首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Based on exhaust gas analyses from the combustion of five different types of gasoline in a passenger car operated on a chassis dynamometer, box model simulations of the irradiation of exhaust/NOx /air mixtures using an established chemical mechanism for a standardized photo-smog scenario were performed. The fuel matrix used covered wide fractional ranges for paraffinic, olefinic, and aromatic hydrocarbons. Two fuels also contained methyl tertiary butyl ether (MTBE). The different O3 profiles calculated for each run were compared and interpreted. The O3 levels obtained were strongly influenced by the exhaust gas concentrations of aromatic and olefinic hydro-carbons. The higher exhaust content of these compounds caused higher O3 production in the smog system investigated. The conclusion of the present study is that the composition of gasoline cannot be taken directly for the estimation of the emissions’ O3 creation potential from its combustion. Variation of the dilution in the different calculations showed evidence for an additional influence of transport effects. Accordingly, further detailed exhaust gas analyses followed by more complex modeling studies are necessary for a proper characterization of the relationship between fuel blend and gasoline combustion products.  相似文献   

2.
Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographlc analysis of formaldehyde, methanol, and Individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50,15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components In the exhaust Increased from zero as the gasoline fraction of the fuel was Increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems. These vehicles continue the trend of the past twenty years toward less photochemically reactive exhaust, with higher percentages of methane and total alkanes, and correspondingly lower percentages of oleflns and aromatlcs.  相似文献   

3.
不同类型机动车尾气中芳香烃化合物含量分析   总被引:1,自引:0,他引:1  
首次对北京市9种车辆、5种燃料在不同工况下排放芳香烃化合物的特征.进行了定量研究。结果表明,车型、燃料、净化器及工况等因素对排放量产生影响,电喷车比化油器车芳香烃化合物排放量低;汽油车排放量最高,柴油车其次,LPG及CNG车排放量最低;使用净化器可以降低芳香烃排放量;不同工况对排放量的影响随车型,燃料类型的不同而不同。  相似文献   

4.
Diesel engine emissions are composed of a long list of organic compounds, ranging from C2 to C12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic.The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed.Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed.The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum reactivity, but with the use of pure biodiesel and diesel, the most hydrocarbons are from unburned fuel and they have a less reactivity. The best composition in the fuel, for the control of the hydrocarbon emissions reactivity, needs to be a fuel with high-saturated fatty acid content.  相似文献   

5.
The study of light-duty diesel engine exhaust emissions is important due to their impact on atmospheric chemistry and air pollution. In this study, both the gas and the particulate phase of fuel exhaust were analyzed to investigate the effects of diesel reformulation and engine operating parameters. The research was focused on polycyclic aromatic hydrocarbon (PAH) compounds on particulate phase due to their high toxicity. These were analyzed using a gas chromatography–mass spectrometry (GC–MS) methodology.Although PAH profiles changed for diesel fuels with low-sulfur content and different percentages of aromatic hydrocarbons (5–25%), no significant differences for total PAH concentrations were detected. However, rape oil methyl ester biodiesel showed a greater number of PAH compounds, but in lower concentrations (close to 50%) than the reformulated diesel fuels. In addition, four engine operating conditions were evaluated, and the results showed that, during cold start, higher concentrations were observed for high molecular weight PAHs than during idling cycle and that the acceleration cycles provided higher concentrations than the steady-state conditions. Correlations between particulate PAHs and gas phase products were also observed.The emission of PAH compounds from the incomplete combustion of diesel fuel depended greatly on the source of the fuel and the driving patterns.  相似文献   

6.
To obtain the characteristic factors or signatures of particulate polycyclic aromatic hydrocarbons (PAHs) to help identify the sources of particulate PAHs in the atmosphere, different carbonaceous aerosols were generated by burning different fossil fuels and biomass under different conditions in the laboratory, and the chemical characteristics of 14 PAHs were studied in detail. The results showed that (1) carbonaceous aerosols derived from domestic burning of coal, diesel fuel, and gasoline have much higher concentrations of PAHs than those derived from domestic burning of biomass; (2) carbonaceous aerosols derived from domestic burning of diesel fuel/gasoline have similar PAH components as those derived from high-temperature combustion of diesel fuel/gasoline, although the former have much higher concentrations of PAHs than the latter, suggesting that the burning temperature obviously affects the emitting amount of particulate PAHs, but only slightly influences the PAHs components; and (3) the ratios of benzo[b]fluoranthene/acenaphthylene, benzo[b]fluoranthene/fluorene, dibenzo[a,h]anthracene/acenaphthylene, dibenzo[a,h]anthracene/fluorine, and benzo[b]fluoranthene/benzo[k]fluoranthene in carbonaceous aerosols are sensitively dependent on their sources, indicating that these ratios are suitable for use as characteristic factors or signatures of particulate PAHs in the atmosphere.  相似文献   

7.
分析了机动车尾气挥发性有机物(VOCs)的排放特征,发现尾气VOCs排放具有明显的日变化和季节变化特征。不同区域不同车型机动车尾气VOCs成分谱略有差异,轻型汽油车尾气VOCs中芳香烃和烷烃含量较高,柴油车烷烃含量较高。尾气排放受机动车保有量、行驶里程、维护保养水平、行驶速度和燃油标准、排放标准等因素影响。从优先控制汽油车、加快机动车更新、采取本地化减排措施、加强多元管理措施、提高科研水平等方面提出了针对性的减排措施。  相似文献   

8.
Environmental agencies are currently in the process of implementing a new air management program, which includes the improvement of fuel quality. In this work, exhaust emissions data and estimated relative risk for various fuels testing in-use vehicles, equipped with three different exhaust emission control technologies, are presented. Aromatics, sulfur, and olefins contents; type of oxygenated compound; and Reid vapor pressure were varied. The aim also includes calculating the ozone (O3) forming potential and a relative cancer risk of emissions from current and formulated gasoline blends in Mexico. The proposed gasoline decreases carbon monoxide, total hydrocarbons (THC), and nitrogen oxides emissions by 18 and 14%, respectively, when compared with gasoline sold in the rest of the country and within ozone nonattainment metropolitan areas in Mexico, respectively.  相似文献   

9.
Particulate and hydrocarbon content of gases in a regenerative gas turbine was analyzed at several points. Particle samples were measured with a condensation nuclei counter, a light scattering single particle counter and an impactor. Hydrocarbon analyses were made using gas chromatography. The effects of operation with JP-4 and No. 2 fuel oil were noted. It was concluded that a regenerative gas turbine will not add appreciably to the burden of air pollution. In fact, particulate contamination levels in the exhaust less than those in the inlet air indicates that the high rotation rate may result in some air cleaning. Low hyd rocarbon contents in the exhaust gas were ascribed to efficient combustion under the operating conditions used in this work. In general, it was concluded that hydrocarbon levels significantly lower than those seen from gasoline or diesel engines could be expected from a well maintained and operated regenerative gas turbine.  相似文献   

10.
In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67-86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

11.
The General Motors Research Laboratories and the Sloan-Kettering Institue for Cancer Research are collaborating to determine the contribution by automotive vehicles to the polynuclear aromatic hydrocarbons in city air. Sampling of particulate matter at the rate of 140 M3/min (5000 cfm) was carried out at two heavily-trafficked sites in Detroit and one suburban site in Warren, Michigan. Carbon monoxide was determined continuously, and particulate matter was analyzed for “tar,” polynuclear aromatic hydrocarbons, lead, vanadium, and sulfates. Polynuclear aromatic hydrocarbons in automobile exhaust gas are assumed to be dispersed in air along with carbon monoxide or lead from automobiles. It is further assumed that automobiles are the sole source of carbon monoxide and lead in the atmosphere. Concentrations of carbon monoxide and lead in exhaust gas and in the air are utilized to estimate the percentage of polynuclear aromatic hydrocarbons in the air attributable to automobiles. The mean automobile contributions to benzo(a)pyrene in the air, based on lead concentrations, were 18% at a Freeway Interchange, 5% in a downtown commercial area, and 42% in suburban Warren. The average concentrations of benzo(a)pyrene at the sites were 6 μg/103 M3, 7 μg/103 M3 and 1 μg/103 M3, respectively. Mean contributions based on carbon monoxide concentrations were approximately twice the levels based on lead concentrations. Benzo(a)pyrene and benz(a)anthracene in air were not statistically related to carbon monoxide or lead in air, but were higher in winter than in summer, probably because of the higher levels of these materials emitted in space heating combustion in winter.  相似文献   

12.
A new potential source of elevated chloroform (CHCl3) concentrations in urban air is reported. The exhaust gases from gasoline internal combustion engines operated on conventional “leaded” fuel and not equipped with catalytic converters contain parts-per-billion concentrations of chloroform which can, in congested urban areas, contribute significantly to the ambient concentration of chloroform. Exhaust gases from engines burning conventional “leaded” gasoline contain much higher levels of chloroform than do exhaust gases from engines equipped with catalytic converters and operating on “nonleaded” gasoline.  相似文献   

13.
In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel. The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane, and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst, while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

14.
Non-methane hydrocarbon (NMHC) source profiles consisting of 35 hydrocarbon species were measured for vehicle and petroleum refinery emissions. Refueling emissions were found to be sensitive to the grade and volatility class of fuel and to be composed mainly of saturated hydrocarbons such as n-butane and 2-methy I butane. Unsaturated and aromatic hydrocarbons, which are released from the tailpipe of vehicles as products of combustion and unburned fuel, were more prevalent in roadway emissions comprising approximately 34 percent of the total NMHCs. Cold-start emissions were nearly indistinguishable from the roadway emission profile. The only significant differences were in toluene, ethylene and acetylene, which may be related to the efficiency of combustion when the vehicle is initially started. Saturated hydrocarbon distributions of the hot-soak profiles were found to be similar to refueling emissions. The only significant difference in the profiles was in the aromatic content, which may be related to the grade of the gasoline and the effectiveness of evaporative emission control devices. The temporal variation in refinery emissions was significant and may be related to variations in refinery activities such as the production and blending of feed stocks to produce different fuels.  相似文献   

15.
Sharma H  Jain VK  Khan ZH 《Chemosphere》2007,66(2):302-310
This paper reports on polycyclic aromatic hydrocarbons (PAHs) in the atmospheric particulate matter of Jawaharlal Nehru University campus, an urbanized site of New Delhi, India. Suspended particulate matter samples of 24h duration were collected on glass-fiber filter paper for four representative days in each month during January 2002 to December 2003. PAHs were extracted from filter papers using toluene with ultrasonication method and analysed. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the gas chromatography technique. The annual average concentration of total PAHs were found to be 668+/-399 and 672+/-388 ng/m3 in the years 2002 and 2003, respectively. The seasonal average concentrations were found to be maximum in winter and minimum during in the monsoon. The results of principal component analysis (PCA) indicate that diesel and gasoline driven vehicles are the principal sources of PAHs in all the seasons. In winter coal and wood combustion also significantly contribute to the PAH levels.  相似文献   

16.
Abstract

This study examines exhaust emissions from 11 vehicles tested on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline fuels (22 vehicle/ fuel combinations). The paper highlights ozone precursor and toxic emissions. Emission rates from some of the presumably well-maintained, low-mileage test vehicles were higher than expected, but fuel effects were consistent with findings of similar studies. Aggregate toxic and non-methane organic emission rates from the variable/flexible fuel vehicles were higher with alcohol fuels than with reformulated gasoline. Lower specific reactivities for emissions with the alcohol fuels offset this negative trait. Specific reactivities of the organic emissions with the alternative fuels were consistently lower than those with the gasoline blends. Compressed natural gas and liquefied petroleum gas fuels had the lowest values. Although specific reactivities were expected to vary from fuel-to-fuel, they also varied considerably from vehicle-to-vehicle.  相似文献   

17.
Soil derived sources of polycyclic aromatic hydrocarbons (PAHs) in the region of Dalian, China were investigated using positive matrix factorization (PMF). Three factors were separated based on PMF for the statistical investigation of the datasets both in summer and winter. These factors were dominated by the pattern of single sources or groups of similar sources, showing seasonal and regional variations. The main sources of PAHs in Dalian soil in summer were the emissions from coal combustion average (46%), diesel engine (30%), and gasoline engine (24%). In winter, the main sources were the emissions from coal-fired boiler (72%), traffic average (20%), and gasoline engine (8%). These factors with strong seasonality indicated that coal combustion in winter and traffic exhaust in summer dominated the sources of PAHs in soil. These results suggested that PMF model was a proper approach to identify the sources of PAHs in soil.  相似文献   

18.
In this work, the primary objective was to assess the impact of oxygenated fuel on the exhaust emissions from an important fraction of vehicles in the Metropolitan Area of Mexico City (MAMC). The results aim to provide information on the actual effect of MTBE on a fleet that represents more than 60% of the in-use vehicles in the MAMC. Ten vehicles were tested with a low-octane base gasoline, and 10 more with a regular-grade unleaded base gasoline. Three MTBE concentrations, 5, 10, and 15 vol %, were tested following the U.S. Federal Test Procedure (FTP). CO, total HC, and NOx from the exhaust gases were quantitatively evaluated and also characterized for FTP speciated organic emissions. From this data, the O3-forming potential of the fuels was calculated. Results show that for the fleet using low-octane gasoline, the addition of 10% MTBE substantially reduced CO emissions, but total HC concentration in the exhaust showed a modest decrease. For the regular gasoline, the 10% MTBE blend seemed to be the best choice, but there was not a significant decrease in emissions. The specific reactivity of each fuel, expressed in grams of O3 per gram of nonmethane organic gases, increased with MTBE concentration in both cases. This result is important to consider, especially for a region like Mexico City, which has high atmospheric O3 concentrations.  相似文献   

19.
ABSTRACT

In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel.

The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane,and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst,while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

20.
Fang GC  Wu YS  Chang CN  Ho TT 《Chemosphere》2006,64(7):1233-1242
Fine (PM(2.5)) and Coarse (PM(2.5-10)) particulates concentrations of ambient air particle-bound polycyclic aromatic hydrocarbons (PAHs) were measured simultaneously from February 2004 to January 2005 at the Taichung Harbor (TH) sampling site near Taiwan of central Taiwan. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on quartz filters, the collected sample used soxhlet analytical method extracted with a dichloromethane (DCM)/n-hexane mixture (50/50, v/v) for 24h, and then the extracts were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. The results indicated that vehicle emissions, coal combustion, incomplete combustion and pyrolysis of fuel and oil burning were the main source of PAHs near Taiwan Strait of central Taiwan. Diagnostic ratio and principal component analysis (PCA) were also used to characterize and identify PAHs emission source in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号