首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
There are numerous Cr(III)-contaminated sites on Department of Defense (DoD) and Department of Energy (DOE) lands that are awaiting possible clean up and closure. Ingestion of contaminated soil by children is the risk driver that generally motivates the likelihood of site remediation. The purpose of this study was to develop a simple statistical model based on common soil properties to estimate the hioaccessibility of Cr(III)-contaminated soil upon ingestion. Thirty-five uncontaminated soils from seven major soil orders, whose properties were similar to numerous U.S. DoD contaminated sites, were treated with Cr(III) and aged. Statistical analysis revealed that Cr(III) sorption (e.g., adsorption and surface precipitation) by the soils was strongly correlated with the clay content, total inorganic C, pH, and the cation exchange capacity of the soils. Soils with higher quantities of clay, inorganic C (i.e., carbonates), higher pH, and higher cation exchange capacity generally sequestered more Cr(III). The amount of Cr(III) bioaccessible from the treated soils was determined with a physiologically based extraction test (PBET) that was designed to simulate the digestive process of the stomach. The bioaccessibility of Cr(III) varied widely as a function of soil type with most soils limiting bioaccessibility to <45 and <30% after I and 100 d soil-Cr aging, respectively. Statistical analysis showed the bioaccessibility of Cr(III) on soil was again related to the clay and total inorganic carbon (TIC) content of the soil. Bioaccessibility decreased as the soil TIC content increased and as the clay content decreased. The model yielded an equation based on common soil properties that could be used to predict the Cr(III) bioaccessibility in soils with a reasonable level of confidence.  相似文献   

2.
The economic feasibility of short rotation coppice (SRC) production and energy conversion in areas contaminated by Chernobyl-derived (137)Cs was evaluated taking the spatial variability of environmental conditions into account. Two sequential GIS-embedded submodels were developed for a spatial assessment, which allow for spatial variation in soil contamination, soil type, and land use. These models were applied for four SRC production and four energy conversion scenarios for the entire contaminated area of Ukraine, Belarus, and Russia and for a part of the Bragin district, Belarus. It was concluded that in general medium-scale SRC production using local machines is most profitable. The areas near Chernobyl are not suitable for SRC production since the contamination levels in SRC wood exceed the intervention limit. Large scale SRC production is not profitable in areas where dry and sandy soils predominate. If the soil contamination does not exceed the intervention limit and sufficient SRC wood is available, all energy conversion scenarios are profitable.  相似文献   

3.
Phosphorus transport from agricultural soils contributes to eutrophication of fresh waters. Computer modeling can help identify agricultural areas with high potential P transport. Most models use a constant extraction coefficient (i.e., the slope of the linear regression between filterable reactive phosphorus [FRP] in runoff and soil P) to predict dissolved P release from soil to runoff, yet it is unclear how variations in soil properties, management practices, or hydrology affect extraction coefficients. We investigated published data from 17 studies that determined extraction coefficients using Mehlich-3 or Bray-1 soil P (mg kg(-1)), water-extractable soil P (mg kg(-1)), or soil P sorption saturation (%) as determined by ammonium oxalate extraction. Studies represented 31 soils with a variety of management conditions. Extraction coefficients from Mehlich-3 or Bray-1 soil P were not significantly different for 26 of 31 soils, with values ranging from 1.2 to 3.0. Extraction coefficients from water-extractable soil P were not significantly different for 17 of 20 soils, with values ranging from 6.0 to 18.3. The relationship between soil P sorption saturation and runoff FRP (microg L(-1)) was the same for all 10 soils investigated, exhibiting a split-line relationship where runoff FRP rapidly increased at P sorption saturation values greater than 12.5%. Overall, a single extraction coefficient (2.0 for Mehlich-3 P data, 11.2 for water-extractable P data, and a split-line relationship for P sorption saturation data) could be used in water quality models to approximate dissolved P release from soil to runoff for the majority of soil, hydrologic, or management conditions. A test for soil P sorption saturation may provide the most universal approximation, but only for noncalcareous soils.  相似文献   

4.
Sorption of butachlor to various types of common soil components was investigated. Six pure minerals (montmorillonite [Mont], kaolinite [Kaol], Ca homoionic montmorillonite [Ca-Mont] and kaolinite [Ca-Kaol], amorphous hydrated Al and Fe oxides [AHOs-Al, AHOs-Fe]), four soil alkali-extractable pure humic acids (HAs), and the four corresponding HAs originated real unmodified and HO-treated soils were selected as the representative sorbents. Results showed that the HAs played a crucial role, and clay minerals (especially Mont) also showed an important effect in butachlor sorption. The AHOs may likely influence only in a mediator way by enhancing the availability of sorption domains of HAs. By removing 78% (on average) of the total organic carbon (TOC) from the soils with HO, the content ratio of clay to TOC (RCO) increased by an average of 367% and became >60. This change simultaneously decreased the sorption capacity of soils (40%, on average). Considering that the surface sorption domain on clay minerals may be highly exposed and more competitive after the partial removal of soil organic matter (SOM), this reaffirmed the potential contribution from clay minerals. It can thus be inferred that in the real soil where SOM and clay minerals are associated, the coating of clay minerals may have weakened the partition function of SOM or blocked some sorption domain within SOM, resulting in a decreased sorption of butachlor. Therefore, clay minerals, especially 2:1 type expanding minerals, may play a dual function vs. SOM content for the sorption of butachlor in soil.  相似文献   

5.
Excessive fertilizer and manure phosphorus (P) inputs to soils elevates P in soil solution and surface runoff, which can lead to freshwater eutrophication. Runoff P can be related to soil test P and P sorption saturation, but these approaches are restricted to a limited range of soil types or are difficult to determine on a routine basis. The purpose of this study was to determine whether easily measurable soil characteristics were related to the soil phosphorus requirements (P(req), the amount of P sorbed at a particular solution P level). The P(req) was determined for 18 chemically diverse soils from sorption isotherm data (corrected for native sorbed P) and was found to be highly correlated to the sum of oxalate-extractable Al and Fe (R2 > 0.90). Native sorbed P, also determined from oxalate extraction, was subtracted from the P(req) to determine soil phosphorus limits (PL, the amount of P that can be added to soil to reach P(req)). Using this approach, the PL to reach 0.2 mg P L(-1) in solution ranged between -92 and 253 mg P kg(-1). Negative values identified soils with surplus P, while positive values showed soils with P deficiency. The results showed that P, Al, and Fe in oxalate extracts of soils held promise for determining PL to reach up to 10 mg P L(-1) in solution (leading to potential runoff from many soils). The soil oxalate extraction test could be integrated into existing best management practices for improving soil fertility and protecting water quality.  相似文献   

6.
Batch sorption isotherms of 1,3,5-trichlorobenzene, 1,3,5-trinitrobenzene, and tetracycline to organic-free montmorillonites and soils receiving heat treatment (375°C for 24 h) were compared with those to unheated sorbents. Sorption of the nonpolar 1,3,5-trichlorobenzene to soil was lowered after the removal of humus by heating, consistent with the mechanism of hydrophobic partition into organic matter. For 1,3,5-trinitrobenzene, the enhanced sorption to heated soils was attributed to specific interactions with exchangeable cations facilitated by heating-induced irreversible partial dehydration of the clay interlayer. For tetracycline, an additional mechanism for sorption enhancement could be due to increased exposure of strong complexation sites on clay minerals after removal of the humic coating. These hypotheses were supported by the sorption data to heated and unheated Na-, K-, and Cs-saturated montmorillonites. The combustion method is commonly adopted to measure the content of black carbon in soils and sediments. However, findings from the present study indicate that combustion may greatly modify the structural properties of clay minerals, leading to misinterpreted sorption contributions of different soil components to sorption of polar or ionic compounds.  相似文献   

7.
Twenty years after the Chernobyl accident, root uptake from the surface layers of contaminated forest soils plays a major role in radiocaesium ((137)Cs) transfer to the trees and accumulation in perennial compartments, including stemwood. Trustworthy long-term predictions (modelling) of stemwood contamination with (137)Cs should accordingly be based on a reliable picture of this source-sink relationship. Considering the complexity of the processes involved in (137)Cs cycling in forest stands, elementary ratios like transfer factors (TF) were shown to be not very relevant for that purpose. At the tree level, alternatives like the wood immobilisation potential (WIP) have therefore been proposed in order to quantify the current net (137)Cs accumulation in stemwood. Our objective was here to compare WIP values determined for a series of contaminated forest stands in Belarus with the corresponding pools of (137)Cs available in the soil for root uptake. The comparison reveals that both indices are quite proportional, whatever the forest ecosystem features. This corroborates the relevancy of WIP as an indicator of the current (137)Cs root uptake by the trees, which could accordingly help to improve the existing models of (137)Cs cycling and the long-term management of contaminated forest ecosystems.  相似文献   

8.
Field studies have demonstrated that prolonged pesticide-soil contact times (aging) may lead to unexpected persistence of these compounds in the environment. Although this phenomenon is well documented in the field, there have been very few controlled laboratory studies that have tested the effects of long-term aging and the role of differing sorbates on contaminant sorption-desorption behavior and fate in soils. This study examines the sorption-desorption behavior of chlorobenzene, ethylene dibromide (1,2-dibromomethane), atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and 2, 4-D (2,4-dichlorophenoxyacetic acid) on one soil type after 1 d, 30 d, and 14 mo of aging. Sorption isotherms were evaluated after each aging period to observe changes in the uptake of each compound by soil. Desorption kinetic data were generated after each aging period to observe changes in release from soil, and desorption parameters were evaluated using a three-site desorption model that includes equilibrium, nonequilibrium, and nondesorption sites. The data indicate no statistically significant increase in sorption for ethylene dibromide or chlorobenzene from 1 to 30 d, although sorption of 2,4-D increased slightly, and sorption of atrazine decreased slightly. Statistically significant increases in linear sorption coefficients (Kd), from 1 d to 14 mo of aging, were apparent for ethylene dibromide and 2,4-D. The Kd values for chlorobenzene, measured after 1 d, 30 d, and 14 mo of aging, were statistically indistinguishable. Aging affected the distribution of chemicals within sorption sites. With aging, the desorbable fraction decreased and the nondesorbable fraction, which was apparent after only 1 d of pesticide-soil contact, increased for all chemicals studied.  相似文献   

9.
We studied the fractionation of zinc (Zn) in 49 contaminated soils as influenced by Zn content and soil properties using a seven-step sequential extraction procedure (F1: NH4NO3; F2: NH4-acetate, pH 6; F3: NH3OHCl, pH 6; F4: NH4-EDTA, pH 4.6; F5: NH4-oxalate, pH 3; F6: NH4-oxalate/ascorbic acid, pH 3; F7: residual). The soils had developed from different geologic materials and covered a wide range in soil pH (4.0-7.3), organic C content (9.3-102 g kg(-1)), and clay content (38-451 g kg(-1)). Input of aqueous Zn with runoff water from electricity towers during 26 to 74 yr resulted in total soil Zn contents of 3.8 to 460 mmol kg(-1). In acidic soils (n = 24; pH <6.0), Zn was mainly found in the mobile fraction (F1) and the last two fractions (F6 and F7). In neutral soils (n = 25; pH > or =6.0), most Zn was extracted in the mobilizable fraction (F2) and the intermediate fractions (F4 and F5). The extractability of Zn increased with increasing Zn contamination of the soils. The sum of mobile (F1) and mobilizable (F2) Zn was independent of soil pH, the ratio of Zn in F1 over F1+F2 plotted against soil pH, exhibited the typical shape of a pH sorption edge and markedly increased from pH 6 to pH 5, reflecting the increasing lability of mobilizable Zn with decreasing soil pH. In conclusion, the extractability of Zn from soils contaminated with aqueous Zn after decades of aging under field conditions systematically varied with soil pH and Zn content. The same trends are expected to apply to aqueous Zn released from decomposing Zn-bearing contaminants, such as sewage sludge or smelter slag. The systematic trends in Zn fractionation with varying soil pH and Zn content indicate the paramount effect of these two factors on molecular scale Zn speciation. Further research is required to characterize the link between the fractionation and speciation of Zn and to determine how Zn loading and soil physicochemical properties affect Zn speciation in soils.  相似文献   

10.
A study was initiated to investigate the relationship between soil test P and depth of soil sampling with runoff losses of dissolved molybdate reactive phosphorus (DMRP). Rainfall simulations were conducted on two noncalcareous soils, a Windthorst sandy loam (fine, mixed, thermic Udic Paleustalf) and a Blanket clay loam (fine, mixed, thermic Pachic Argiustoll), and two calcareous soils, a Purves clay (clayey, smectitic, thermic Lithic Calciustoll) and a Houston Black clay (fine, smectitic, thermic Udic Haplustert). Soil (0- to 2.5-, 0- to 5-, and 0- to 15-cm depths) and runoff samples were collected from each of the four soils in permanent pasture exhibiting a wide range in soil test P levels (as determined by Mehlich III and distilled water extraction) due to prior manure applications. Simulated rain was used to produce runoff, which was collected for 30 min. Good regression equations were derived relating soil test P level to runoff DMRP for all four soil types, as indicated by relatively high r2 values (0.715 to 0.961, 0- to 5-cm depth). Differences were observed for the depth of sampling, with the most consistent results observed with the 0- to 5-cm sampling depth. Runoff DMRP losses as a function of the concentration of P in soil were lower in calcareous soils (maximum of 0.74 mg L(-1)) compared with noncalcareous soils (maximum of 1.73 mg L(-1)). The results indicate that a soil test for environmental P could be developed, but it would require establishing different soil test P level criteria for different soils or classes of soils.  相似文献   

11.
Interactions of carbamazepine in soil: effects of dissolved organic matter   总被引:2,自引:0,他引:2  
Pharmaceutical compounds (PCs) and dissolved organic matter (DOM) are co-introduced into soils by irrigation with reclaimed wastewater. We targeted carbamazepine (CBZ) as a model compound to study the tertiary interactions between relatively polar PCs, DOM, and soil. Sorption-desorption behavior of CBZ was studied with bulk clay soil and the corresponding clay size fraction in the following systems: (i) without DOM, (ii) co-introduced with DOM, and (iii) pre-adsorption of DOM before CBZ introduction. Sorption of the DOM to both sorbents was irreversible and exhibited pronounced sorption-desorption hysteresis. Carbamazepine exhibited higher sorption affinity and nonlinearity, and a higher degree of desorption hysteresis with the bulk soil than the corresponding clay size fraction. This was probably due to specific interactions with polar soil organic matter fractions that are more common in the bulk soil. Co-introduction of CBZ and DOM to the soil did not significantly affect the sorption behavior of CBZ; however, following pre-adsorption of DOM by the bulk soil, an increase in sorption affinity and decrease in sorption linearity were observed. In this latter treatment, desorption hysteresis of CBZ was significantly increased for both sorbents. We hypothesize that this was due to either strong chemical interactions of CBZ with the adsorbed DOM or physical encapsulation of CBZ in DOM-clay complexes. Based on this study, we suggest that DOM facilitates stronger interactions of polar PCs with the solid surface. This mechanism can reduce PC desorption ability in soils.  相似文献   

12.
A field test was conducted to determine the ability of three plant species to extract 137Cs and 90Sr from contaminated soil. Redroot pigweed (Amaranthus retroflexus L.), Indian mustard [Brassica juncea (L.) Czern.], and tepary bean (Phaseolus acutifolius A. Gray) were planted in a series of spatially randomized cells in soil that was contaminated in the 1950s and 1960s. We examined the potential for phytoextraction of 90Sr and 137Cs by these three species. Concentration ratios (CR) for 137Cs for redroot pigweed, Indian mustard, and tepary bean were 2.58, 0.46, and 0.17, respectively. For 90Sr they were substantially higher: 6.5, 8.2, and 15.2, respectively. The greatest accumulation of both radionuclides was obtained with redroot pigweed, even though its CR for 90Sr was the lowest, because of its relatively large biomass. There was a linear relationship between the 137Cs concentration in plants and its concentration in soil only for redroot pigweed. Uptake of 90Sr exhibits no relationship to 90Sr concentrations in the soil. Estimates of time required for removal of 50% of the two contaminants, assuming two crops of redroot pigweed per year, are 7 yr for 90Sr and 18 yr for 137Cs.  相似文献   

13.
Antibiotics may appear in the environment when manure, sewage sludge, and other organic amendments are added to soils. There is concern that the presence of antibiotics in soils may lead to the development of antibiotic-resistant bacteria which may spread to the rest of the environment. This paper aims at evaluating the sorption kinetics of two antibiotics frequently used in pig production. The results indicate that sorption of chlortetracycline (CTC) and tylosin (TYL) in sandy loam and clay occurs very fast. More than 95% of the CTC adsorption is completed within 10 min on both soils and of TYL within 3 h. These results suggest that 24-h soil and antibiotic solution mixtures is enough for sorption studies. Also, there is less likelihood that these antibiotics will leach through soil and appear in the ground water since their sorption on soils is very high unless they are carried by soil particles through preferential flow. There was also no effect of soil sterilization on sorption kinetics of these antibiotics thus suggesting that there is minimal probability of the antibiotics degrading by microorganisms during 24- to 48-h adsorption studies.  相似文献   

14.
15.
Fluoride depositions near aluminum smelters and other fluoride-emitting plants can lead to fluoride accumulation in soils, which constitutes a risk for ground water contamination. This study was conducted to investigate the capacity of a 0.2 M acid ammonium oxalate solution to selectively and quantitatively extract fluoride accumulated in soils. The recovery of fluoride added to three soils was evaluated following 7- to 28-d incubations. Oxalate extraction was also compared with a total fluoride extraction method, using oxalate-extractable fluoride (Fox) and total fluoride (Ftot) accumulation profiles derived from column percolation experiments. To determine low-level fluoride concentrations without interference from high Al and Fe concentrations, an adapted ion chromatography method was used. Following soil incubations, oxalate extracted 42 to 86% of added fluoride. Recovery varied between soils and, in one soil, increased with added fluoride concentration. Recovery was unaffected by incubation time. Maximum recovery was obtained in a soil high in amorphous Fe and Al, low in clay, and free of carbonate. Lower recoveries were obtained in soils with higher clay or carbonate contents. Only 4 to 8% of Ftot was extracted in untreated samples using Fox, which suggests a high selectivity of this method for added fluoride. In percolation experiments, the use of Fox reduced considerably the background noise associated with Ftot for the evaluation of fluoride accumulation profiles. Because of its high selectivity and despite incomplete fluoride recovery, the use of Fox to determine fluoride resident concentrations in soils may improve environmental monitoring of fluoride accumulation and movement in contaminated soils.  相似文献   

16.
The organophosphate insecticide phosmet [phosphorodithioic acid, s-((1,3-dihydro-1,3-dioxo-2H-isoindol-2yl)methyl), o,o-dimethyl ester] is used to control red-legged earth mites (Halotydeus destructor), lucerne flea (Sminthurus viridis), and Oriental fruit moth (Cydia molesta) in horticulture and vegetable growing. This study was undertaken with two soils of contrasting properties to determine the extent to which sorption and degradation of the insecticide might influence its potential to leach from soil into receiving waters. Two soils were used: a highly organic, oxidic clay soil (Ferrosol) and a sandy soil low in organic matter (Podosol), sampled to 0.3 m depth. The extent of sorption and decomposition rate of a phosmet commercial formulation were measured in laboratory experiments. Sorption followed a Freundlich isotherm at all depths. The Freundlich coefficient K was significantly correlated (p = 0.005) with organic C content in the Podosol, and significantly correlated (p = 0.005) with organic C and clay content in the Ferrosol. K was highest (48.8 L kg-1) in the 0- to 0.05-m depth of the Ferrosol, but lowest (1.0 L kg-1) at this depth in the Podosol. Degradation followed first-order kinetics, with the phosmet half-life ranging from 14 h (0-0.05 m depth) to 187 h (0.2-0.3 m depth) in the Ferrosol. The half-life was much longer in the sandy Podosol, ranging from 462 to 866 h, and did not change significantly with depth. Soil organic C and to a lesser degree clay content influenced phosmet sorption and degradation, but the interaction was complex and possibly affected by co-solvents present in the commercial formulation.  相似文献   

17.
Mineralization of atrazine and formation of extractable and non-extractable "bound" residues were followed under laboratory conditions in two contrasting soils (organic C, texture, and atrazine application history) from northern Spain. The soils, a Humic Cambisol (MP) and a Gleyic Cambisol (G) were incubated with labeled atrazine (ring-13C atrazine) at field application dose and measurements were made at different time intervals during 3 mo. Fate and behavior of atrazine along the incubation showed different patterns between the two soils, the time taken for degradation of 50% (DT50) being 9 and 44 d for MP and G soils, respectively. In MP soil, with 40 yr of atrazine application and lower organic C and clay content, more than 89% of U-13C-atrazine added was mineralized after 12 wk, with most mineralization occurring within the first 2 wk. G soil, with 10 yr of atrazine application, exhibited a more progressive U-13C-atrazine mineralization, reaching 54% of initially added atrazine at 12 wk. Hydroxyatrazine and deisopropylatrazine were the metabolites founded in the extractable fraction, demonstrating that both chemical and biological processes are involved in atrazine degradation. Soil G showed during all the incubation times an extractable residues fraction greater than that in MP soil, indicating a high potential risk of soil and water contamination. Rapid microbial degradation through s-triazine ring cleavage was proposed to be the main decomposition pathway of atrazine for the two soils studied. Bound residues pool also differed notably between soils accounting for 9 and 41% of initially added atrazine, the higher values shown by soil with higher organic matter and clay content (G soil).  相似文献   

18.
Interaction of Cu with dissolved organic matter (DOM) is an important physicochemical process affecting Cu mobility in soils. The aim of this study was to investigate the effects of DOM from anaerobically digested dewatered sludge and sludge compost on the sorption of Cu on an acidic sandy loam and a calcareous clay loam. In the presence of DOM, Cu sorption capacity decreased markedly for both soils, especially for the calcareous soil. The Cu sorption isotherms could be well described by the Freundlich equation (r2 = 0.99), and the binding intensity parameter of soils in the presence of sludge DOM was lower than compost DOM. An increase in DOM concentration significantly reduced the sorption of Cu by both soils. Within the Cu and DOM concentration range studied, the decrease in Cu sorption caused by sludge DOM was consistently greater than that of compost DOM. This might be attributed to the greater amount of hydrophobic fraction of DOM in the compost. Moreover, the reduction of Cu sorption caused by DOM was more obvious in the soil with higher pH. In addition, the sorption of Cu increased with an increase in pH for both soils without the addition of DOM, while Cu sorption in the presence of DOM was unexpectedly decreased with an increase in pH at a pH >6.8. This implied that DOM produced by sludge or other C-enriched organic wastes heavily applied on calcareous soils might facilitate the leaching loss of Cu because of the formation of soluble DOM-metal complexes.  相似文献   

19.
Information on ecotoxicity of organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), in terrestrial environment is needed for establishing soil quality criteria and for risk assessment purposes. An ecotoxic effect of a model PAH compound (phenanthrene) toward soils microorganisms (nitrifying bacteria) was evaluated in 50 different soils. The soil samples were collected from agricultural land in four regions of Poland with varying levels of industrialization (Slaskie, Dolnoslaskie, Podlaskie, and Lubelskie voievodeships). Soils were characterized for basic physicochemical properties (texture, organic matter content, pH(KCl), total nitrogen content, total sorption capacity) and the content of contaminants including PAHs (73-800 microg kg(-1)), Pb (6-720 mg kg(-1)), and Zn (9-667 mg kg(-1)). Ecotoxicity of phenanthrene (applied at 10, 100, 500, and 1000 mg kg(-1)) to soils microorganisms was evaluated in laboratory studies in control conditions (incubation of soils for 7 d at 20 +/- 2 degrees C). Nitrification potential was used as the ecotoxicity measurements end point. The EC50 values (146-1670 mg kg(-1)) calculated from the square root-X linear regression model differed significantly in various soils, although it was difficult to establish a causative relationship between soil physicochemical characteristic and phenanthrene toxicity. A significant factor in the assessment of soils vulnerability to the effect of phenanthrene was level of soil contamination, particularly with PAHs. Soils with previous contamination were more susceptible (mean EC50, 325 mg kg(-1)) than soils from uncontaminated, rural areas (mean EC50, 603 mg kg(-1)).  相似文献   

20.
A model of acidic pesticide sorption in soils was developed from theoretical modeling and experimental data, which initially considered a combination of a strongly acidic pesticide and a variable-charge soil with high clay content. Contribution of 2,4-D [(2,4-dichlorophenoxy) acetic acid] anionic-form sorption was small when compared with molecular sorption. Dissociation of 2,4-D was not sufficient to explain the variation in Kd as a function of pH. Accessibility of soil organic functional groups able to interact with the pesticide (conformational changes) as a function of organic matter dissociation was proposed to explain the observed differences in sorption. Experimental 2,4-D sorption data and K(oc) values from literature for flumetsulam [N-(2,6-difluorophenyl)-5-methyl [1,2,4] triazolo [1,5-a] pyrimidine-2-sulfonamide] and sulfentrazone [N-[2,4-dichloro-5-[4-(difluromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl] phenyl] methanesulfonamide] in several soils fit the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号