首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth and development rates were determined for nauplii of Calanus finmarchicus (Gunnerus) in the near-shore waters of a western Norwegian fjord from in situ mesocosm incubations. The major food source for the nauplii was diatoms, but Phaeocystis sp., dinoflagellates and ciliates were also part of the diet. At local temperatures ranging from 4.8 to 5.2 °C the cumulative median development time from hatching to Nauplius VI was 19 d. The time taken to molt to the next naupliar stage was approximately constant (3 d) from Stages IV to VI, but Stage III needed the longest development time (5 d). The instantaneous growth rate in terms of body carbon was negative from hatching to Nauplius Stage II, but as high as 0.25 to 0.30 d−1 from Stage III to V. Enhancement of food resources by nutrient addition led to no significant change in specific growth rates. Additionally, the cohorts from different nutrient regimes showed almost equal development time, size and body carbon within stages. Length–weight relationships of nauplii from the two different food resources were: W low resources = 4.17 × 10−6 × L 2.03 (r 2 = 0.84) and W high resources = 4.29 × 10−6 × L 2.05 (r 2 = 0.92), where weight (W) is in micrograms of C and body length (L) in micrometers. The natural body morphology of naupliar stages I to VI is illustrated with digital images, including the final molt from Nauplius VI to Copepodid Stage I. In general, development of the nauplii was faster than that of the copepodids of C. finmarchicus, and structural growth was exponential from naupliar stages III to VI. This study validates our earlier results that nauplii of C. finmarchicus can obtain high growth and nearly maximal developmental rates at relatively low food levels (∼50 μg C l−1), suggesting that nauplii exhibit far less dependence on food supply than copepodids. Received: 30 July 1999 / Accepted: 7 March 2000  相似文献   

2.
Marja Koski 《Marine Biology》2007,151(5):1785-1798
Feeding, egg production, hatching success and early naupliar development of Calanus finmarchicus were measured in three north Norwegian fjords during a spring bloom dominated by diatoms and the haptophyte Phaeocystis pouchetii. Majority of the copepod diet consisted of diatoms, mainly Thalassiosira spp. and Chaetoceros spp., with clearance rates up to 10 ml ind−1 h−1 for individual algae species/groups. Egg production rates were high, ranging from ca 40 up to 90 eggs f−1 d−1, with a hatching success of 70–85%, and fast naupliar development through the first non-feeding stages. There was no correlation between the egg or nauplii production and diatom abundance, but the hatching success was slightly negatively correlated with diatom biomass. However, the overall high reproductive rates suggested that the main food items were not harmful for C. finmarchicus reproduction in the area, although direct chemical measurements were not conducted. The high population egg production (>1,20,000 eggs m−2 d−1) indicated that a large part of the annual reproduction took place during the investigation, which stresses the importance of diatom-dominated spring phytoplankton bloom for population recruitment of C. finmarchicus in these northern ecosystems.  相似文献   

3.
Growth rates were determined for copepodites of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total copepodite development time was as short as 4 to 5 d. Mean instantaneous growth rates (g) ranged from as high as 1.2 d−1 to as low as 0.1 d−1. In general, cyclopoid copepods appeared to grow more slowly than calanoids of the same size. Enhancement of resources by nutrient addition caused a 32% increase in growth rates in experiments from a mesotrophic site, but only a 17% increase at a more eutrophic site. Additionally, copepodites at both sites showed faster development and generally larger size at stage in response to nutrient addition. Growth rates were positively related to chlorophyll concentration in the >2 μm size-fraction. A significant relationship of growth rate to body size (r 2 = 0.45) emerged across a wide range of trophic status, but it was confounded with resource availability. It appears that growth in tropical copepod copepodites may be frequently limited by resources in a size-dependent manner. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

4.
Growth rates and development times were determined for nauplii of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total naupliar development time was short: 3 to 4 d inshore and 4 to 5 d offshore. Mean instantaneous growth rates (g) ranged from as high as 0.90 d−1 for Parvocalanuscrassirostris to as low as 0.41 d−1 for Corycaeus spp. In general, nauplii of cyclopoid copepods appeared to grow more slowly than those of calanoids of the same size. Naupliar growth rates were significantly related to body size (r 2 = 0.43 to 0.50), but were unrelated to chlorophyll concentration in any measured size-fraction. This suggests that nauplii are generally not limited by resources, but are growing at their maximum temperature and size-dependent rates. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

5.
The growth rates of two fish species, the winter flounder Pseudopleuronectes americanus (Walbaum) (19.3 to 42.6 mm total length, TL) and the tautog Tautogaonitis (Linnaeus) (23.9 to 55.9 mm TL), were used to evaluate habitat quality under and around municipal piers in the Hudson River estuary, USA. Growth rates were measured in a series of 10 d field caging-experiments conducted at two large piers in the summers of 1996 and 1997. Cages (0.64 m2) were deployed along␣transects that stretched from underneath the piers to beyond them, encompassing the pier edge (the transitional zone between the pier interior and the outside). Growth in weight (G w ) was determined at five locations along the transect, 40 m beneath the pier, 20 m beneath the pier, at the pier edge, 20 m beyond the pier edge, and 40 m beyond. Under piers, mean growth rates of winter flounder and tautogs were negative (xˉG W  = −0.02 d−1), and rates were comparable to laboratory-starved control fishes (xˉG W  = −0.02 d−1). In contrast, mean growth rates at pier edges and in open waters beyond piers were generally positive (xˉG W ranged from −0.001 to +0.05 d−1), with growth at pier edges often being more variable and less rapid than at open-water sites. Analyses of stomach contents upon retrieval of caged fishes revealed that dry weights of food were generally higher among fishes caged at open-water stations ( range = 0.02 to 0.72 mg dry wt) than at pier-edge ( range = 0.01 to 0.54 mg) or under-pier ( range = 0.03 to 0.11 mg) stations, although it was apparent that benthic prey were available at all stations on the transect. Our results indicate poor feeding conditions among fishes caged under piers, and suboptimal foraging among fishes caged at pier edges. Inadequate growth rates can lead to higher rates of mortality, and, based on these and other earlier experiments, we conclude that under-pier environments are poor-quality habitats for some species of juvenile fishes. Received: 12 March 1998 / Accepted: 9 November 1998  相似文献   

6.
The talitrid amphipod Uhlorchestia spartinophila lives in close association with standing-dead leaves of the smooth cordgrass Spartina alterniflora Loisel in salt marshes along the Atlantic coast of North America. This study probed the strength of the trophic link between the amphipod population and the decomposition process in this detrital-based ecosystem. We measured survival, growth and reproductive output in groups of amphipods reared for 6 wk on five diets derived from sheath and blade portions of S. alterniflora leaves just prior to (senescent) and during (dead) decomposition. In unfed treatments, the daily specific mortality rate was 0.391 and starved amphipods survived no longer than 11 d. Among the fed treatments, a diet of senescent sheaths resulted in the lowest survival (20%) and yielded no offspring. Groups fed senescent blades, dead sheaths, dead blades and unwashed dead sheaths had survival rates of 56 to 84% and produced 5.0 to 12.5 offspring replicate−1. Sex ratio usually favored females, but approached unity in treatments with high overall survival, suggesting that quality of available food resources may influence sex ratio in this species. Mean specific growth rates (mm mm−1 d−1) ranged from 0.013 to 0.016, and matched previous estimates of growth from field populations. Overall ecological performance (survival + growth + reproduction) was similar for all food treatments, except senescent sheaths, which yielded a final mean (±SD) dry biomass (0.4 ± 0.42 mg replicate−1) of amphipods significantly lower than that of other diets (1.7 ± 0.81 to 2.6 ± 0.69 mg replicate−1). Natural diets derived from decomposing cordgrass leaves can fulfill the nutritional requirements of U. spartinophila populations, but variation in initial amounts of living fungal biomass among the five experimental diets only partially explained the responses of amphipods in our experiment. Structural characteristics and variation in rates of fungal occupation within different portions of cordgrass leaves may affect the amphipod's ability to access plant production made available by decomposers. Received: 12 December 1996 / Accepted: 18 December 1996  相似文献   

7.
The use of the egg production rate of herbivorous copepods as an important parameter for understanding population dynamics and as an index of secondary production requires knowledge of the regulatory mechanisms involved and of the response to changes in food concentrations and temperature. Furthermore, the effects of season and generation on egg production have to be studied. In this context data are presented for Calanus finmarchicus from the northern North Atlantic. Prefed and prestarved females were exposed to different concentrations of the diatom Thalassiosira antarctica over 1 to 2 wk at 0 or 5 °C, and egg deposition was controlled daily. Egg production increased with higher food concentrations, but much less when prestarved. The effect of temperatures between −1.5 and 8 °C on egg production was studied in females maintained at optimum feeding conditions. Egg production rate increased exponentially over the whole temperature range by a factor of 5.2, from 14.2 to 73.4 eggs female−1 d−1, and carbon-specific egg production by 4, from 2.1 to 8.5% body C d−1. The response to starvation was also temperature dependent. In both the temperature and feeding experiments egg production rate was regulated mainly by changes of the spawning interval, while changes of clutch size were independent of experimental conditions. Different responses to optimum feeding conditions were observed in females collected in monthly intervals on three occasions between March and May. The March females deposited more clutches than the April and May females. In May, >50% of the females did not spawn at all. Maximum egg production rates were never >25% of the rate expected at 5 °C, indicating endogenous control of egg production in addition to food and temperature effects. Received: 4 August 1996 / Accepted: 11 September 1996  相似文献   

8.
R. Villanueva 《Marine Biology》2000,136(3):449-460
Over the past decade, statolith interpretation has resulted in a major advance in our knowledge of squid population-dynamics, but the way in which environmental conditions affect the statolith increment-deposition ratio remains virtually unknown. The object of the present study was to determine the effect of temperature on this process, using tetracycline marks to validate statolith growth in Loligo vulgaris Lamarck, 1798 under rearing conditions equivalent to severe winter (11 °C) and summer (19 °C) temperature regimes. Tetracycline marking was performed every 10 d (at 10, 20, 30, 40, 50 and 60 d of age). The newly hatched squid paralarvae were slightly smaller in summer than those hatched in winter. Survival rates were similar in both cultures, but growth rates (wet mass) of summer squids were double those in winter. At hatching, statoliths were already longer in the summer squids, and growth rates were 2% d−1 as opposed to 0.9% d−1 for winter statoliths. For the dorsal dome area of the statolith, where more increment counts were made, statolith growth was of 3.25 μm d−1 in summer, and daily increment deposition was confirmed in 87% of the statoliths. The slow growth of statoliths at winter temperatures yielded a mean growth of 1.1 μm d−1– insufficient to discern the increments using light microscopy. Subsequent SEM observation enabled only 21% of the winter statoliths to be read; these also indicated a deposition rate of one increment d−1. Since the life span of L. vulgaris is ≃1 yr, squids will experience at least one winter during their life cycle, and this might be visible on the statolith. Received: 28 June 1999 / Accepted: 20 December 1999  相似文献   

9.
R. Villanueva 《Marine Biology》2000,137(1):161-168
 Apart from one study that reported growth of less than one increment per day in statoliths of the squid Alloteuthis subulata, most studies so far have presumed that one increment was laid down per day in the statoliths of the squid species they examined. The present study provides evidence of differential daily growth rates in embryonic statoliths of the squid Loligo vulgaris Lamarck, 1798, thus confirming a previous report for A. subulata. Incremental growth rates of L. vulgaris statoliths differ as a function of temperature. Squid embryos were incubated in the laboratory at three temperatures (12.0, 15.5 and 21.1 °C), and tetracycline staining was used to follow statolith growth. This growth slowed in squid exposed to the lowest temperature, but recovered when the squid were returned to warm conditions, indicating statolith adaptation. Statolith growth rate after incubation at 12 °C was 1.3% d−1 and reached 6.1% d−1 for squids exposed to 21.1 °C. Statoliths from embryos incubated at 15.5 °C yielded a rate of 1 increment d−1 and a mean daily growth of 2.2 μm in the dorsal dome area of the statolith. In contrast, the slow growth of statoliths incubated at 12 °C yielded a mean daily growth of only 0.9 μm in the dorsal dome and the readings resulted in a less-than-daily increment-deposition rate. Received: 9 October 1999 / Accepted: 30 March 2000  相似文献   

10.
On the eastern shore of Nova Scotia late summer atmospheric systems cause upwelling of shelf water; the associated temperature variations of 10 °C with a 6 to 8 d period are comparable in magnitude to the seasonal variation. A laboratory study was undertaken to assess the effects of these temperature fluctuations on sea scallop (Placopecten magellanicus) growth and metabolism. In a factorial design, scallops were subjected to constant (10 °C) or a variable (6 to 15 °C) 8 d temperature cycle, and either a low (seston in filtered seawater) or high (seston supplemented with cultured phytoplankton) food diet. During the 48 d experiment scallop mortality was low and growth positive in all treatments. Shell and total tissue growth rate did not differ between temperature treatments, but growth in the high food treatments was 40 to 50% higher than in the low food treatments. However, soft tissue (excluding adductor) growth did show a temperature treatment effect; growth rates were significantly higher in the fluctuating temperature treatment, due in part to greater gonad development. Weight-standardized rates of scallop oxygen consumption (V sO2 , μmol O2 g−1 h−1) were 20 to 25% higher in high food than in low food treatments, consistent with the expected increase in respiration due to the higher growth rates. Scallop metabolism did not acclimate to the fluctuating temperature cycle; V sO2 and ammonium excretion (V sNH+ 4, μmol O2 g−1 h−1) remained dependent on ambient temperature throughout the experiment. V sNH+ 4 Q10 (2.77) was higher than V sO2 Q10 (2.01) which was reflected in a decrease in the O:N ratio at 15 °C, indicating a shift toward increased protein catabolism and a stressed state. At 10 °C, V sO2 and V sNH+ 4 in the variable temperature treatments were 15 to 18% lower than in the constant temperature treatments, a difference that was not detected in growth measurements. Results demonstrate that the metabolism of Placopecten magellanicus, unlike some bivalve species, is tightly coupled to fluctuations in ambient temperature. Although an absence of compensatory acclimation had a minimal effect on growth in this study, if high temperatures were combined with low food conditions a reduction in scallop production could result. Received: 23 June 1998 / Accepted: 8 February 1999  相似文献   

11.
Five pelagic Halobates species occupy a vast area from 40 north to 40 south in the three major oceans. Oceanic diffusion, constantly acting to disperse these insects, must be an important factor in determining their life history and distribution. We investigated the effects of oceanic diffusion on the following aspects of these insects. (1) The estimated radius of a patch of Halobates could be expanded by oceanic diffusion alone from an initial point of origin to 1250 km in 60 d. This distance is about 1/12 of the maximum distributional range of H. micans in the Pacific Ocean. Mutual encounter rates due to oceanic turbulence could be as high as 11 d−1 even at low population densities (100 ind km−2). This suggests that individuals from their original habitat could find mates even when they had been carried a long distance. Thus, extensive gene mixing may occur over the whole range of a species' distribution. (2)␣Estimated growth rates are rather low (0.0026 to 0.0079 d−1) compared with those of other insects. However, they are offset by a long life span (over 90 d) and an extended oviposition period (perhaps over 2␣months). Thus, pelagic Halobates spp. appear to have adopted a strategy of slow growth and prolonged longevity to cope with living in an unstable physical environment that is constantly disturbed by storms and winds. Received: 5 February 1995 / Accepted: 30 October 1997  相似文献   

12.
Moerisia lyonsi Boulenger (Hydrozoa) medusae and benthic polyps were found at 0 to 5‰ salinity in the Choptank River subestuary of Chesapeake Bay, USA. This species was introduced to the bay at least 30 years before 1996. Medusae and polyps of M. lyonsi are very small and inconspicuous, and may occur widely, but unnoticed, in oligohaline waters of the Chesapeake Bay system and in other estuaries. Medusae consumed copepod nauplii and adults, but not barnacle nauplii, polychaete and ctenophore larvae or tintinnids, in laboratory experiments. Predation rates on copepods by medusae increased with increasing medusa diameter and prey densities. Feeding rates on copepod nauplii were higher than on adults and showed no saturation over the range of prey densities tested (1 to 64 prey l−1). By contrast, predation on copepod adults was maximum (1 copepod medusa−1 h−1) at 32 and 64 copepods l−1. Unexpectedly, M. lyonsi colonized mesocosms at the Horn Point Laboratory during the spring and summer in 4 years (1994 to 1997), and reached extremely high densities (up to 13.6 medusae l−1). Densities of copepod adults and nauplii were low when medusa densities were high, and estimated predation effects suggested that M. lyonsi predation limited copepod populations in the mesocosms. Polyps of M. lyonsi asexually produced both polyp buds and medusae. Rates of asexual reproduction increased with increasing prey availability, from an average total during a 38 d experiment of 9.5 buds polyp−1 when each polyp was fed 1 copepod d−1, to an average total of 146.7 buds polyp−1 when fed 8 copepods d−1. The maximum daily production measured was 8 polyp buds and 22 medusae polyp−1. The colonizing potential of this hydrozoan is great, given the high rates of asexual reproduction, fairly wide salinity tolerance, and existence of a cyst stage. Received: 29 October 1998 / Accepted: 3 March 1999  相似文献   

13.
 As part of an ongoing study of changes in the trophic pathways of Florida Bay's pelagic ecosystem, the nutritional environment (seston protein, lipid and carbohydrate levels), diet (taxon-specific microplankton ingestion rates) and egg production rate of the important planktonic copepod Acartia tonsa were measured off Rankin and Duck Keys in July and September 1997 and in January, March and May 1998. Rankin Key has been the site of extensive sea grass mortality and persistent ultraplankton blooms since 1987. Duck Key has experienced neither of these perturbations. Protist (auto-plus heterotroph) biomass was approximately twice as high off Rankin as off Duck Key. Diatoms, dinoflagellates and heterotrophic protists dominated the food environment off Rankin Key, while cells <5 μm diam often predominated off Duck Key. Protein and carbohydrate concentrations were higher off Rankin Key than Duck Key, while average lipid levels were usually low at both stations. Ingestion rates at both stations frequently approached temperature- and food-dependent maxima for the species, exceeding 100% of estimated body C d−1 on 3 of 5 occasions off Rankin Key. Egg production rates, however, were consistently low (Rankin: 3 to 16 eggs copepod−1 d−1; Duck: 1 to 12 eggs copepod−1 d−1), and gross egg production efficiencies (100% × egg production C/ingested C) averaged <10%. At Duck Key, egg production rate varied with temperature and food concentration, while off Rankin Key, egg production was strongly correlated with seston protein content. The efficiency with which lipids (which were scarce in the seston) were transferred from the diet to the eggs increased exponentially with decreasing seston lipid content. Egg production efficiencies based on protein, however, were independent of seston protein content and never exceeded 10%. Received: 23 December 1998 / Accepted: 23 March 2000  相似文献   

14.
J. J. Fritz 《Marine Biology》1999,133(3):509-518
This study addresses carbon fixation and coccolith production and detachment in the cosmopolitan species Emiliania huxleyi (Lohmann) Hay et Mohler, under conditions of nitrate limitation and high light typical of surface water in the ocean. Cells were grown under controlled growth conditions using nitrate-limited cyclostat cultures at four growth rates between 0.2 and 0.7 d−1 in 1995. Both photosynthesis and calcification rates increased with growth rate. Coccolith dimensions remained constant at all cell growth rates. Specific rates of coccolith detachment also increased linearly with cell-specific growth rate at a ratio not significantly different from 1.00. Estimates of coccolith carbon content decreased with increasing cell growth rates. Received: 18 March 1997 / Accepted: 8 October 1998  相似文献   

15.
Ophiocten gracilis is an ophiuroid found at bathyal depths in the North Atlantic Ocean. The adults show strong seasonal reproduction, with an ophiopluteus in the surface plankton. Settling postlarvae were collected in sediment traps moored at 1000 and 1400 m depth in the NE Atlantic during Julian Days 142 to 212 (May to July) in 1996. During this period, growth of postlarvae in the traps was linear and the diet consisted of phytodetritus and foraminifera. Experiments suggest that postlarvae sink at rates of up to 500 m d−1, although this may well be slower in the natural environment. The high fecundity, seasonality and high population density resulted in high fertilization success, and many of the offspring were advected outside the normal adult range, where they were able to settle but did not survive to adulthood. Received: 8 October 1999 / Accepted: 8 May 2000  相似文献   

16.
Cephalopod mollusks exhibit highly plastic life cycle traits influenced primarily by the interactive effects of food availability, light cycle and temperature, with the latter perhaps the most influential. Hatchlings of the tropical reef squid Sepioteuthis lessoniana were hatched from field-collected eggs in the laboratory and cultured at different temperatures to evaluate the effect of temperature on growth rates. All groups showed rapid, sustained growth rates from hatching to a size of 10–25 g. Beyond this size range, growth was slower and not clearly exponential in form. Growth rate was closely linked to temperature. Squids grown at approximately 27 °C attained a size of 10 g in as little as 45 days at sustained growth rates of 12.2% body weight day−1 (%bw day−1), while squids cultured at 20 °C required almost 100 days to attain the same size at rates of 5.7%bw day−1. At an age of 55 days and approximately 1 g body weight, juvenile squids cultured at 20 °C were able to accelerate growth rates from 5.7%bw day−1 to over 12%bw day−1 when temperature was raised to 27 °C. They maintained this growth rate to a size of about 10 g and an age of at least 75 days post-hatching, indicating that body size and not age is the limiting factor for this rapid post-hatching growth. By comparison, conspecifics cultured near 27 °C from hatching had shifted out of the rapid post-hatching growth phase by day 50 at sizes between 10 and 50 g. The hatchlings from temperate to subtropical Japan had consistently higher growth rates at comparable temperatures than hatchlings from tropical Okinawa. When plotted as growth rate versus temperature, the Japanese group had a clearly higher slope to the relationship than the tropical populations, equivalent to a 2%bw day−1 difference in growth rate at 25 °C. Age at first egg-laying was decreased at higher culture temperatures; however, overall life span was not. Received: 21 February 2000 / Accepted: 6 September 2000  相似文献   

17.
T. Kamiyama 《Marine Biology》1997,128(3):509-515
Growth and feeding rates of two tintinnid species, Favellaazorica and Favellataraikaensis, were determined under various concentrations of the dinoflagellate Heterocapsacircularisquama which has been reported as highly toxic to shellfish. Mean growth rates of F. azorica and F. taraikaensis on a diet of H.circularisquama (ca. 102 cells ml−1) were 2.15 and 1.97 doublings d−1, respectively. These values are similar to those on a diet of Heterocapsatriquetra which is suitable food for various zooplankton. However, growth rates of both tintinnid species decrease with increasing concentrations of >103 cells ml−1 of H. circularisquama. In particular, H. circularisquama under conditions of >103 cells ml−1 caused mortality in F.taraikaensis, probably due to toxins. Clearance and ingestion rates of F. azorica on H. circularisquama were 4.1 to 27.5 μl ind−1 h−1 and 1.5 to 28.7 cells ind−1 h−1, respectively, at concentrations of <104 cells ml−1 and those of F. taraikaensis were 0.9 to 22.1 μl ind−1 h−1 and 0.1 to 13.0 cells ind−1 h−1, respectively, at concentrations of <103 cells ml−1. Both clearance and ingestion rates on H.circularisquama were higher for replicates fed on H.triquetra. Daily grazing impact of the two species of Favella on the initial stage of a bloom of H.circularisquama were estimated to reach 6 to 50% of H. circularisquama at a concentration of 540 cells ml−1, indicating that grazing by tintinnids such as Favella spp. may significantly regulate the initial stages of blooms of H. circularisquama. Received: 3 January 1997 / Accepted: 27 January 1997  相似文献   

18.
Artemia franciscana was grown on Isochrysis galbana Green (clone T. Iso) at saturated food concentrations (13 to 20 mg C l−1) for 11 d at 26 to 28 °C, and 34 ppt salinity. Three groups of brine shrimp were used in the feeding experiments: metanauplius III and IV (Group 1), post-metanauplius II and III (Group 2) and post-metanauplius VIII (Group 3), corresponding to 4-, 7- and 11-d-old animals, respectively. The ingestion rate, clearance rate and carbon balance were estimated for these stages at different concentrations of 14C-labeled I. galbana ranging from 0.05 to 30 mg C l−1. The handling time of algae was determined for all three groups. The ingestion rate (I, ng C ind−1 h−1) increased as a function of animal size and food concentration. In all three groups, the ingestion rate increased to a maximum level (I max) and remained constant at food concentrations ≥10 mg C l−1 (saturated food concentrations). The clearance rate (CR, μl ind−1 h−1) increased with increasing food concentration up to a maximum rate (CR max), after which it decreased for even higher food concentrations. The functional response of A. franciscana was most consistent with Holling's Type 3 functional response curve (sigmoidal model), which for the two oldest groups (Group 2 and 3) differed significantly from a Type 2 response (p < 0.05). The gut passage time for the three groups of A. franciscana, feeding on saturated food concentration (20 mg C l−1), varied between 24 and 29 min. As the nauplii developed to pre-adult stage the handling time of the algae increased as a function of animal size. The assimilation rate (ng C ind−1 h−1) in the youngest stages (Group 1 and 2) increased with increasing food concentrations, reaching a maximum level close to 10 mg C l−1. At higher food concentrations the assimilation rate decreased, and the proportions of defecated carbon increased, reaching 60 to 68% in the post-metanauplius stages (Group 3). The assimilation efficiency (%) was high at the lowest food concentrations in all three groups (89 to 64%). At higher concentrations, the assimilation efficiency decreased, reaching 56 to 38% at the highest concentrations. Received: 2 February 2000 / Accepted: 25 March 2000  相似文献   

19.
 The pathway for the flow of salt-marsh grass production into marsh food-webs is still not well defined. We compared the abilities of three marsh macroinvertebrates [salt marsh periwinkles, Littoraria irrorata (Say) (=Littorina irrorata), salt-marsh coffee-bean snails, Melampus bidentatus (Say); and a talitrid amphipod, Uhlorchestia spartinophila Bounsfield and Heard] to access standing-dead leaves of smooth cordgrass (Spartina alterniflora Loisel). The invertebrates were incubated with naturally-decaying leaves, and the rates of removal of organic matter and living fungal biomass (ergosterol) were measured. The impact of invertebrate activity upon fungal growth rates was measured as rates of fungal-membrane synthesis (incorporation of radioacetate into ergosterol). The removal rates of organic leaf biomass per mg individual biomass were highest for amphipods (700 μg mg−1 d−1) and lowest for periwinkles (90 μg mg−1 d−1), but the relatively large biomass of the snails made their removal rates per individual greater than those of amphipods. Net removal of ergosterol by all three invertebrates was >50% for yellow-brown (early-decay) leaf blades. For fully-brown (advanced-decay) blades, >50% removal of ergosterol was found only for periwinkles; exposure to coffee-bean snails and amphipods resulted in a net ergosterol reduction of ≤20%. The lower net reduction of living fungal biomass by coffee-bean snails and amphipods may have been due to fungal-growth stimulation (2.3-fold stimulation in coffee-bean snails and 1.5-fold stimulation in amphipods). Grazing by periwinkles did not stimulate fungal growth, possibly because of its high intensity. Grazing by these three salt-marsh shredders may affect marsh-grass shoot-decay in different ways. Periwinkles may abbreviate the period of fungal production, and incorporate the decaying material relatively quickly into snail biomass and fecal-pellet rain to the sediments. Coffee-bean snails and amphipods may enhance and prolong fungal production, along with the formation of fecal-pellet rain. All three invertebrates fed preferentially on leaf blades rather than leaf sheaths, and feeding rates of gastropods were higher during the night than during the day. Received: 25 November 1998 / Accepted: 4 November 1999  相似文献   

20.
The production dynamics and carbon balance of Thalassia testudinum in the lower Laguna Madre, Texas, USA, were examined during the 1995 summer period based on in situ photosynthesis vs irradiance (PI) measurements and continuous measurements of underwater photon-flux density (PFD). The validity of applying the H sat model, used to calculate production for Zostera marina as the product of the maximum rate of photosynthesis (P max) and daily hours of saturating irradiance (H sat) was assessed for T. testudinum by comparison with integrated production estimates derived through numerical integration. Gross integrated production values were combined with dark-respiration measurements of photosynthetic (PS) and non-photosynthetic (NPS) tissues and areal biomass to generate daily whole-plant carbon balance. Production and whole-plant carbon balance are discussed in relation to surface and underwater PFD measurements, biomass and other physical and chemical parameters collected during a 1 yr period from January to December 1995. The H sat model significantly underestimated production during all summer months, averaging 70% of integrated production over the entire study period. Gross integrated production ranged between 11.5 mg C g−1 leaf dry wt d−1 in June (during a period of unseasonably low PFDs caused by a drift-alga mat covering the seagrass bed) to 26.7 mg C g−1 leaf dry wt d−1 in July. Modeled net carbon gain was highest in July at 454 mg C m−2 d−1 (1.4 g dry wt m−2 d−1), sufficient to account for measured rates of leaf production in the study area and representative of T. testudinum populations of low productivity. During part of the summer period, however, the population was in negative carbon balance. The relatively low productivity of this population and the periods of negative carbon balance are attributed to low net photosynthesis:dark respiration (P net:R d) ratios, sporadic low-light periods, the small fraction of PS tissue relative to whole-plant biomass (5 to 13%) and nutrient limitation. Production models are sensitive to both light availability and the proportion of PS tissue supporting NPS biomass as reflected in whole-plant P net:R d ratios. Received: 13 August 1997 / Accepted: 6 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号