首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to minimize the impact on the environment or improve the properties of choice, most engineered nanoparticles used for commercial applications are surface functionalized. The release of these functionalized engineered nanoparticles (FENPs) into the environment can be either deliberate or accidental. Scientific research to date has tended to focus on evaluating the toxicity of FENPs, with less attention being given to exposure assessments or to the study of their general behavior in natural environments. We have therefore investigated the effects of environmental parameters such as pH, NaCl concentration, and natural organic matter concentration on the aggregation kinetics of FENPs with time resolved dynamic light scattering, using functionalized gold nanoparticles (FAuNPs) as a representative of these particles. We also investigated the effects of average particle size, the type of surface capping agent, and particle concentration on FAuNP aggregation kinetics. Our results show that the physico-chemical properties of the capping agent have a greater influence on the aggregation behavior of FAuNPs than either their core composition or their particle size.  相似文献   

2.

Background, aim, and scope  

Sorption of hydrophobic organic compounds (HOCs) to natural organic matter (NOM) is an important process that affects the transport, transformation, bioavailability, and fate of HOCs in the environment. Manufactured nanoparticles (NPs) such as nano-oxides will inevitably enter the environment in the processes of their production, transfer, and use and could be coated by the ubiquitous NOM. Thus, sorption of HOCs to NOM in the environment could be affected by the NP interactions with NOM. Furthermore, the toxicity of nano-oxides could be increased due to the adsorbed HOCs. Therefore, sorption of phenanthrene by nano-Al2O3 coated with humic acid (HA) was examined in this study to explore the possible effect of nanoparticles (NPs) on the environmental behavior of HOCs and the potential environmental and health risks of NPs.  相似文献   

3.
Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment.  相似文献   

4.
Bhatt I  Tripathi BN 《Chemosphere》2011,82(3):308-317
Nanoparticles are the materials with at least two dimensions between 1 and 100 nm. Mostly these nanoparticles are natural products but their tremendous commercial use has boosted the artificial synthesis of these particles (engineered nanoparticles). Accelerated production and use of these engineered nanoparticles may cause their release in the environment and facilitate the frequent interactions with biotic and abiotic components of the ecosystems. Despite remarkable commercial benefits, their presence in the nature may cause hazardous biological effects. Therefore, detail understanding of their sources, release interaction with environment, and possible risk assessment would provide a basis for safer use of engineered nanoparticles with minimal or no hazardous impact on environment. Keeping all these points in mind the present review provides updated information on various aspects, e.g. sources, different types, synthesis, interaction with environment, possible strategies for risk management of engineered nanoparticles.  相似文献   

5.
Different transformation processes for nitrophenols in the atmospheric aqueous phase were considered to assess their relative importance, and their ability to account for the higher occurrence of 4-nitrophenol (4NP) compared to 2-nitrophenol (2NP) in the atmosphere. The importance of the different processes was in the order ?OH > ?NO3 > direct photolysis > nitration to 2,4-dinitrophenol. 2NP is more reactive than 4NP with the hydroxyl radical, but the difference is low. Accordingly, such a process could account for the higher atmospheric occurrence of 4NP only if the observed atmospheric nitrophenols were what was left of an almost complete degradation by ?OH. This would imply the unlikely scenario that the known nitrophenol sources to the atmosphere were only a limited fraction of the actual ones. A more likely, tentative possibility would be connected with the higher occurrence of 4NP on particles. If the reactivity order of nitrophenols in the atmospheric compartments was water droplets > gas phase > particles, particulate matter could act as a reservoir of 4NP. 2NP would undergo degradation in gas phase or solution at a higher rate than 4NP on particles, which could decrease the atmospheric levels of 2NP below those of 4NP.  相似文献   

6.
- DOI: http://dx.doi.org/10.1065/espr2006.01.295 Background Many organic micropollutants occur at trace concentrations in municipal wastewater effluents and in the aquatic environment. Some of these xenobiotic chemicals can be considered as 'emerging' contaminants and some are suspect to have endocrine disrupting effects. Among the latter are nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA), which deserve special attention due to their ubiquitous occurrence in the aquatic environment. The complexing agents benzotriazole (BT) and tolyltriazole (TT) are applied as anticorrosive agents (e.g. in cooling and hydraulic fluids, in antifreezing fluids, in aircraft deicing fluids, in dish washing liquids for silver protection), as antifogging agents and as intermediates for the synthesis of various chemicals. The environmental occurrence of NP and OP is caused by the fact that they are intermediate products (metabolites) in the biodegradation of alkylphenol polyethoxylate surfactants. BPA is globally used for the production of polycarbonate and epoxy resins. Methods BT, TT, NP, OP and BPA were quantitatively determined in municipal wastewater effluents in Switzerland and in the Glatt River. The analytes were enriched by solid-phase enrichment. BT and TT were determined underivatized by electrospray LC/tandem MS. Reversed-phase LC was performed on octylsilica columns with isocratic water/methanol elution. Multiple reaction monitoring of the positive ions provided selective and sensitive detection for reliable quantifications. NP, OP and BPA were determined by GC/MS after derivatization with N-methyl-N-(trimethylsilyl)-trifluoroacetamide. Results and Discussion BT and TT concentrations in primary and secondary effluents of municipal wastewater treatment plants varied from below 10 to 100 μg/L. The ranges of the concentrations in the Glatt River in ng/L were 636–3,690 for BT, 122–628 for TT, 68–326 for NP, 6–22 for OP and 9–76 for BPA. The corresponding mass flows in g/d were 93–1,870 for BT, 18–360 for TT, 24–183 for NP, 1–16 for OP and 2–72 for BPA. The concentrations and mass flows of NP in the River Glatt were drastically lower than the analogous values found 15 years ago. Thus, a substantially decreased environmental exposure can be observed due to the reduction of the use of alkyphenol polyethoxylate surfactants in Switzerland. The current concentrations of NP, OP and BPA are within the ranges reported for weakly impacted surface waters. Conclusion The investigated contaminants occur at quantitatively measurable but varying concentrations in municipal wastewaters and in the Glatt River reflecting their ubiquitous input into wastewaters and their different behaviour during biological wastewater treatment.  相似文献   

7.

Concept and purpose  

Virtually all water treatment facilities worldwide generate an enormous amount of water treatment residual (WTR) solids for which environmentally friendly end-use options are continually being sought as opposed to their landfilling. Aluminium-based WTR (Al-WTR) can offer huge benefits particularly for phosphorus (P) removal and biofilm attachment when used as media in engineered wetlands. However, potential environmental risks that may arise from the leaching out of its constituents must be properly evaluated before such reuse can be assured. This paper presents results of an assessment carried out to monitor and examine the leachability and leaching patterns of the constituents of an Al-WTR used as media in laboratory-scale engineered wetland systems.  相似文献   

8.
Alkylphenols and alkylphenol ethoxylates (APE) are toxics classified as endocrine-disrupting compounds; they are used in detergents, paints, herbicides, pesticides, emulsifiers, wetting and dispersing agents, antistatic agents, demulsifiers, and solubilizers. Many studies have reported the occurrence of alkylphenols in different environmental matrices, though none of these studies have yet to establish a comprehensive overview of such compounds in the water cycle within an urban environment. This review summarizes APE concentrations for all environmental media throughout the water cycle, from the atmosphere to receiving waters. Once the occurrence of compounds has been assessed for each environmental compartment (urban wastewater, wastewater treatment plants [WWTP], atmosphere, and the natural environment), data are examined in order to understand the fate of APE in the environment and establish their geographical and historical trends. From this database, it is clear that the environment in Europe is much more contaminated by APE compared to North America and developing countries, although these APE levels have been decreasing in the last decade. APE concentrations in the WWTP effluent of developed countries have decreased by a factor of 100 over the past 30?years. This study is aimed at identifying both the correlations existing between environmental compartments and the processes that influence the fate and transport of these contaminants in the environment. In industrial countries, the concentrations observed in waterways now represent the background level of contamination, which provides evidence of a past diffuse pollution in these countries, whereas sediment analyses conducted in developing countries show an increase in APE content over the last several years. Finally, similar trends have been observed in samples drawn from Europe and North America.  相似文献   

9.
The occurrence of antihistamines in sewage waters and in recipient rivers   总被引:2,自引:1,他引:1  
Background, aim and scope  Each year, large quantities of pharmaceuticals are consumed worldwide for the treatment and prevention of human and animal diseases. Although the drugs and the metabolites observed in the wastewaters and in the environment are present at concentrations several orders of magnitude lower than the concentrations required to exert their effects in humans or animals, their long-term impact on the environment is commonly not known. In this study, the occurrence of six antihistamines, which are used for the relief of allergic reactions such as hay fever, was determined in sewage treatment plants wastewaters and in recipient river waters. Materials and methods  The occurrence of the antihistamines cetirizine, acrivastine, fexofenadine, loratadine, desloratadine and ebastine in sewage treatment plants wastewaters and in recipient river waters was studied. The analytical procedure consisted of solid-phase extraction of the water samples followed by liquid chromatography separation and detection by a triple-quadrupole mass spectrometer in the multiple reaction mode. Results  Cetirizine, acrivastine and fexofenadine were detected in both influent and effluent wastewater samples at concentration levels ranging from about 80 to 220 ng/L, while loratadine, desloratadine and ebastine could not be detected in any samples. During sewage treatment, the concentration of the antihistamines dropped by an average of 16–36%. Furthermore, elevated concentrations of antihistamines were observed in samples collected during the season of most intensive plant pollen production, i.e. in May. In the river water samples, the relative pattern of occurrence of cetirizine, acrivastine and fexofenadine was similar to that in the wastewater samples; although the concentration of the compounds was substantially lower (4–11 ng/L). The highest concentrations of the studied drugs were observed near the discharging point of the sewage treatment plant. Discussion  The highest concentrations of antihistamines in STP wastewaters correlate with the outbreak of allergic reaction caused by high amounts of plant pollens in the air. The analysis results of the river water samples show that the antihistamines are carried far away from the effluent discharge points. They may account for a part of the mix of pharmaceuticals and of pharmaceutical metabolites that occur downstream of STPs. Conclusions  Antihistamines are poorly degraded/eliminated under the biological treatment processes applied in the wastewater treatment plants and, consequently, they are continuously being discharged along with other drugs to the aquatic environment. Recommendations and perspectives  As a huge quantity and variety of drugs and their metabolites are continuously discharged to rivers and the sea, the compounds should be considered as contaminants that may possess risks to the aquatic ecosystem. Further studies are urgently needed on the environmental fate of the antihistamines and other pharmaceuticals in the aquatic environment. These studies should be concerned with the stability of the compounds, their transformation reactions and the identity of the transformation products, the distribution of drugs and their uptake and effects in organisms. On the basis of these studies, the possible environmental hazards of pharmaceuticals may be assessed.  相似文献   

10.
As common engineered nanomaterials, TiO(2) nanoparticles (nTiO(2)) are usually perceived as non-toxic, and have already been widely used in many products and applications. Such a perception might have been shaped by some short-term studies that revealed no/low toxicity of nTiO(2) to cells and eco-relevant organisms. However, given the ultimate release of nTiO(2) into the aquatic environment, which can act as a sink for engineered nanoparticles, their long-term impact on the environment and human health is still a concern and deserves more research efforts. Here, for the first time, we demonstrate that chronic exposure of zebrafish to 0.1 mg L(-1) nTiO(2), can significantly impair zebrafish reproduction. For instance, there was a 29.5% reduction in the cumulative number of zebrafish eggs after 13 weeks of nTiO(2) exposure. Thus, we provided timely information on indicating a serious risk of reproductive impairment of environments contaminated with low levels of nTiO(2) on aquatic organisms, leading to alterations in population dynamics and aquatic ecosystem balance, and thus warrants a careful scrutiny on toxicity assessment of nTiO(2), especially their long-term impact.  相似文献   

11.
Quantification of natural and engineered carbon nanotubes (CNT) in the environment is urgently needed to study their occurrence and fate and to enable a proper risk assessment. Currently, such methods are lacking. Here, we tested the resistance of 15 structurally different CNTs to chemothermal oxidation at 375 °C (CTO-375), a method used to isolate soots from environmental samples. Depending on their structure, CNTs survived CTO-375 in proportions ranging from 26 to 93%. Standard addition of CNTs to soil and sediment yielded recoveries between 66 and 171%, demonstrating the capability of CTO-375 to isolate CNTs from complex environmental matrices. These data of pure and added CNTs correspond to recoveries obtained with “ordinary” soots under similar experimental conditions. Hence, soot fractions commonly isolated with CTO-375 from environmental matrices most probably encompass CNTs. Future work should attempt to enhance the method's selectivity, i.e., its capability to separate CNTs from other forms of soot.  相似文献   

12.
Concentrations of aqueous-phase nonylphenol (NP), a well-known endocrine-disrupting chemical, are shown to be reduced effectively via reaction with lignin peroxidase (LiP) or horseradish peroxidase (HRP) and hydrogen peroxide. We systematically assessed their reaction efficiencies at varying conditions, and the results have confirmed that the catalytic performance of LiP toward NP was more efficient than that of HRP under experimental conditions. Mass spectrum analysis demonstrated that polymerization through radical–radical coupling mechanism was the pathway leading to NP transformation. Our molecular modeling with the assistance of ab initio suggested the coupling of NP likely proceeded via covalent bonding between two NP radicals at their unsubstituted carbons in phenolic rings. Data from acute immobilization tests with Daphnia confirm that NP toxicity is effectively eliminated by LiP/HRP-catalyzed NP removal. The findings in this study provide useful information for understanding LiP/HRP-mediated NP reactions, and comparison of enzymatic performance can present their advantages for up-scale applications in water/wastewater treatment.  相似文献   

13.
The occurrence and distribution of the major surfactants--LAS, AES, APEOs and AEOs--and their degradation intermediates--SPCs, AP and APECs--in a marine-estuarine environment at Spain are presented. Results show that their concentration in surface sediments is clearly correlated with their usage and the existence of wastewater discharges. The degradation processes appear to lead to the formation of SPCs in the case of LAS, and to the shortening of the average ethoxylated chain length in the case of NPEOs, AEOs and AES. Vertical profiles for AEOs and AES are reported for the first time and present the highest values nearest the surface, followed by a sharp decrease with depth for all surfactants, as well as the appearance of degradation intermediates in deeper sedimentary layers. Shorter LAS homologues and SPCs tend to be present in pore water while strongly non-polar intermediates like NP are firmly attached to the sediments.  相似文献   

14.
The release of pharmaceuticals in the environment, as parent compounds, metabolites and transformation products, and the consequent risks posed to living organisms due to the unintended exposure of the latter to these chemicals are nowadays of increasing scientific concern. The development of advanced oxidation processes able to degrade these substances is in the core of the current research objectives, the main target being the removal of these compounds from wastewaters. Often the focus is on the removal of the parent compound only. However, these processes can form transformation products. Knowledge on the risk related to such transformation products is scarce. Among others, knowledge on their toxic effects and their biodegradability is of importance not only when they are present in the environment but also for the assessment of the advanced oxidation processes’ efficiency applied for their degradation. Photolytic (UV irradiation) and photocatalytic treatment (UV irradiation in the presence of TiO2) of the fluoroquinolone ofloxacin were applied, and the biodegradability of the formed products was investigated using the Closed Bottle test (OECD 301 D). Various transformation products, formed both during the photo(cata)lytic treatment and the Closed Bottle test, were identified using chromatographic analysis with an ultra high-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) system. The transformation products formed during the phototreatments were found to be non-readily biodegradable as the biodegradation percentages were close to zero. The persistence of the various photo(cata)lytic transformation products during the Closed Bottle test may be attributed to the fluorine present in all the transformation products formed. The transformation products identified suggest that two transformation routes were present: decarboxylation and opening of the piperazinyl ring. Interestingly, it was observed that in the presence of a readily biodegradable carbon source (sodium acetate), the biodegradation percentage increased drastically for some of the photolytically treated samples. This was not the case for the photocatalytically treated samples, in which also mineralization of the parent compound was achieved faster. Further research is needed, however, in order to increase the understanding of the conditions that may lead to less potent and persistent substances during the application of such engineered or natural processes.  相似文献   

15.
This paper studies the nitration and hydroxylation of benzene in the presence of nitrite/nitrous acid in aqueous solution, both in the dark upon addition of hydrogen peroxide and under 360 nm irradiation. In both cases the detected transformation intermediates were phenol (P), nitrobenzene (NB), 2-nitrophenol (2NP) and 4-nitrophenol (4NP). P and NB directly form from benzene, and the initial formation rate of P is at least an order of magnitude higher than that of NB. In our experiments nitrophenols arise from P nitration, as can be inferred by their time evolution and isomer ratio (2NP:4NP=60:40, 3NP below detection limit). Nitrophenols may also form upon hydroxylation of NB, but in a different ratio (2NP:3NP:4NP=45:30:25). The detection of 3NP is thus a marker for the hydroxylation of NB, since this isomer is not formed in P nitration processes. The formation rates of P and NB increase with decreasing pH, both in the presence of HNO2 + H2O2 in the dark (which produce HOONO) and in the presence of NO2/HNO2 under irradiation. In the former case the pH dependence reflects the formation rate of HOONO. In the case of the irradiation experiments the pH effect can be accounted for by the higher molar absorbivity and photolysis quantum yield of nitrous acid when compared with nitrite. Interestingly, benzene does not react with HNO2 alone in the dark. An important feature of benzene nitration in the presence of NO2/HNO2 under irradiation is that the process is not inhibited by the addition of hydroxyl scavengers, differently from the case of phenol nitration. This finding indicates that nitrite irradiation might lead to the nitration of certain aromatic compounds in natural waters even in the presence of natural hydroxyl scavenging agents, which are usually thought to limit the environmental role of many photochemical processes.  相似文献   

16.
Bisphenol A (BPA) and nonylphenols (NP) are of major concern to public health due to their high potential for human exposure and to their demonstrated toxicity (endocrine disruptor effect). A limited number of studies have shown that BPA and NP are present in drinking water. The chlorinated derivatives that may be formed during the chlorination step in drinking water treatment plants (DWTP) exhibit a higher level of estrogenic activity than their parent compounds. The aim of this study was to investigate BPA, 353NP, and their chlorinated derivative concentrations using an accurate and reproducible method of quantification. This method was applied to both surface and treated water samples from eight French DWTPs producing from surface water. Solid-phase extraction followed by liquid chromatography?Ctandem mass spectrometry was developed in order to quantify target compounds from water samples. The limits of detection ranged from 0.3 to 2.3?ng/L for BPA and chlorinated BPA and from 1.4 to 63.0?ng/L for 353NP and chlorinated 353NP. BPA and 353NP were found in most analyzed water samples, at a level ranging from 2.0 to 29.7?ng/L and from 0 to 124.9?ng/L, respectively. In most of DWTPs a decrease of BPA and 353NP was observed between surface water and treated water (36.6 to 78.9?% and 2.2 to 100.0?% for BPA and 353NP, respectively). Neither chlorinated BPA nor chlorinated 353NP was detected. Even though BPA and 353NP have been largely removed in the DWTPs studied, they have not been completely eliminated, and drinking water may consequently remain a source of human exposure.  相似文献   

17.
A first review on occurrence and distribution of pharmaceuticals and personal care products (PPCPs) is presented. The literature survey conducted here was initiated by the current Assessment of the Arctic Monitoring and Assessment Programme (AMAP). This first review on the occurrence and environmental profile of PPCPs in the Arctic identified the presence of 110 related substances in the Arctic environment based on the reports from scientific publications, national and regional assessments and surveys, as well as academic research studies (i.e., PhD theses). PPCP residues were reported in virtually all environmental compartments from coastal seawater to high trophic level biota. For Arctic environments, domestic and municipal wastes as well as sewage are identified as primary release sources. However, the absence of modern waste water treatment plants (WWTPs), even in larger settlements in the Arctic, is resulting in relatively high release rates for selected PPCPs into the receiving Arctic (mainly) aquatic environment. Pharmaceuticals are designed with specific biochemical functions as a part of an integrated therapeutically procedure. This biochemical effect may cause unwanted environmental toxicological effects on non-target organisms when the compound is released into the environment. In the Arctic environments, pharmaceutical residues are released into low to very low ambient temperatures mainly into aqueous environments. Low biodegradability and, thus, prolonged residence time must be expected for the majority of the pharmaceuticals entering the aquatic system. The environmental toxicological consequence of the continuous PPCP release is, thus, expected to be different in the Arctic compared to the temperate regions of the globe. Exposure risks for Arctic human populations due to consumption of contaminated local fish and invertebrates or through exposure to resistant microbial communities cannot be excluded. However, the scientific results reported and summarized here, published in 23 relevant papers and reports (see Table S1 and following references), must still be considered as indication only. Comprehensive environmental studies on the fate, environmental toxicology, and distribution profiles of pharmaceuticals applied in high volumes and released into the Nordic environment under cold Northern climate conditions should be given high priority by national and international authorities.  相似文献   

18.
This review summarizes the environmental occurrence of new brominated flame retardants (NBFRs) and organophosphate compounds (OPs) in the environment of developing countries since 2000. The ban on the production and use of commercial formulations of polybrominated diphenyl ethers (PBDEs) have paved the way for the high use of NBFRs and OPs in consumer products to fulfill the fire safety regulations. Recent studies have shown that the ever increasing production volumes and extensive use of these chemicals as additive FRs and plasticizers have resulted into their ubiquitous occurrence in all environmental compartments. Although presumed to be safe for use and the environment, recent studies on their occurrence and persistence in the environment have raised questions. Due to the lack of awareness, research interest, and availability of technical facilities, limited scientific data is available on the occurrence of these chemicals in developing countries. In this study, we collected reported data and provide an overview of environmental occurrence of NBFRs and OPs in abiotic and biotic matrices of different developing countries. Finally, research gaps were identified with recommendations for future research work and would be useful towards the environmental management of these toxic chemicals.  相似文献   

19.
Photodegradation of haloacetic acids in water   总被引:9,自引:0,他引:9  
The global distribution and high stability of some haloacetic acids (HAAs) has prompted concern that they will tend to accumulate in surface waters and pose threats to humans and the ecosystem. It is important to study the degradation pathways of HAAs in aqueous systems to understand their ecotoxicological effects. Previous studies involving thermal degradation reactions show relatively long lifetimes for HAAs in the natural environment. Photolysis and photocatalytic dissociation are potentially efficient routes for the degradation of HAAs such as trichloroacetic acid to hydrochloric acid, carbon dioxide and chloroform, although such processes are poorly understood in surface waters. In our present study, we have used light to degrade the HAAs in the presence of titanium dioxide suspensions. All chloro and bromo HAAs degrade in photocatalysis experiments and the rate of degradation is directly proportional to the number of halogen atoms in the acid molecule. The half-lives of the HAAs from the photodegradation at 15 degrees C in the presence of suspended titanium dioxide photocatalyst are 8, 14, 83 days for the tri-, di- and mono-bromoacetic acids. Tri-, di- and mono-chloroacectic acids have half-lives of 6, 10 and 42 days respectively. The mixed bromochloro and chlorodifluoroacetic acids degrade with half-lives of 18 and 42 days respectively. Our results therefore suggest that the photocatalytic process can provide an additional degradation pathway for the HAAs in natural waters.  相似文献   

20.
The harmful effect of manmade particles on natural processes and human health is documented by a large number of studies showing a positive correlation between particulate matter (PM) concentration and health effects. Diminution of this health risk necessitates among others the precise knowledge of the particle sources, their physical and chemical properties and their dissemination in the environment. Pb isotope ratios have been successfully used during the past decades as tracers of anthropogenic Pb disseminated in the biosphere. Here we show that tree bark biomonitoring with lead (Pb), strontium (Sr) and neodymium (Nd) isotope ratios as tracers allow a thorough analysis of the impacts of industrial and other anthropogenic emissions on the urban environment. This is the first comprehensive multi-isotope tracer study of atmospheric pollution in an urban environment allowing to identify and to integrate the different plume paths of emissions in a digital map system. This innovative approach might become an important tool for environmental management and policy-making processes dealing especially with risks and surveillance of air quality in the urban environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号