 9.4 ng Hg ml–1 d–1, respectively; after 10 d uptake rates decreased. Sea stars exposed to 75µg Se-SeO 3 - - l–1 accumulated selenium linearly with time over 30 d in the stomach, pyloric caeca, tube feet and body wall at 2.0, 1.2, 1.2 and 0.6µg Se g–1 dry wt d–1. Sea stars exposed to 75µg Se-SeO 4 - - l–1 maintained selenium levels in the coelomic fluid at 75µg Se l–1 over 30 d. Exposure to selenate did not alter the selenium concentrations in the tissues. Sea stars exposed concurrently to 75µg Se-SeO 3 - - and 10µg Hg l–1 accumulated more mercury and selenium in tube feet and body wall than did sea stars exposed to the two elements alone. In pyloric caeca and stomach concurrent exposure reduced accumulation of both elements. Mercury was bound predominantly in the insoluble fraction of the tissues, and soluble mercury was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Ca. half of the selenium recovered was bound in the insoluble fraction, and soluble selenium was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Interaction between the two elements was exerted predominantly in the insoluble fraction of the tissues.  相似文献   

5.
The distribution and structure of heterotrophic protist communities and size-fractionated chlorophyll a were studied during the Korea Deep Ocean Study 98 (KODOS 98) research expedition (July 1998) in the northeast equatorial Pacific Ocean (5–11°N). Areas of convergence and divergence formed at the boundaries of the South Equatorial Current (SEC), North Equatorial Current (NEC), and North Equatorial Counter Current (NECC) during the expedition. Water column physicochemical characteristics significantly influenced the size structure of heterotrophic protist communities. Intense vertical mixing and high nutrient and chlorophyll a concentrations characterized SEC and NECC areas, which were affected by converging and diverging water masses, respectively. Nanophytoplankton dominated in SEC and NECC areas; both areas also had relatively high heterotrophic protist biomasses (average 743 µg C m–2). NEC areas were characterized by a stratified vertical structure, low nutrient and chlorophyll a concentrations, and picophytoplankton dominance. The heterotrophic protist biomass in NEC areas averaged 414 µg C m–2; nanoprotists (<20 µm) dominated the community. The nanoprotist biomass comprised 49–54% of the total heterotrophic protist biomass in SEC/NECC areas and 67–72% in NEC areas. The biomass of heterotrophic protists was higher in SEC/NECC areas than in NEC areas, but the relative importance of nanoprotists was greater in NEC areas than in SEC/NECC areas. Heterotrophic dinoflagellates were dominant components of the <20 µm and >20 µm size classes in both water columns. The biomass of heterotrophic protists significantly correlated with the net-, nano-, and picophytoplankton biomass in SEC/NECC areas and with the nano- and picophytoplankton biomass in NEC areas. Heterotrophic protists and phytoplankton also showed strong positive correlation in the study area. The size structure of the phytoplankton biomass coincided with that of heterotrophic protists; the heterotrophic protist biomass positively correlated with the protists prey source. These relationships suggest that the community structure of heterotrophic protists and the microbial food web depended on size classes within the phytoplankton biomass. Microzooplankton grazing and phytoplankton growth rates were higher in SEC/NECC areas than in NEC areas. In contrast, the potential primary production grazed by microzooplankton was relatively high in NEC areas (127.3%) compared with SEC/NECC areas (94.6%). Our results indicate that the relative importance and size structure of heterotrophic protists might vary according to two distinct water column structures.Communicated by T. Ikeda, Hakodate  相似文献   

6.
Infection of copepods by parasitic dinoflagellates has been known for many years, but the ecological consequences of this parasitism have been largely neglected. We estimated mortality rates in the copepodParacalanus indicus Wolfenden due to parasitism by the dinoflagellateAtelodinium sp. by applying laboratory mortality rates to a field population of infected copepods in Port Phillip Bay, Australia, sampled in 1982–1985. Adult female copepods were most often infected, with an incidence of 0 to 28.5% (median 6.2%). Stage V female copepodites were less often infected, and males were never infected. The median mortality rate in females was about 7% d–1, or about one-third of total mortality, and the maximum was 41% d–1. The frequent occurrence of dinoflagellate parasitoids in some species of copepod implies an important, species-specific mechanism for the regulation of populations.  相似文献   

7.
In July 1988 a survey was made in the Dogger Bank area of the North Sea. As a result of wind stress the area was found to be frequently well mixed. At the northerly slope a transition zone was observed between the stratified central North Sea and the well-mixed Dogger Bank area. Low nutrient concentrations were observed in surface waters; especially for nitrate (<0,1µM). High concentrations of phosphate (>0,5µM), nitrate (>1µM), ammonium (>2µM) and silicate (>2µM) only prevailed below the thermocline. Chlorophylla values were below 1µg l–1 near the surface. Enhanced values (up to 4µg l–1) were observed in the deeper layer at the transition zone and just below the thermocline at well-stratified locations. At the transition zone high specific C-fixation rates (up to 100 mg C mg–1 chla d–1) at the surface indicated the presence of enhanced productivity. The compensation depth for primary production was found to coincide with a specific C-fixation rate of 5 mg C mg–1 chla d–1. At greater depths, phytoplankton was only found where tidally induced vertical mixing allowed a regular exposure to higher light intensities. Storms resulted in a rapid redistribution of chlorophylla and enhancement of the C-fixation rate in the upper layer of the water column.Publication No. 10 of the project Applied Scientific Research Netherlands Institute for Sea Research (BEWON)  相似文献   

8.
Incubations of natural populations of phytoplankton were carried out in neritic and oceanic areas of the western subarctic Pacific in 1991 and 1992. Algae in the order Parmales, class Chrysophyceae, were observed to increase in number during the incubations. In the light-exposed treatments, the growth rate of Parmales at 5 to 12 °C was 0.012 to 0.016 h-1 or 0.41 to 0.54 doubling d-1, which is lower than that of diatoms, but comparable to that of common dinoflagellates. On the other hand, heterotrophic choanoflagellates grew positively in both light and dark at the rate of 0.016 to 0.040 h-1 or 0.54 to 1.39 doublings d-1, which is comparable or lower than the reported value at 15 °C. The results obtained demonstrate that the Parmales can grow vegetatively in light and prefer low temperatures.  相似文献   

9.
The daily abundance of aloricate ciliates at Lime Cay, Jamaica, a shallow neritic site, ranged from 29 to 118 × 106 m–2 (0.97 to 3.93 × 106 m–3) between November 1985 and November 1986. Biomass was converted to kilojoules (1 kcal=4.1855 kJ) assuming 42% carbon, 20.15 kJ (g dry wt)–1, and 20% cell shrinkage. Biomass ranged from 0.40 to 3.00 kJ m–2 (13.3 to 100 J m–3; 0.28 to 2.08µg C l–1) with an annual mean of 1.11 kJ m–2 (36.8 J m–3; 0.764µg C l–1). Nanociliates (<20µm equivalent spherical diameter, ESD) dominated abundance, but microciliates (> 20µm ESD) dominated biomass.Strombidium, Strobilidium, Tontonia andLaboea species were conspicuous taxa. Annual production estimates of the aloricate assemblage, based on literature growth rates, ranged from 404 kJ m–2 yr–1 (37 J m–3 d–1) to 1614 kJ m–2 yr–1 (147 J m–3 d–1). A compromise estimate of 689 kJ m–2 yr–1 (i.e., 63 J m–3 d–1) is comparable to other estimates from tropical and subtropical regions. A model of annual energy flow through 11 planktonic compartments suggests the total ciliate assemblage (aloricates and tintinnines) to be as productive as metazoan herbivores and metazoan carnivores.  相似文献   

10.
Phytoplankton growth and microzooplankton grazing were investigated in the restricted Bizerte Lagoon in 2002 and 2004. The 2002 study, carried out at one station from January to October, showed significant seasonal variations in phytoplankton dynamics. High growth rates (0.9–1.04 day−1), chlorophyll a (Chl a) concentrations (6.6–6.8 μg l−1) and carbon biomass (392–398 μg C l−1) were recorded in summer (July), when several chain-forming diatoms had intensively proliferated and dominated the carbon biomass (74%). In 2004, four stations were studied during July, a period also characterized by the high proliferation of several diatoms that made up 70% of the algal carbon biomass. In 2004, growth rates (0.34–0.45 day−1) and biomass of algae (2.9–5.4 μg Chl a l−1 and 209–260 μg C l−1) were low, which may be related to the lower nutrient concentrations recorded in 2004. Microzooplankton >5 μm were mainly composed of heterotrophic dinoflagellates and ciliates. Microzooplankton biomass peaked during summer (2002 320–329, 2004 246–361 μg C l−1), in response to the enhanced phytoplankton biomass and production. The grazer biomass was dominated by ciliates (71–76%) in July 2002 and by heterotrophic dinoflagellates (52–67%) in July 2004. Throughout the year and at different stations, microzooplankton grazed actively on phytoplankton, removing 26–58% of the Chl a and 57-84% of the primary production. In 2002, the highest grazing impact was observed on the large algae (>10 μm) during the period of diatom dominance. These results have a significant implication for carbon export to depth. Indeed, the recycling of most of the diatom production by the microbial food web in the upper water column would reduce the flux of material to the seafloor. This should be considered when modeling the carbon cycling in coastal environments and under conditions of diatom dominance. During both studies, ciliates had higher growth rates (0.5–1.5 day−1) and a higher carbon demand (165–470 μg C l−1 day−1) than dinoflagellates (0.1–0.5 day−1, 33–290 μg C l−1 day−1). Moreover, when grazer biomass was dominated by ciliates (in July 2002), herbivory accounted for 71–80% of the C ingested by microzooplankton while it accounted only for 14–23% when dinoflagellates dominated the grazer biomass (in July 2004). These results suggest that, in contrast to findings from open coastal waters, ciliate species of the restricted Bizerte Lagoon were more vigorous grazers of the large algae (diatoms) than were dinoflagellates.  相似文献   

11.
Release of14C-labelled carbon dioxide from uniformly labelled cells was used to measure respiration by individual ciliates in 2-h incubations in 1989 and 1990. In a strictly heterotrophic ciliate,Strobilidium spiralis (Leegaard, 1915), release of labelled carbon dioxide was equivalent to ca. 2.8% of cell C h–1 at 20°C, and there was no difference between rates in the dark and light. In the chloroplast-retaining ciliatesLaboea strobila Lohmann, 1908,Strombidium conicum (Lohmann, 1908) Wulff, 1919 andStrombidium capitatum (Leegaard, 1915) Kahl, 1932, release of labelled carbon dioxide was less in the light than in the dark in experiments done at 15°C. InL. strobila release of radiolabel as carbon dioxide was equivalent to ca. 2.4% of cell C h–1 in the dark but ca. 1% at 50µE m–2 s–1, an irradiance limiting to photosynthesis. InS. conicum release of radiolabel as carbon dioxide was equivalent to ca. 4.4% of cell C h–1 in the dark, but at an irradiance saturating to photosynthesis (250 to 300µE m–2 s–1) there was no detectable release of labelled carbon dioxide. InS. capitatum release of radiolabel as carbon dioxide was equivalent to ca. 4.3% of cell C h–1 in the dark but at an irradiance saturating to photosynthesis was ca. 2.4% of cell C h–1. These data, combined with data from photosynthetic uptake experiments, indicate that14C uptake underestimates the total benefit of photosynthesis by 50% or more in chloroplastretaining ciliates.Contribution no. 7510 from the Woods Hole Oceanographic Institution  相似文献   

12.
Ammonium excretion of a dense population (~1 500 individuals m–2) of the ophiuridOphiothrix fragilis (Abildgaard) was measured in the Dover Straits (French coast) between May 1989 and March 1990: the excretion rate varied from 4.8 µg N g–1 dry wt h–1 in November to 12.8 µg N g–1 dry wt h–1 in June. Mean individual ammonium excretion,E, wasE=0.019t +1.26 (whereE=µg N individual–1 andt=time in min;r=0.80;N=81). Variations in the ammonium excretion rate during a tidal cycle appeared to arise from variations in the duration of the suspension-feeding activity ofO. fragilis, which was governed by the strength of the tidal current. During short-term starvation, excretion was low (E=0.009t+1.47;r=0.91;N=17), increasing with increasing length of starvation [E=4.62lnt–2.5;r=0.95;N=17], as observed for other echinoderms; this could be due to catabolism of tissue. The daily ammonia flux from thisO. fragilis population to the water column was estimated at 41 mg N m–2 d–1.  相似文献   

13.
The plankton community in the Polar Front area of the Barents Sea was investigated during a cruise from 14 to 28 July 1987. The colonial algaePhaeocystis pouchetii andDinobryon pellucidum dominated the phytoplankton. Depth integrated carbon assimilation rates varied from 190 to 810 mg C m–2 d–1. A high carbon:chlorophyll ratio (which varied from 123 to 352) prevailed at the three stations investigated, which may relate to facultative heterotrophic behaviour byD. pellucidum. The herbivorous zooplankton community was dominated byCalanus glacialis, C. finmarchicus, andC. hyperboreus. Maximum zooplankton biomass was found in the same depth strata as phytoplankton chlorophyll maximum. The herbivorous copepod populations did not display consistent day-night vertical migration patterns. Phytoplankton consumption rates of the various life stages were estimated from the turnover rate of plant pigments in the gut. The gut defecation rate constant (R) varied from 0.014 to 0.027 min–1 at 0°C in copepodites (Stage II to adult female) ofC. glacialis, independent of developmental stage.Calanus spp. community carbon ingestion rates calculated from particulate carbon:chlorophyll ratios, were 10, 65 and 400% of daily phytoplankton carbon fixation rates at Stations 1, 2 and 3, respectively.  相似文献   

14.
Egg production ofCalanus finmarchicus at low temperature   总被引:2,自引:0,他引:2  
Reproduction ofCalanus finmarchicus Gunnerus collected in June 1988 in Polar water and in April 1989 in Atlantic water was studied. Single females were kept at 0°C in the laboratory for 22 d (Polar) and 77 d (Atlantic) with superabundant food concentration (> 400µg Cl–1) of the diatomThalassiosira antarctica. There was no significant difference between the two populations, although more spent females were found in Polar water, probably due to the different dates of collection. The hypothesis of low temperature determining the geographic range ofC. finmarchicus via reproductive failure is not supported. Mean daily egg production rate of all females from Atlantic water over a 60 d period was 24.4, corresponding to 5.5% body C female–1 d–1, when an egg carbon content of 0.23µg is assumed. Coefficient of variation was 25%. Maximum values were 53.2 eggs female–1 d–1, corresponding to 12.1% body C d–1. The highest number of eggs spawned by a single female was 3101, corresponding to a seven-fold turnover of body C during the investigation period; >20% of females produced > 2000 eggs. Body carbon content did not change significantly during the experiment; the C:N ratio increased slightly, indicating lipid accumulation. Delay of response to starvation periods of 2, 4 and 7 d duration was always 2 d: egg production ceased 2 d after the onset of starvation and continued 2 d after onset of feeding.  相似文献   

15.
Concentrations of dissolved inorganic nitrogen compounds above the pycnocline in the Oslofjord are very low in the summer, with turnover times of the inorganic N pools of no more than a few hours. To investigate the possibility that continued phytoplankton growth in the summer depends on ammonium excretion by microzooplankton, rates of NH 4 + regeneration and assimilation were measured by a 15N isotope dilution method. Daytime regeneration rates at 0–2 m depth were 0–28% of the calculated assimilation rates at ambient NH 4 + concentrations. Regeneration was faster during a dinoflagellate bloom in August than in mixed diatom-dinoflagellate blooms in June and September. Most of the NH 4 + appeared to be produced by juvenile copepods, rotifers, tintinnids, and heterotrophic dinoflagellates in the size fraction 45–200 m.  相似文献   

16.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

17.
In order to determine whether phytoplankton growth rates were normal or depressed, total plant carbon (g l–1) and in situ production rates (g C l–1 d–1) were measured for phytoplankton assemblages at Weathership Station P (50°N; 145°W) and at 53°N; 145°W in the subarctic Pacific in May and August 1984. Plant carbon, estimated from cell volumes determined using epifluorescence microscopy, was distributed as follow: 28% in the <2 m fraction, 38% in the 2 to 5 m size fraction, and the remainder in size classes >5 m. Carbon-specific growth rates (k), as doublings d–1, were calculated for the phytoplankton assemblages as a whole at each sampling depth down to 100 m for three days in May and for four days in August. The populations in the upper part of the euphotic zone showed average doubling rates of 1 d–1 and thus appeared to be growing at rates normally expected for the prevailing conditions of light and temperature. The low chlorophyll concentrations (0.3 to 0.4 mg chl a m–3) characteristically found in this oceanic region do not seem to be due to very slow growth of algal populations.Contribution No. 1695 of the School of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

18.
N2-fixation associated with the green macroalgaCodium fragile subsp.tomentosoides (van Goor) Silva from Long Island, New York, USA, was attributable to several species of endophytic cyanobacteria. Rates of N2-fixation ranged from 0.03 to 3.2µg N g–1 dry wt h–1 in freshly collected plants from several sites. Growth of the cyanobacteria appeared to be light-limited, due to the transmission of only 5 to 10% of incident light through the pigmented surface-layer of the macroalga. Daily irradiance was the most important factor determining both abundance of cyanobacterial cells and rate of N2-fixation. The rate was also affected by instantaneous irradiance, and increased twofold from dark to ambient surface irradiance. Rates were reduced at low temperature (8°C) but showed no temperature effect between 12° and 26°C. External concentrations of dissolved inorganic nitrogen (DIN) up to 20µM did not influence N2-fixation rate, but long-term exposure to 60µmol l–1 d–1 of NH 4 + caused a reduction in the rate. InC. fragile grown under high daily irradiance and low external DIN concentration, ~50% of the assimilated-N was attributable to N2-fixation. However, chlorophyllb extracted from plants grown with15N2 showed an atom % excess15N of less than 0.1, suggesting that only a small proportion of the bacterially fixed-N was transferred to the seaweed. The association betweenC. fragile and its endophytic cyanobacteria appears to be based primarily on microhabitat suitability, rather than mutual metabolic dependence. It is doubtful that N2-fixation by cyanobacteria is important to the ecological success of this seaweed species.  相似文献   

19.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

20.
At three stations in Bahamas waters, in 1989, 15 to 30% of all the dinoflagellates >20µm diameter observed in near-surface waters fluoresced green under blue excitation light, 55 to 66% fluoresced red, and the remainder did not fluoresce at all. The abundance of these green-fluorescing dinoflagellates ranged from ca 5 to 10 cells l–1 at the study sites. Under UV excitation, however, the dinoflagellates had a blue to blue-green appearance. Almost all the blue-green fluorescing dinoflagellates appeared to be heterotrophic, except for one species,Phalacroma rapa Stein, which also contained red-fluorescing (under blue light) chlorophylla. The emission spectra from all species examined were of three basic types. Type 1 typically had two fluorescence emission peaks (ca 440 and ca 510 nm). Type 2 spectra possessed one sharp peak at 495 nm. Spectra belonging to Type 3 had a broad peak around 470 to 480 nm. The green fluorescence thus is likely caused by different substances in individual species. The attempt to reconstitute observed spectra with nicotinamide adenine dinucleotide (NADH) and riboflavin 5-phosphate (FMN) solutions was unsuccessful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号