首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 184 毫秒
1.
络合脱硝法是近年来新型的脱除氮氧化物的方法之一,其中EDTA金属络合剂受到了广泛关注,而亚铁络合剂又具有很好的脱除氮氧化物的效果。考查了硫酸亚铁铵与EDTA形成的Fe(II)EDTA这种比较常见的EDTA金属络合剂对NO的吸收容量,并考查温度、络合剂浓度等对Fe(II)EDTA吸收NO的影响。研究结果表明:在相同的实验环境和实验条件下,对于影响Fe(II)EDTA吸收NO的因素最重要的是温度,其余依次为络合剂浓度、气体流速、氧含量、吸收液pH,最适宜吸收条件是反应温度50℃、络合剂浓度0.1mol/L、进气流速600mL/min、氧含量2%、吸收液pH=6。  相似文献   

2.
在湿法烟气脱硝中,Fe(Ⅱ)EDTA是一种常用的螯合剂,对NO有良好的络合吸收能力,但是Fe(Ⅱ)EDTA容易被O2氧化成对NO无络合能力的Fe(Ⅲ)EDTA。因此,选择合适的还原剂实现Fe(Ⅲ)EDTA的高效还原是络合脱硝的关键技术之一。比较了铁碳(Fe/AC)和铁粉(Fe)在不同搅拌速度下对Fe(Ⅲ)EDTA的还原,系统探讨了铁碳质量比、O2浓度、铁碳中Fe与Fe(Ⅲ)EDTA的摩尔比、pH值和Fe(Ⅲ)EDTA初始浓度对铁碳还原Fe(Ⅲ)EDTA的影响,考察了Fe/AC投加前后NO吸收效率的变化,同时通过BET、XRD表征技术对铁碳材料进行了分析。结果表明:Fe/AC能很好地再生Fe(Ⅱ)EDTA,从而提高NO吸收效率。提高搅拌速度、铁碳中Fe与Fe(Ⅲ)EDTA的摩尔比、Fe(Ⅲ)EDTA初始浓度,Fe(Ⅲ)EDTA的还原速率会相应增大;O2浓度及pH增大会降低Fe(Ⅲ)EDTA的还原速率。表征结果表明,铁碳表面形成的氢氧化物为γ-Fe OOH。  相似文献   

3.
利用Fe(Ⅱ)EDTA络合吸收-铁粉间歇还原再生脱除NO并回收氨资源的方法,实验研究了铁粉还原再生Fe(Ⅱ)(NO)EDTA的过程及其影响因素。结果表明,以0.015 mol/L的Fe(Ⅱ)EDTA做吸收剂,在起始p H 5.5、温度323K条件下吸收400×10-6~500×10-6的NO,脱除率95%以上;铁粉还原再生Fe(Ⅱ)(NO)EDTA过程可用缩芯模型阐释;铁粉添加量与搅拌强度直接决定了铁粉质点数量,是影响反应的重要因素;实验中Fe(Ⅱ)(NO)EDTA络合液150 m L,氧气含量为5%时,搅拌速度900 r/min、粒径为0.12 mm的铁粉浓度5.3 g/L、温度353 K、p H=6为最适宜再生条件。  相似文献   

4.
Fe(Ⅱ)络合吸收烟气中的NO生成亚硝酰亚铁络合物,使NO快速进入液相;在Fe(Ⅲ)催化氧化作用下NO可以被S(Ⅳ)化合物还原。基于以上反应机制,提出了Fe(Ⅱ)络合—Fe(Ⅲ)催化氧化—S(Ⅳ)还原湿法脱除燃煤锅炉烟气中NO_x的新方法,考察了Fe的价态、吸收液pH、烟气中O_2、亚硫酸钠添加量等因素对NO_x脱除效率的影响。结果表明,在无O_2烟气的脱硝实验中,当吸收液中Fe(Ⅱ)、Fe(Ⅲ)共存,pH为2.2~2.9时,对NO_x的脱除效果最好,脱除效率为75%;当烟气中有O_2存在时,Fe(Ⅱ)、Fe(Ⅲ)共存,吸收液中的S(Ⅳ)被快速氧化,使得烟气中SO_2所提供的S(Ⅳ)化合物积累量难以达到预期脱硝效果所需的浓度水平,实验通过持续投加亚硫酸钠来补充脱硝所必需的S(Ⅳ)化合物,其瞬时投加量为10~(-4)~10~(-3) mol/(L·min)时,对NO_x的脱除具有较明显的促进作用。与此同时,投加亚硫酸钠并未影响此工艺对SO_2的脱除效率,脱硫效率始终维持在95%以上。  相似文献   

5.
基于Fe(C_2O_4)_3的光化学性质,研究了Fe(C_2O_4)_3光催化协同络合铁脱硝剂再生的实验过程。实验考察了在50℃和Fe(Ⅱ)EDTA浓度为0.01 mol·L~(-1)以及NO进口浓度为530 mg·m-3的模拟烟气脱硝系统中,光催化再生模式、初始p H、Fe(C_2O_4)_3浓度及组成、氧气浓度对再生过程的影响。结果表明:Fe(C_2O_4)_3分开加入和分步光照是适合于本体系的反应方式;草酸钠与硫酸亚铁的最佳浓度比为3,浓度分别为0.06和0.02 mol·L~(-1),吸收液初始p H为5.3,有氧参与条件下,实现了络合剂有效再生,再生吸收液脱硝率最高可恢复到60%左右;氧在再生过程中表现出正协同效应。通过牺牲光敏性的草酸铁配体再生脱硝络合剂,建立了一种温和的光助低温湿式氨法同步脱硫脱硝过程。  相似文献   

6.
在中试吸收塔反应器中,以氨基湿法烟气脱硫为基础,结合Fe(Ⅱ)EDTA络合吸收NO技术,实现同步脱硫脱硝;采用单一变量法研究了塔型、填料几何特性、填料层高度、液气比和Fe(Ⅱ)EDTA浓度等因素对同步脱硫脱硝的影响。结果表明,在相同的条件下,填料塔比空喷塔和鼓泡塔有利于同步脱硫脱硝;空隙率高、填料因子小的填料能明显提高脱硫脱硝效率,填料层高度从0 mm增加到900 mm,脱硫脱硝效率分别增大了4.49%和19.55%;液气比和Fe(Ⅱ)EDTA浓度越大,脱硝效率越高,但对SO_2的吸收没有影响。最佳工艺条件为:ф25 mm鲍尔环作填料且填料层高度为900 mm的填料塔、液气比为12 L/m~3、Fe(Ⅱ)EDTA浓度为0.05 mol/L,在此条件下,脱硫脱硝效率分别达到100%和51.55%。  相似文献   

7.
FeⅡ(EDTA)协同生物转鼓过滤器去除NO的实验研究   总被引:1,自引:0,他引:1  
采用自行研制的生物转鼓反应器(RDB)处理难溶于水的NO废气,为提高NO的传质系数和去除效率,实验考察了营养液中添加FeⅡ(EDTA)络合剂协同RDB以提高NO去除效率的过程.结果表明,当空床停留时间(EBRT)为0.96 min时,在营养液中添加FeⅡ(EDTA)至100mg/L后,NO的去除效率从70.78%升至7...  相似文献   

8.
建立了以EDTA和柠檬酸为铁盐络合剂的循环脱硫体系,采用络合铁法对垃圾填埋气中的H2S进行脱硫中试实验,结果表明实验所建立的络合铁脱硫体系运行稳定,脱硫效率高,适合应用于垃圾填埋气中硫化氢脱除.  相似文献   

9.
建立了以EDTA和柠檬酸为铁盐络合剂的循环脱硫体系,采用络合铁法对垃圾填埋气中的H2S进行脱硫中试实验,结果表明实验所建立的络合铁脱硫体系运行稳定,脱硫效率高,适合应用于垃圾填埋气中硫化氢脱除。  相似文献   

10.
采用自行研制的生物转鼓反应器(RDB)处理难溶于水的NO废气,为提高NO的传质系数和去除效率,实验考察了营养液中添加FeⅡ(EDTA)络合剂协同RDB以提高NO去除效率的过程。结果表明,当空床停留时间(EBRT)为0.96 min时,在营养液中添加FeⅡ(EDTA)至100 mg/L后,NO的去除效率从70.78%升至79.26%。未添加FeⅡ(EDTA)时NO去除率随营养液的增加下降,添加FeⅡ(EDTA)至100 mg/L后,去除率随营养液量的增加先上升后下降,且下降速率比上升速率大。随着营养液中FeⅡ(EDTA)浓度从0增加至500 mg/L,实验最佳温度从32.5℃升至47.5℃,但添加FeⅡ(ED-TA)至100 mg/L对实验的最适pH值没有太大影响。  相似文献   

11.
建立了以EDTA和柠檬酸为铁盐络合剂的循环脱硫体系,采用络合铁法对垃圾填埋气中的H2S进行脱硫中试实验,结果表明实验所建立的络合铁脱硫体系运行稳定,脱硫效率高,适合应用于垃圾填埋气中硫化氢脱除。  相似文献   

12.
鼓泡反应器中液相络合催化同时脱硫脱硝的研究   总被引:1,自引:0,他引:1  
在鼓泡反应器中考察了[Co(en)3]2+同时吸收去除SO2和NO的影响因素,实验结果表明,pH值和脱硫剂种类是影响乙二胺合钴同时脱除NO和SO2的最重要影响因素,烟气中的氧促进乙二胺合钴吸收NO和SO2,烟气中的SO2,CO2和NO2对乙二胺合钴吸收NO具有抑制作用。在实验条件温度为20℃,pH为13.0,[Co(en)3]2+浓度为0.025 mol/L,加入1 g NH3.H2O的脱硝率更好,连续吸收60 min,脱硝率均保持在93.5%,加入NaOH和NH3.H2O的脱硫效果最好。乙二胺合钴络合同时脱除NO和SO2完全可以在一个装置中完成。  相似文献   

13.
采用臭氧定量氧化NO,并结合湿法吸收进行脱硫脱硝实验研究。吸收实验选取3种常见碱性吸收液,采用鼓泡法进行NO_x脱除效果对比,最终选定0.05 mol·L~(-1)的Ca(OH)_2乳浊液为吸收液。考察了NO和NO_2不同配比下的吸收效果,当氧化度为60%(NO_2/NO物质的量比1.3)时,吸收效果最佳。臭氧氧化实验结果表明,O_3/NO物质的量比为0.6时能达到最佳氧化度,碱液吸收NO_x脱除效率能达到76%,SO_2脱除效率达100%。当改进鼓泡方式后,最佳氧化度条件下NO_x脱除效率提高到85%。碱液pH对该法脱硝效率有影响,SO_2的存在对NO_x的脱除有一定促进作用。  相似文献   

14.
基于乙二胺四乙酸亚铁螯合剂络合吸收的NO和NO_2协同净化工艺,一级净化采用铁屑填料床,利用螯合物吸收、铁屑还原净化NO,二级吸收采用鲍尔环清水喷淋塔,考察协同净化效果。结果表明:当NO进口质量浓度约为200mg/m~3、NO_2进口质量浓度约为70mg/m~3、螯合剂为0.02mol/L、液气比为3L/m~3、空塔气速为0.078m/s的条件下,一级出口NO降至75mg/m~3左右;在一级吸收塔螯合剂为0.02mol/L、液气比为3L/m~3和二级吸收塔氧化度(NO_2占NO_x的体积分数)为50%、液气比为4L/m~3的条件下,二级出口NO、NO_2分别可稳定在20、8mg/m~3左右。  相似文献   

15.
考察了经10% H2-90% Ar(体积分数)还原的钒硅催化剂在固定床石英玻璃反应器中的脱硫脱硝活性,研究了反应温度、SO2/NO摩尔比及O2浓度对SO2和NO脱除率的影响.结果表明,还原后的钒硅催化剂的平均NO脱除率提高了15%左右;反应温度对脱硫脱硝影响较大,当温度为400℃以上时SO2和NO脱除率基本保持稳定;SO2/NO摩尔比为2和5时,钒硅催化剂的NO脱除率较高;模拟烟气中有O2条件下的脱硫脱硝活性明显高于无O2条件,O2体积分数为6.00%时SO2和NO脱除率达到最大.  相似文献   

16.
等离子体法脱硝被认为是一种非常环保有效的脱硝技术,为了探究等离子体对NO_x的作用过程,选用AC/DC流光放电等离子体及模拟烟气,考察了烟气流量和NO初始浓度、添加剂的种类与含量以及SO_2对等离子体脱硝的影响。结果表明:NO的脱除过程由氧化过程和还原过程同时作用,在同一功率下,NO_x脱除率随流量的增加而降低,NO初始浓度对NO_x脱除率无直接影响。氨的添加可以促进NO_x的还原脱除,乙烯的添加可以促进NO氧化转化为NO_2。烟气中SO_2存在会导致NO_x脱除效率降低,此时氨助剂的加入可以显著提高NO_x脱除率。当NH3∶SO_2=2∶1时,在15 W下SO_2脱除率可达100%,NO_x脱除率60%。  相似文献   

17.
低温选择性催化还原(SCR)脱硝是国内外脱硝技术研发的热点,但目前主要集中在实验室小试范围,无法完全反映催化剂在实际烟气中的运行状况。在30 t/h循环流化床燃煤锅炉脱硫除尘装置后建设了2 000~5 000 m3/h的SCR脱硝中试装置,经系统研究发现,中试使用的蜂窝式催化剂对SO2和NO具有很强的吸附能力,且反应温度、喷氨速率和气体空速均会影响催化脱硝效率。为期5 d的连续运行实验结果表明,催化剂的脱硝效率一直稳定在30%~50%,并未发现明显的失活,这证明设计除雾除尘器、较大的混合器、混合器与反应器间较长的管路均有利于缓解催化剂因SO2、H2O和飞灰中的碱性金属导致的失活。  相似文献   

18.
为提高烟气脱硝效率,构建了微波辐照活性炭还原氮氧化物体系,通过对微波功率(温度)、反应空速、NO浓度、活性炭种类及粒径等影响因素的考察,研究了微波辐照活性炭还原NO体系的性能,通过反应动力学实验确定了活性炭还原NO反应的速率方程。研究结果表明,增大微波功率、减小反应空速均会提高NO还原效率,而改变NO浓度、活性炭种类以及粒径对NO还原效率无明显影响,微波功率为800 W,反应空速为2 000 h~(-1)时,对2 412 mg·m~(-3)的NO去除率可达99.8%,当NO浓度增至29 000 mg·m~(-3)时NO还原效率仍高达98.2%。通过反应动力学研究确定了反应的速率方程,其中反应级数为0.568 3,反应速率常数为14.71 s~(-1)。  相似文献   

19.
烧结烟气氨-Fe(Ⅱ)NTA法同时脱硫脱硝   总被引:1,自引:0,他引:1  
研究了烧结烟气氨-络合法同时脱硫脱硝。实验结果表明,氨-络合法可以实现烧结烟气同时脱硫脱硝,脱硫脱硝效率最高可达99%和40%。最佳运行条件为:Fe(NTA)浓度为0.075 mol/L,p H为5~6,停留时间为1.24 s(350 L/h的烟气流量)及55℃运行温度。  相似文献   

20.
利用核心成分为亚硫酰基的官能团进行了燃煤电站脱硫脱硝一体化研究。利用臭氧将烟气中的NO氧化为NO2,易溶于水的NO2及SO2则与水、氧气、氨水反应,最终生成硫酸铵及硝酸铵可作为复合肥的原材料。使用催化剂能够降低臭氧的消耗量。避免诸如亚硫酸盐等副产物的生成。通过在集装箱内搭建小型实验装置可直接抽取实际烟气,烟气处理量达到100 m3·h~(-1)。针对烟气温度、催化剂浓度、催化剂类型、O3/NOx比例等参数对污染物脱除效率的影响进行了研究。结果表明,上述参数变化对脱硫效率影响有限,脱硫效率始终能够稳定在99%以上。烟气温度越低,脱硝效率越高;脱硝效率最高能够达到88%。此外,为了降低运行成本,采用双氧水替代臭氧进行烟气氧化,其脱硝效率能够达到68%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号