首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为准确分析工作面绝对瓦斯涌出量的非平稳特征,实现瓦斯涌出量的准确预测,基于经验模态分解(EMD)、修正的果蝇优化算法(MFOA)和极限学习机(ELM)基本原理,构建瓦斯涌出量的EMD-MFOA-ELM多尺度时变预测模型。通过EMD将瓦斯涌出量时变序列进行深层次分解,获得多尺度本征模态函数(IMF);采用MFOA-ELM对各IMF时变序列建立动态预测模型,等权叠加各预测值,得到模型最终预测结果。以晋煤某矿瓦斯涌出量监测时序样本为例进行研究分析,结果表明:EMD能充分挖掘出监测数据隐含信息,有效降低数据复杂度;该模型预测相对误差为0.024 3%~0.651 0%,平均值仅为0.252 6%,预测精度和泛化能力高于未经EMD分解模型,能很好地适用于非平稳时变序列预测。  相似文献   

2.
为了精准预测瓦斯涌出量,针对绝对瓦斯涌出量非线性、时变性、复杂性等特点,提出采用核主成分分析法(KPCA)对影响因素进行降维处理;针对BP神经网络(BPNN)中存在的收敛速度慢和易陷入局部最优解的问题,采用压缩映射遗传算法(CMGA)优化BPNN;构建CMGA与BPNN的耦合算法(CMGANN),计算分析某低瓦斯矿井监测历史数据形成的样本集,建立KPCA-CMGANN预测模型;用KPCA-CMGANN预测模型和其他3种网络模型分别对煤矿现场数据进行预测。结果表明:KPCA-CMGANN预测模型在379个时间步长里达到收敛,4个回采工作面的瓦斯涌出量预测相对误差分别为0.58%、0.63%、0.57%和0.45%,平均相对误差仅为0.56%,预测精度和收敛速度均优于对比模型,可实现瓦斯涌出量的快速精准预测。  相似文献   

3.
回采工作面瓦斯涌出特征及其灰色预测模型   总被引:2,自引:0,他引:2  
在分析回采工作面瓦斯涌出特征的基础上 ,分别建立了回采工作面瓦斯涌出量与采深和工作面产量关系灰色预测 GM(1,1)改进模型 ,以预测工作面在不同采深与产量时的瓦斯涌出量。实际应用表明 ,预测模型可信 ,精度能满足要求。  相似文献   

4.
为有效分析煤矿瓦斯监测数据以实现较准确的瓦斯浓度预测,研究应用希尔伯特-黄变换(HHT)方法进行瓦斯浓度时间序列分析与预测的方法。应用经验模态分解(EMD)方法将瓦斯浓度时间序列分解成不同频率的固有模态函数(IMF)分量的叠加,以获取瓦斯浓度时间序列的瞬时特征;通过Hilbert变换求得各IMF分量的瞬时频率,依据各IMF分量瞬时频率的均值将分解得到的IMF划分成较高频和低频2类新的分量,选取适合于各分量特征的预测模型分别进行预测,以消除局部随机性对预测精度的影响,结合自回归(AR)、径向基函数(RBF)神经网络和支持向量机(SVM)3种预测模型实现瓦斯浓度预测。实例分析表明:应用该方法所得预测结果比较准确,降低了预测复杂度,提高了预测精度。  相似文献   

5.
回采工作面瓦斯涌出量预测的神经网络方法   总被引:1,自引:1,他引:1  
回采工作面瓦斯涌出量受煤层瓦斯含量、工作面产量和采煤方法等各种因素的影响 ,笔者通过研究得出 :回采工作面瓦斯涌出量与煤层的赋存条件和开采条件之间是一种非线性关系 ,但目前还难以用精确的数学建模来求解。因此 ,提出了一种应用BP人工神经网络模型和算法 ,建立工作面瓦斯涌出量预测模型 ,从而预测不同开采条件下回采工作面瓦斯涌出量。实际应用表明 ,模型精度能满足要求。笔者还对隐含层神经元数目对步长影响作了讨论。  相似文献   

6.
为更有效预测回采工作面绝对瓦斯涌出量,基于Lyapunov稳定性原理,改进Elman模型的递归部分。选取煤层瓦斯含量、煤层埋藏深度、煤层厚度、煤层倾角、采高、日工作进度、工作面长度、工作面采出率、邻近层瓦斯含量、邻近层厚度、邻近层间距、开采强度和层间岩性作为监测指标,对某矿16个学习样本进行训练,建立隐层递归反馈(HRF)Elman预测模型。利用矿井监测数据检验预测模型。试验结果表明,用HRF Elman模型能够有效地预测出瓦斯涌出量,预测结果相对误差为1.6%~3.41%,平均相对误差为2.45%,相比传统的Elman模型,预测精度和效率都有所提高。  相似文献   

7.
在煤矿瓦斯灾害中,煤矿瓦斯突出是导致瓦斯重特大事故的主要原因之一。目前常用的基于反向传播(BP)神经网络和遗传算法-Elman神经网络(GA-ENN)耦合算法等建立瓦斯涌出量预测模型的预测方法在收敛性和精度上均存在一定的缺陷。提出了一种利用混沌免疫遗传优化算法(CIGOA)对Elman神经网络进行改进的新型智能优化算法来增强粒子的活性,提高其局部搜索能力和全局优化能力,克服了遗传算法(GA)的固有缺陷。对煤矿现场跟踪实测后进行仿真分析,结果表明:运用提出的CIGOA-ENN预测模型预测的最大相对误差为4.47%,最小相对误差为1.12%,平均相对误差为2.27%,明显小于BP神经网络和GA-ENN等预测模型的预测结果,表明CIGOA-ENN预测模型的输出结果更精确,对瓦斯涌出量预测系统的辨识误差更小,性能更优越。  相似文献   

8.
为快速、准确预测回采工作面瓦斯涌出量,基于投影降维思想,建立一种遗传算法(GA)投影寻踪回归预测方法。选取煤层瓦斯原始含量、埋藏深度、煤层厚度、煤层倾角、工作面长度、推进速度、采出率、临近层瓦斯含量、临近层厚度、临近层层间距、岩层岩性、开采深度作为评价因子,对某矿15个学习样本进行训练,建立GA投影寻踪回归预测模型。利用该矿3个实测样本对模型进行检验,并与主成分分析和BP神经网络方法结果进行对比。研究表明:利用GA投影寻踪回归预测回采工作面瓦斯涌出量,平均误差为3.43%,最大误差为5.7%,精度优于其他2种方法。  相似文献   

9.
矿井相对瓦斯涌出量动态无偏灰色马尔科夫预测   总被引:7,自引:0,他引:7  
矿井瓦斯涌出量预测对于煤矿瓦斯防治具有重要意义。为预测矿井瓦斯相对涌出量,以传统灰色GM(1,1)模型为基础,构建动态无偏灰色马尔科夫模型,通过分析潞安矿区某矿2003—2010年的煤矿相对瓦斯涌出量数据,预测2011—2012年煤矿相对瓦斯涌出量数据,利用无偏灰色GM(1,1)模型代替传统灰色GM(1,1)模型,通过拟合得到煤矿相对瓦斯涌出量数据变化趋势,并在此基础上利用马尔科夫模型进行预测,并在此预测中进行原始数据更新,并对4种预测方法的预测结果进行对比分析。结果表明,动态无偏灰色马尔科夫模型不但能够消除传统灰色GM(1,1)模型自身的固有偏差,而且能提高预测精度,平均绝对误差为3.2%,平均相对误差为2.59%,均低于传统灰色GM(1,1)模型与一般灰色马尔科夫模型。动态无偏灰色马尔科夫模型对于煤矿相对瓦斯涌出量数据的平均预测精度达到96.74%。  相似文献   

10.
为了对回采工作面瓦斯涌出量进行预测,提出将支持向量机(SVM)与遗传算法(GA)相耦合。利用GA寻找SVM最优的惩罚参数c和核函数参数g,并结合SVM训练速度快且具有良好泛化性能的特点,建立了基于SVM耦合遗传算法的回采工作面瓦斯涌出量预测模型。煤层深度、煤层厚度、煤层倾角、开采层原始瓦斯量、煤层间距、采高、临近层瓦斯含量、临近层厚度、层间岩性、工作面长度、推进速度、采出率、日产量对瓦斯涌出量的影响是复杂的、非线性的,因而将其作为预测的影响参数。将瓦斯涌出量作为目标参数。分别将影响参数和目标参数作为GA-SVM的输入值和输出值进行训练,训练后的预测输出和期望输出之间的误差绝对值作为GA的适应度函数值进行参数优化。结果表明,该预测模型预测的最大相对误差为5.878 2%,最小相对误差为0.923 0%,平均相对误差为2.180 9%,相比耦合前及其他预测模型有更强的泛化能力和更高的预测精度。  相似文献   

11.
随着中厚煤层资源的枯竭,近距离薄煤层群开采成为我国资源的重要补充。煤层群开采时合理的采掘部署是防止工作面瓦斯集中涌出的关键,本文通过分析近距离煤层群开采时各回采顺序下工作面瓦斯涌出量,建立了以工作面瓦斯涌出量预测为基础的近距离煤层群开采优化模型,利用计算机编程实现了模型的可视化操作。该模型通过对比分析全部种回采顺序方案,选择整个回采期间瓦斯涌出量最均衡的方案为最优方案。对翔升煤矿进行了实例分析,结果显示合理的回采方案可以使工作面最大瓦斯涌出量大大减小,使整个回采期间工作面瓦斯涌出量趋于均衡。为煤层群开采优化技术中的瓦斯环节提供了理论依据。  相似文献   

12.
为了提高煤矿工作面瓦斯涌出量的预测精度,研究一种将极端学习机(ELM)与利用混沌搜索策略改进的人工蜂群(CSABC)算法相结合的预测方法。改进后的人工蜂群算法有效解决了ABC算法易陷入局部最优、后期收敛慢等缺陷,利用CSABC优化ELM的输入层和隐含层参数,避免了随机产生ELM参数所造成的误差,建立基于CSABC-ELM的瓦斯涌出量预测模型。利用实际煤矿监测数据对该模型进行试验分析,并与ABC-ELM,ELM和BP神经网络的预测结果进行比较。结果表明,CSABC-ELM预测误差更小,精度更高,泛化性能也更强,能有效地对煤矿瓦斯涌出量进行预测。  相似文献   

13.
为准确预测瓦斯涌出量,选取某煤矿的开采煤层、临近煤层、采空区3个瓦斯涌出源作为实例研究,将BP神经网络、粒子群算法(PSO)、Ada Boost迭代提升算法和瓦斯涌出分源预测法相结合,建立基于PSOBP-Ada Boost算法的瓦斯涌出量分源预测模型,并将其与BP神经网络算法进行比较分析。结果表明,PSOBP-Ada Boost算法预测的3个瓦斯涌出源平均相对误差分别为3.24%,2.11%,3.21%;BP神经网络的平均相对误差分别为6.73%,3.19%,4.27%,基于PSOBP-Ada Boost模型的预测精度明显优于BP神经网络模型。  相似文献   

14.
为防治瓦斯灾害,解决井下瓦斯涌出量在预测过程中因影响因素繁多带来的精度较低问题,提出1种基于套索(Lasso)回归与随机搜索优化极限梯度提升(XGBoost)的模型进行瓦斯涌出量预测。以沈阳某煤矿综采面瓦斯涌出量历史数据为例,综合考虑影响瓦斯涌出量的影响因素。首先利用Lasso回归提取对瓦斯涌出量有重要影响的特征数据,作为预测输入;采用随机搜索算法对XGBoost模型4种主要参数进行寻优,选取最优参建立预测模型获得预测指标并分析比较其他模型。研究结果表明:Lasso回归筛选出的影响因素结合随机搜索获得的最优参数组合优化XGBoost比其他模型预测精度更高,平均相对误差为1.53%,均方根误差为0.140 3 m3/min,希尔不等系数为0.013 2,研究结果可为现场瓦斯管理提供参考依据。  相似文献   

15.
为提高回采工作面瓦斯体积分数预测时效性,建立了EMDLSSVM的瓦斯体积分数动态预测模型;为能够快速有效地反映瓦斯体积分数当前状态,避免早期历史数据对模型预测的影响,采用复合窗口技术对瓦斯体积分数时间序列进行动态更新;为提高算法预测精度,先采用经验模态分解算法(EMD)对更新后的窗口数据进行分解得到高频项、低频项和趋势项,考虑到瓦斯体积分数变化受到诸多因素干扰导致预测难度较大,但由同类因素影响的瓦斯体积分数变化特征具有较高的相似性,利用聚类方法将瓦斯体积分数监测数据划分成性质相似的若干个模式类别,以减少各种随机因素对预测结果的影响,再利用最小二乘支持向量机(LSSVM)对高、低频项进行加权预测,用自回归(AR)模型对趋势项进行预测,最后进行组合预测。实例对比分析表明,该预测模型能够有效地预测瓦斯体积分数的变化趋势,减少了预测时间,预测精度也满足矿山安全工程实际要求。  相似文献   

16.
分源预测法是我国目前应用最广泛的瓦斯涌出量预测方法,但不适用于应用综放工作面的矿井。由于综放工作面矿井瓦斯涌出来源和涌出强度与一般综采工作面有所不同,矿井瓦斯涌出量差别较大。基于分源预测法,提出了综放工作面的瓦斯涌出量预测方法,应用于山西大远煤业综放工作面瓦斯涌出量预测,并与实际观测结果对比。结果表明:改进的综放工作面瓦斯涌出量预测方法符合综放工作面的实际情况,对综放开采工作面的瓦斯涌出量预测具有一定意义。  相似文献   

17.
为克服自变量之间的多重共线问题,增强多元回归模型预测的精确性,将主成分分析(PCA)与多元回归分析(MRA)相结合提出了PCA-MRA模型,并将该模型用于实际瓦斯涌出量预测。结果表明,采用SPSS软件直接对影响回采工作面瓦斯涌出量的因素进行主成分回归分析,避免了复杂的推导计算以及繁琐编程,预测精度较高。  相似文献   

18.
为了深入了解煤层开采时工作面回采速度对采空区瓦斯涌出的影响,提高矿井采空区瓦斯治理能力,保障矿井安全生产,通过建立数学模型并采用COMSOL有限元分析软件建立不同回采速度采空区瓦斯涌出模型,开展数值模拟试验,研究不同回采速度下采空区瓦斯涌出规律及分布情况。结果表明:不同回采速度下采空区相同深度的瓦斯浓度呈梯度增长;通过对现场采空区回采速度数据进行归类平均后,降低其他因素对采空区瓦斯涌出的影响后,采空区瓦斯涌出量与回采速度线性相关性从0.60提高至0.94,表明回采速度越快,采空区瓦斯涌出速度越快,采空区瓦斯涌出量越大。研究结果揭示了煤层开采过程中回采速度对采空区瓦斯涌出的影响规律,为现场优化回采速度及抽采参数提供了理论指导。  相似文献   

19.
采煤工作面瓦斯涌出量计算是矿井通风设计和瓦斯治理的重要依据。根据煤层瓦斯涌出特点,将瓦斯涌出源分为煤壁、采落煤、运煤和采空区4个分源。基于采煤工作面瓦斯浓度监测数据中包含的各源瓦斯涌出信息,建立绝对瓦斯涌出量分源计算方法。以古汉山矿长壁采煤工作面为例,介绍该方法的应用过程。研究结果表明,通过分析采煤和准备工序期间单一或组合瓦斯浓度监测曲线特征,能够计算采煤工作面分源瓦斯涌出量。  相似文献   

20.
张集矿属于煤与瓦斯突出矿井,针对目前所开采的17266工作面地质构造条件复杂、瓦斯涌出量大、处于突出危险区等瓦斯治理难题,采取"风排瓦斯、高抽巷穿层钻孔抽采、运输巷、回风巷顺层钻孔抽采和上隅角埋管抽采"等瓦斯综合治理措施,用分源预测法得出工作面绝对瓦斯涌出量为30.3 m3/min。结果表明,工作面的主要瓦斯涌出来源为本煤层瓦斯涌出。工作面风排瓦斯量11.0 m3/min,工作面瓦斯抽采率达63.0%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号