首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 404 毫秒
1.
为研究太原市环境空气中含碳组分的时空分布变化规律,于2014年3月、5月、8月、12月采集了太原市3个点位春、夏、秋、冬等4个季节的PM_(2.5)样品,利用碳分析仪(DRI 2001A)测定了样品中OC1、OC2、OC3、OC4、EC1、EC2、EC3、OPC共8种碳组分含量,计算了有机碳(OC)、元素碳(EC)二者浓度,分析了OC和EC的时空分布特征.结果显示,太原市PM_(2.5)中OC和EC的平均质量浓度分别是13.5±14μg·m~(-3)和6.5±6.1μg·m~(-3),其中OC浓度随季节变化顺序为冬季春季夏季秋季,EC浓度季节变化与OC一致.春、夏、秋、冬4个季节总含碳气溶胶(TCA)占PM_(2.5)比例分别为17.6%、9.5%、8.8%、42.3%,其中冬季最高,表明冬季含碳气溶胶污染较为严重.夏季中OC和EC相关性较弱(R~2=0.4054),而春季(R~2=0.7659)、秋季(R~2=0.8253)、冬季(R~2=0.8184)OC和EC相关性较强,表明夏季碳气溶胶来源不同.通过(OC/EC)min最小比值法估算二次有机碳(SOC)浓度,春、夏、秋、冬季SOC浓度分别为2.8±2.9μg·m~(-3)、1.0±0.8μg·m~(-3)、 0.5±0.4μg·m~(-3)、 3.6±3.5μg·m~(-3),冬季SOC浓度最高. 8种碳组分分析结果显示,不同季节一次排放源中生物质燃烧、机动车尾气排放及煤炭燃烧对太原市含碳气溶胶贡献不同,其中,冬季燃煤和机动车排放使太原市含碳气溶胶污染严重,应加强燃煤和机动车排放源管控,来减轻碳组分污染.  相似文献   

2.
利用理化检测和发光细菌法对天津市某工业园区内16家行业典型企业的进出水进行理化分析和急性毒性试验.结果表明,16家企业原水水质较差,且废水的污染特征差异明显.发光细菌毒性试验表明,16家企业原水对发光细菌的急性毒性等级在重毒以上的比例占到81.25%.预处理后,废水的常规指标基本上满足园区污水处理厂收水标准,但部分企业出水中仍能检出一定浓度的非常规污染物.预处理后,企业废水的整体毒性得到有效削减,低毒和中毒的比例分别达到了25%和37.5%.相关性分析实验表明,企业原水急性毒性与各化学参数间均无相关性,企业出水的急性毒性则与化学需氧量(r=-0.589,P0.05)、总磷(r=-0.566,P0.05)、镍(r=-0.670,P0.01)、铊(r=-0.659,P0.01)、铅(r=-0.684,P0.01)、镉(r=-0.678,P0.01)、六价铬(r=-0.682,P0.01)具有显著相关性.将理化性质与急性毒性指标有机结合起来,能够更加全面、准确的判断工业废水水质状况.建议在制订工业园区纳管标准时设置急性毒性指标.  相似文献   

3.
运用磷脂脂肪酸(PLFA)法研究扎龙湿地各季节土壤微生物群落结构和多样性.结果表明:不同季节土壤中共检测到29(春)、30(夏)、29(秋)和27(冬)种PLFA,其中含量最高的PLFA分别为16:0(16.49%)、18:1ω9c(17.41%)、18:1ω9c(20.48%)和18:2ω6,9(26.16%).季节变化对一般性细菌、G~+菌、G~-菌、真菌、放线菌和总PLFAs有显著影响(P0.05),除真菌外均表现为春季最高、冬季最低,而真菌则为冬季最高、春季最低.香农-威纳多样性指数和Mc Intosh指数在春季最高,Simpson指数则在冬季最高.主成分分析(PCA)表明,第1主成分和第2主成分共解释土壤微生物群落结构总变异的87.6%,不同季节间土壤微生物群落结构存在显著差异.冗余分析(RDA)表明,放线菌和G~+菌与土壤有机质、总氮、速效氮和速效钾呈显著正相关,G~-菌与速效磷呈显著正相关,真菌和一般性细菌与土壤pH呈显著正相关.扎龙湿地微生物群落结构的季节波动与土壤养分状况密切相关,研究结果可为扎龙湿地生态功能恢复提供科学依据.  相似文献   

4.
采用主成分、层次聚类、箱型图和双向指示种分析(TWINSPAN)等方法,研究了15项附着硅藻指数在北江流域的适用性。在北江流域25个监测点中,共鉴定出附着硅藻2目6科30属98个种和亚种,相对丰度为5%以上的硅藻属有曲壳藻属(Achnanthes)、菱形藻属(Nitzschia)、舟形藻属(Navicula)和直链藻属(Melosira),分别为34.4%、18.1%、8.6%和7.3%。相对丰度为5%以上的硅藻种有极小曲壳藻(Achnanthes minutissima),极小曲丝藻(Achnanthidium minutissimum),克劳斯菱形藻(Nitzschia clausii)和可变直链藻(Melosira varians)。附着硅藻指数间,罗特营养指数(Rott Trophic Index,ROTT)和洛博指数(Lobo Index,LOBO)与其他指数相关性较弱,硅藻生物指数(Biological Diatom Index,IBD)和富营养污染硅藻指数(Diatom Eutrophication Pollution Index,EPI-D)呈极显著相关(r=0.915,P0.01)。硅藻指数与水质指标的相关性分析表明,斯雷德切克指数(Sláde?ek Index,SLA)和LOBO与电导率(Cond)、溶解氧(DO)和总磷(TP)等10项水质指标间均无相关性,其他指数与某个或某几个水质指标有一定的相关性。对10项水质指标加权后进行层次聚类,结果表明阿图瓦-皮卡第硅藻指数(Artois-Picardy Diatom Index,IDAP)、特定污染敏感指数(Specific Polluosensitivity Index,IPS)、硅藻属指数(Generic Diatom Index,IDG)和IBD与水质分类结果较一致。利用TWINSPAN对样点和硅藻群落进行分类后绘制箱型图,结果表明,IBD对样点水质的变化最为敏感。结果表明,IBD是适合北江流域水质评价的硅藻指数。  相似文献   

5.
为了解某基岩裂隙水型危险废物填埋场的地下水污染特征,探索地下水污染与渗滤液泄漏的关系,在对该场地进行水文地质勘探的基础上,布设监测点位、进行地下水和渗滤液原液采样分析,得到pH、化学需氧量(COD)、悬浮物、氨氮(NH_3-N)、总磷(TP)、铬(Cr)、铬(六价,Cr~(6+))、铅(Pb)等23项指标的含量水平检测数据,对检测数据进行分析;采用标准指数法评价地下水质量现状,采用单因子污染指数法和综合污染指数法评价地下水污染程度,利用SPSS19.0软件进行主成分分析和相关性分析.分析结果表明,地下水质量较差,未达到《地下水质量标准》Ⅲ类标准限值要求;50%指标的单因子污染指数大于1,说明已经发生了污染现象;主成分分析结果显示,地下水主要污染指标为氨氮、总磷、大肠菌群数、总锌和氯化物;相关性分析结果显示,多个污染指标间呈显著相关或极显著相关,说明地下水污染主要来源于填埋场渗滤液泄漏.  相似文献   

6.
巢湖表层沉积物氮、磷、有机质的分布及污染评价   总被引:3,自引:0,他引:3  
巢湖是中国第五大淡水湖,近年来富营养化问题严重,氮、磷、有机质增加是导致湖泊富营养化的重要驱动因素,而沉积物是湖泊氮、磷、有机质的主要归宿地。因此,了解巢湖沉积物氮、磷、有机质的含量及分布特征,对探明巢湖沉积物营养物质的污染状况及其富营养化控制与治理具有重要参考意义。在全湖布设了33个样点,对表层(0~10 cm)沉积物进行采样,分别采用重铬酸钾-硫酸硝化法、高氯酸-硫酸酸熔-钼锑抗比色法和烧失量法(550℃,焙烧5 h)测定沉积物总氮(TN)、总磷(TP)以及有机质(OM)含量,分析了TN、TP和OM含量的空间分布特征及相关性,并运用综合污染指数法和有机污染指数法评价其污染程度。结果表明,表层沉积物TN、TP和OM的含量范围(以下均称为范围)分别为64~3 005 mg?kg~(-1)、333~2 122 mg?kg~(-1)、1.79%~10.38%,均值分别为1 737 mg?kg~(-1)、691 mg?kg~(-1)、5.86%;空间上均表现为西湖区高于东湖区。Pearson相关性分析显示,表层沉积物OM与TN(r=0.75,P0.01),OM与TP(r=0.63,P0.01),TN与TP(r=0.66,P0.01)均呈显著正相关。综合污染指数范围为0.69~4.24,全湖平均值为1.83,有机污染指数范围为0.01~1.42,全湖平均值为0.63,两种指数法均显示巢湖表层沉积物TN、TP和OM污染严重,且西湖区污染较东湖区严重。  相似文献   

7.
江苏苏北湿地土壤重金属污染特征及评价   总被引:2,自引:0,他引:2  
本文研究了苏北盐城湿地土壤重金属Pb、Cu、Cr、Cd、Zn污染状况,并采用相关性分析和主成分分析对土壤重金属的来源进行了分析,同时,通过内梅罗综合污染指数法、地质累积指数法和Hakanson潜在生态风险指数法对土壤重金属的污染情况进行了评价.结果表明,研究区的土壤中Pb、Cu、Cr、Cd和Zn的平均含量分别为26.28、27.55、57.71、1.04、70.05 mg·kg-1,除了Cd有97.1%超过土壤环境质量二级标准,其余均未超过二级标准.除Pb含量分布变化幅度较小外,其余4种重金属含量分布变化幅度都较大.相关性分析和主成分分析表明研究区域的Pb、Cu、Cr、Zn存在相关性,它们可能来自于相似来源,主要来源于工业排放;Cd与其它重金属无相关性,表明来源不同,可能主要来自于农业化肥的施用.内梅罗综合污染评价法及地质累积指数法结果表明,各重金属污染程度从大到小的顺序为:CdCuZnPbCr.土壤样品的内梅罗综合污染指数P综合=6.11,说明总体上该区域土壤已达到重度污染等级.研究区域的综合潜在生态风险指数RI为261.71,总体处于中度生态风险等级,并且Cd是主要贡献因子.  相似文献   

8.
复合垂直流人工湿地基质氧化还原酶活性研究   总被引:1,自引:0,他引:1  
对复合垂直流人工湿地系统(IVCW)基质中5种常见的氧化还原酶活性进行了研究.结果表明,氧化还原酶活性存在显著性季节差异,过氧化物酶在春、夏、秋三季的酶活性显著高于冬季的酶活性(P<0.05);多酚氧化酶和过氧化氢酶的活性最高在秋季;脱氢酶在夏、冬两季时酶活性显著高于秋季和春季的酶活性(P<0.05);硝酸盐还原酶在春、冬季时显著高于夏、秋季(P<0.01).空间分布上,除过氧化物酶外,湿地下行流池的酶活性显著高于上行流池,并且随着基质深度的增加递减;但基质硝酸盐还原酶各层之间差异不显著.图6表3参17  相似文献   

9.
利用2008—2015年北京中心城区PM_(2.5)质量浓度数据,采用统计分析方法对其长期的污染变化趋势和特征进行了分析。结果表明,PM_(2.5)多年年均质量浓度为95.4μg?m-3,其总体变化趋势是改善的,各年改善程度不同,年均改善幅度约为2.85%,按照此速度,要解决北京的灰霾污染,尚需约18 a的时间。春季各年PM_(2.5)污染维持平稳的趋势,夏季和秋季呈逐年递减的趋势,而冬季则呈逐年上升的趋势,冬季的污染来源和排放控制应引起重视。从小时变化的特征看,春、夏、秋、冬各季的PM_(2.5)小时质量浓度最低值一般出现在日落前的2~3小时,而最高值分别出现在09:00、07:00、00:00和22:00点;春、夏季PM_(2.5)易在早晨累积,小时平均质量浓度日较差不甚明显,秋、冬季易在半夜累积,小时平均质量浓度日较差较明显;研究提示,为了健康,秋、冬季尽量不要在夜间进行户外运动。从健康暴露来看,"不健康"以上平均暴露水平占58.5%,处在非常严重的污染水平,暴露频率总体呈维持或改善的趋势;达到"警戒状态"的极端污染日平均暴露频率为4.4%,暴露频率呈不降反升的趋势。  相似文献   

10.
随着城市化进程的加快,垃圾填埋场散发恶臭气体造成的异味污染日益严重.近年来新型卫生填埋场开始采取覆膜处理来控制填埋区表面异味污染物释放.本论文对比研究了不同季节填埋场覆膜与暴露作业区表面气体污染物组分和异味污染程度,结果表明,覆膜区夏、秋、冬季节气体污染物总化学浓度相比暴露区分别降低了12.4%、30.7%、43.6%,臭气浓度同比下降61.8%、62.1%、78.6%.7类检出组分中芳香族化合物、含氧化合物、含氮化合物、卤代物和长链烷烃由于具有相似的释放来源而化学浓度相关性显著.  相似文献   

11.
洞庭湖水污染特征及水质评价   总被引:4,自引:0,他引:4  
于2016年4月—2017年3月对洞庭湖区11个监测断面396个表层水样进行采集,选取8个水质指标进行因子特征分析,并采用单因子评价法、综合污染指数法和主成分分析法对洞庭湖水质进行综合评价.洞庭湖水体呈弱碱性,总氮(TN)和总磷(TP)为超标污染物.单因子评价法结果表明,TN和TP为洞庭湖水质的主要限制因子,TN参与评价时,洞庭湖水质为Ⅴ类或劣Ⅴ类.综合污染指数法结果表明,洞庭湖水质状况为中污染,平水期水质优于枯水期和丰水期,主要污染因子为TN、TP、五日生化需氧量(BOD5)和高锰酸盐指数(CODMn).主成分分析结果表明,洞庭湖水质主要受p H、溶解氧(DO)、氨氮(NH3-N)和TN等指标影响,西洞庭湖水质较好,南洞庭湖次之,东洞庭湖较差.3种方法是定性和定量评价的有机结合,评价结果不完全一致,故采用多种评价方法来开展水质评价十分重要.  相似文献   

12.
PM_(2.5)空间变异规律是揭示污染机制的重要基础。研究获取珠三角地区共57个监测点2013年全年PM_(2.5)小时均值监测数据,汇总后得到监测点季度均值和年均值,采用空间自相关分析理论研究不同季节PM_(2.5)浓度空间自相关性的强弱与集聚模式。结果显示,珠三角地区PM_(2.5)污染季节差异显著,冬季PM_(2.5)浓度均值是夏季的3倍。空间自相关分析表明,90 km范围内,珠三角PM_(2.5)浓度均存在正空间自相关性且尺度效应明显,空间自相关性存在城市尺度和区域尺度2次递减;春、夏、秋、冬季PM_(2.5)浓度全局Moran's I指数分别为0.542、0.752、0.602和0.628,空间自相关性由高到低依次为夏、冬、秋和春季;珠三角PM_(2.5)浓度集聚模式明显,深圳等沿海地区表现为PM_(2.5)浓度低-低集聚(L-L),而离海岸稍远的广州等地区为高-高集聚(H-H)区域。  相似文献   

13.
石油类污染场地地下水抽水过程水质变化成因   总被引:3,自引:0,他引:3  
张敏  蔡五田  王丹  王凯丽  李楠  李金英 《环境化学》2011,30(9):1627-1635
在某石油类污染场地抽水试验过程中对地下水五项常规水质指标进行了连续监测.通过对指标的相关性和主成分分析,基于抽水、弥散试验,揭示了该场地抽水过程中水质变化的原因,探讨了以水质指标描述石油类污染场地地下水净化的方法.结果显示,水质变化是由昼夜水温变化、抽水和生化耗氧作用三者引起.其中,水温变化是由昼夜变化引起;电导率减小...  相似文献   

14.
涟江上游表层岩溶泉水污染源解析   总被引:1,自引:0,他引:1  
为明确涟江上游表层岩溶泉水化学污染特征及其污染来源,选取区域内7个地表饮用泉作为研究对象.测定泉水水温(T)、电导率(EC)、溶解氧(DO)、pH、总氮(TN)、总磷(TP)、氨氮(NH4-N)、硝氮(NO3-N)、高锰酸盐指数(COD)并研究其与泉眼半径200、500、1000 m范围内耕地、住宅用地及交通用地面积的相关性.研究结果表明,依据地表水环境质量标准(GB3838-02)等水质标准,涟江上游7个表层岩溶泉水TN均超标,耕地周围的泉水TP、NH4-N、NO3-N也超过标准值,表明该区域表层岩溶泉水总体高N而局部高P的污染特征.主成分分析表明农业活动对泉水TN、TP、NH4-N、NO3-N及COD含量产生了一定的影响.泉眼半径200 m范围内耕地面积与TP、NH4-N显著正相关,表明小范围内农业活动是泉水N、P污染的主要源头;500 m范围内EC与住宅用地面积显著正相关,表明较大规模人类聚居可能造成泉水离子成分偏复杂.从保护地表饮用泉的角度出发,建议泉眼半径200 m内减少农业活动强度及频率,泉眼半径500 m内控制人口密度及日常生活排污量.  相似文献   

15.
长江重庆段溶解性有机物的荧光特性分析   总被引:5,自引:0,他引:5  
蔡文良  许晓毅  罗固源  杜娴 《环境化学》2012,31(7):1003-1008
利用三维荧光光谱(EEMs),并结合平行因子分析(PARAFAC)及主成分分析(PCA),研究了长江重庆段溶解有机物(DOM)的荧光组分特征及其污染来源,并探讨了荧光强度同溶解性有机碳(DOC)及溶解氧(DO)的相关性.结果表明,PARAFAC模型识别出长江重庆段DOM由2类6个荧光组分组成,即类腐殖质荧光组分C1(350/422 nm)、C4(245,305/395 nm)、C5(260,340/420 nm)、C6(260/480 nm)及类蛋白荧光组分C2(275/300 nm)、C3(227,278/329 nm).在DOM来源组成中,陆源的类腐殖质含量占62.56%,类蛋白物质含量占31.31%.类腐殖质组分的荧光强度同DOC的含量存在明显的线性正相关(r=0.73),类蛋白组分的荧光强度同DO的含量呈明显的线性负相关(r=0.80).EEMs-PARAFAC不仅可以表征长江重庆段DOM的光谱特征,示踪长江重庆段的有机污染程度,还可以为三峡库区水体保护提供依据.  相似文献   

16.
为了解海州湾海洋牧场浮游动物群落结构季节性变化特征及其与环境因子的关系,分别于2015年春(5月)、夏(8月)、秋(10月)进行了3个航次的调查,共鉴定出浮游动物29种,其中,节肢动物门最多,有20种,毛颚动物门4种,腔肠动物门3种;桡足纲及甲壳纲浮游动物为当地主要种类。海州湾海洋牧场秋季浮游动物种类数达16种,大于夏季(10种)和春季(8种)。人工鱼礁区各个季节的浮游动物群落丰度与对照区无显著差异(P0.05),春、夏两季的浮游动物群落种类数无显著区域性差异(P0.05),而秋季对照区浮游动物种类数显著高于人工鱼礁区(P0.05)。海州湾海洋牧场浮游动物夏季种类数显著高于春季(P0.05);秋季浮游动物丰度显著低于春、夏两季(P0.05)。人工鱼礁区和对照区的Shannon-wiener多样性指数均在夏季达到最大值,分别为1.571和2.107,春季最小,为0.380和0.554;而均匀度则在秋季达到最大值,分别为0.214和0.224,且春季浮游动物群落结构与夏、秋两季相似度较低,夏、秋两季群落结构更复杂。典范对应分析结果表明,影响浮游动物群落丰度及分布的主要因素为海表温度(SST)、生物需氧量(BOD_5)、叶绿素(Chl-a)、溶解氧浓度(DO)和部分营养盐(SiO_3~(2-)-Si、NO_3~--N和PO_4~(3-)-P),且影响因素存在季节性差异。浮游植物群落丰度也是影响浮游动物群落丰度及分布的重要因素之一。  相似文献   

17.
长江口及邻近海域富营养化趋势分析及与环境因子关系   总被引:1,自引:0,他引:1  
依据2007-2009年春、夏季在长江口及邻近海域(包括长江口、杭州湾和舟山渔场)的调查监测资料,采用富营养指数法、潜在性富营养化法和有机污染指数法对该海域的富营养化状况、时空分布特征及与环境因子的关系进行了分析评价。富营养指数法计算结果表明:富营养化覆盖比例很高,达到70%以上;在春季,该海域的富营养化程度呈现上升趋势,所占比例从2007年的77.0%上升到2009年的89.8%,在夏季最低达到89.3%,最高到100.0%。3年来,富营养化在春、夏2季基本上处于逐年增加趋势,富营养化趋势越来越明显。在春季富营养指数平面分布呈由近岸向远海逐渐递减的趋势,梯度分布明显,其中,杭州湾富营养化情况较严重;夏季其平面分布与春季类似,但长江口和杭州湾两个水域的富营养指数的等值线都比较密集,夏季的富营养化情况较为严重。潜在性富营养化法计算结果表明:该海域富营养级主要集中在III级(富营养)和V P级(磷中等限制潜在性富营养);春、夏2季时,长江口V P级所占比例均从0.0%增加到66.7%,受磷限制性富营养化程度越来越高。另外,营养盐结构显示,N/P比值从9.1到50.9,营养盐比例明显不平衡,势必影响浮游生物的生长。有机污染指数法计算结果表明:该海域有机污染指数主要处于5级(重污染),水质污染严重;长江口春、夏2季5级的比例均从50.0%分别上升到83.3%和100.0%,杭州湾分别从60.0%和80.0%均上升到100.0%;舟山渔场分别从22.2%和66.7上升到66.7%和77.7%,说明受污染程度逐年上升。另外,3年来春、夏2季长江口有机污染指数达5级的占50%以上,杭州湾60%以上,舟山渔场20%以上,杭州湾受污染情况最为严重,其次是长江口,舟山渔场最小。在春、夏2季有机污染平面分布表现为污染程度从西向东、从北向南逐渐降低?  相似文献   

18.
流沙湾海水中石油烃的时空分布特征研究   总被引:1,自引:0,他引:1  
于2008年2月(冬季)、5月(春季)、8月(夏季)和11月(秋季)对流沙湾进行了4次采样考察,研究分析了流沙湾表层海水中石油烃质量浓度的平面分布和季节变化特征。结果表明,在2008年度,流沙湾表层海水石油烃的质量浓度为0~1.930 mg.L-1,平均值为0.080 mg.L-1,季节差异比较明显,呈春、冬、夏、秋季依次减小的变化趋势,冬、春季节海水呈现不同程度石油污染,夏、秋季节属Ⅰ、Ⅱ级水质,整个流沙湾海域表层海水石油烃的平面分布相对比较均匀。在内外湾分布上,冬、春、秋季节外湾大于内湾,而夏季节内湾大于外湾。流沙湾的水产养殖活动是其海水石油烃时空分布的主要影响因素。  相似文献   

19.
对红海湾近岸海域20个采样站沉积物样品中的7种重金属含量分布进行了研究,结果表明:该海域表层沉积物中Cu、Pb、Zn、Cd、Cr、Hg和As质量分数范围分别为2.60~13.30、16.70~38.00、45.20~81.10、0.00~0.11、10.40~23.10、0.03~0.50、6.42~10.20 mg·kg~(-1),平均值分别为6.29、25.44、57.87、0.03、15.32、0.07、7.97 mg·kg~(-1),其中,Cu、Zn、Cd、Cr和Hg平均值低于全国海岸带重金属的背景值。海洋沉积物质量单因子污染指数法评价结果显示,Cu、Pb、Zn、Cd、Cr、Hg和As的平均含量均符合海洋沉积物质量Ⅰ类标准,7种重金属平均含量的污染程度为PbAsZnHgCrCuCd。潜在生态危害指数法评价结果显示,红海湾近岸海域潜在生态风险指数等级"较低",海洋生态环境状况较好;结合重金属富集程度分析,该海域Pb的富集程度较高且集中于近岸海域。表层沉积物中重金属和TOC相关性分析表明:该海域表层沉积物TOC含量与重金属Cu、Pb、Zn、Cr和As含量具有一定的正相关性。进一步通过主成分分析研究沉积物中重金属污染来源,发现前2个主成分的贡献率分别为60.41%和16.48%;结合相关性分析,认为该海域沉积物重金属Cu、Pb、Zn、Cr和As的主要来源为工业废水与城市污水。文章揭示了红海湾近岸海域沉积物中重金属的分布特征,可为海洋生态环境建设提供依据。  相似文献   

20.
系统采集了环渤海北部沿海地区31个表层土壤样品,利用GC/MS分析了16种USEPA优控多环芳烃(PAHs)的含量和组分特征,运用主成分因子载荷法揭示了其污染来源,并初步评价了其风险水平.结果表明,沿海地区65%的土壤已被污染,最高污染样点PAHs含量达920.4ng·g-1,平均含量309.5ng·g-1,与国内外相关研究比较,处于中低等污染水平.各类燃料的不完全燃烧是该地区土壤中PAHs的主要来源,石油类挥发或泄漏对采油区土壤中PAHs的累积影响显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号