首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
甜玉米(Zea mays L.)是华南地区广泛种植的农作物,由于富含VE、VC、矿质营养和具有甜、鲜、脆等特色深受广大消费者青睐。然而,一旦甜玉米植株受到重金属影响,即可通过食物链危害人体健康,因此,保证甜玉米的优质高产对农业可持续发展具有重要意义。目前关于甜玉米对钒的富集特性研究未见报道。通过盆栽试验,研究了钒(V)胁迫下3个甜玉米品种(甜608、天贵和甜糯)的生长、吸收和积累V的特性。结果表明:土壤中适量V可促进玉米植株生长及其对V的吸收。随着V胁迫水平增大,幼苗期和拔节期甜608和天贵两个品种玉米植株生物量呈上升趋势,而甜糯玉米生物量趋于降低,与对照比较,3个品种玉米植株最高生物量分别增加303.2%、127.6%和减少62.1%。扬花期时低水平V(≤200 mg·kg-1)胁迫对植株生长有促进作用,而高水平V(200 mg·kg-1)抑制植株生长,但总是高于对照。成熟期不同品种玉米植株生物量均呈下降趋势,分别比对照降低47.7%、54.7%和52.2%。不同品种甜玉米植株对V的积累差异不显著,各器官中V的含量分布为根茎叶籽。无论在幼苗期、拔节期、杨花期和成熟期,随着V胁迫水平增大,玉米各器官对V的积累和分配比例均增大,且根部的增幅远大于茎、叶和籽等器官,当V处理水平为100 mg·kg-1和500 mg·kg-1时,各生长期甜608玉米植株根中V含量分别占总量的92.3%、81.0%、88.8%、80.0%及95.6%、92.2%、95.2%、92.7%;天贵根中V含量分别占总量的88.2%、67.8%、92.7%、77.3%及95.9%、84.5%、93.9%和86.0%;甜糯玉米分别为94.4%、89.2%、91.4%、76.1%及96.3%、91.6%、94.5%、76.9%。随着V胁迫水平增大,玉米植株的富集系数(BF)增大,但转移系数(TF)降低,二者均小于1,表明各甜玉米品种中的V主要富集在植株根部,其向地上部运输的能力较弱,从而导致植物籽实所吸收的V含量较少(0.5μg·g~(-1))。甜玉米植物是重金属V的耐性植物。  相似文献   

2.
以黔中喀斯特地区10种优势树种为研究对象,对其根、茎、叶中的碳(C)、氮(N)、磷(P)化学计量特征及其器官性状之间的关联进行了分析,旨在探明喀斯特地区主要优势树种养分利用特征及其对贫瘠环境的适应能力。主要结果如下:研究区植物叶片的N/P平均值为(9.75±0.55),主要受N的限制,但固氮植物桤木和马桑因其自身具有较强的固氮能力,未因贫瘠环境中N的缺乏而受到N的制约,叶片N/P(13.76)比值接近于14。C含量、C/N、C/P在各生长型间表现为:常绿树种落叶树种,针叶树种阔叶树种,非固氮固氮植物;N、P含量则为:常绿树种落叶树种,针叶树种阔叶树种,非固氮固氮植物。各器官的养分分配方式:全C含量为叶(438.93 mg·g~(-1))茎(393.83 mg·g~(-1))根(355.95 mg·g~(-1));全N含量为叶(16.26 mg·g~(-1))根(5.1 mg·g~(-1))茎(3.73 mg·g~(-1));全P含量为叶(1.73 mg·g~(-1))根(0.52 mg·g~(-1))茎(0.29 mg·g~(-1))。植物各器官N与P均呈显著正相关关系(P0.05),体现了植物吸收N、P养分元素的协同性。植物叶与根,茎与根以及茎与叶的相同元素之间均呈正相关关系(P0.05),说明环境供应植物体各器官的养分元素具有共变性。叶、根、茎中C与C/N、C/P均呈显著正相关,说明N、P对植物的生长及有机物的积累有着极其重要的作用。  相似文献   

3.
水合欢对重金属Cd、Pb的耐受性及吸收富集特性   总被引:1,自引:0,他引:1  
土壤重金属污染一直以来备受关注,作物能够吸收重金属从而对人体健康产生威胁,利用植物修复土壤重金属污染是当前环境科学和生态学领域的研究热点。本研究以一种水生豆科作物水合欢(Neptunia olerace)为研究对象,采用盆栽实验,研究水合欢对不同浓度Cd (0、50、100、180 mg·kg~(-1))、Pb (0、500、1 000、1 800 mg·kg~(-1))的耐受能力及吸收与富集情况。结果表明,(1)在Cd胁迫下,水合欢表现出一定的耐受性,生物量和植株长度与对照相比均显著降低(P0.05),可溶性蛋白、叶绿素以及根和茎中的MDA含量与对照均无显著差异,叶片中CAT活性显著提高(P0.05),但根中CAT、茎中SOD和叶片中POD活性及叶中MDA含量均先降低后升高;(2)在Pb胁迫下,水合欢表现出很强的耐受性,水合欢生物量、植株长度、可溶性蛋白、叶绿素和MDA含量与对照均无显著差异,但叶片中CAT活性显著提高(P0.05),根和茎中SOD、茎中CAT和叶片中POD活性均先降低后升高(P0.05);(3) Cd浓度为50、100、180 mg·kg~(-1)时,水合欢的富集系数分别为0.28、0.32和0.29,转运系数分别为0.05、0.06和0.08; Pb浓度为500、1 000、1 800 mg·kg~(-1)时,水合欢的富集系数分别为0.02、0.04和0.02,转运系数分别为0.04、0.08和0.05。水合欢对土壤中Cd、Pb的吸收均未达到超富集植物的标准,但本研究发现水合欢地下部重金属含量远高于地上部重金属含量,且水合欢为直根系植物,根系较浅,容易回收,基于此,可考虑将其与水稻等水生作物进行间套作,这种生产方式既可固氮,又可利用其根系来原位缓解土壤重金属污染对粮食等农产品生产所造成的安全风险。  相似文献   

4.
通过8个月的人工湿地模拟实验,研究了3组工艺的人工湿地对剩余污泥渗滤液的净化效果,以及对积存污泥的稳定化效果,同时还通过湿地植物体内重金属的分布特征来研究植物对重金属富集的差异性.Ⅰ单元种植芦苇,基质反级配;Ⅱ单元种植芦苇,基质正级配;Ⅲ单元种植美人蕉,基质正级配.实验结果表明,在每个7 d的周期内随着停留时间的增长污泥含水率和挥发性固体呈下降趋势,3组污泥脱水后平均含水率为55.06%,挥发性固体去除率达55.7%;不同类型的植物对积存污泥的矿化程度不同,芦苇要优于美人蕉;3个单元渗滤液出水的p H值变化趋势大致相同,无明显差异;渗滤液出水的有机质含量均较进泥低,种植美人蕉单元去除效果最好;根据数据分析,3个单元中都发生了氨化、硝化和反硝化作用,Ⅲ单元总氮去除率最高70.21%,Ⅱ单元和Ⅰ单元分别为67.34%和66.67%.芦苇和美人蕉植物体对Ni的吸收量分别为4.62 mg·kg~(-1)、5.28 mg·kg~(-1),Cu分别为25.38 mg·kg~(-1)、25.12 mg·kg~(-1),Cr分别为7.87 mg·kg~(-1)、7.19 mg·kg~(-1),Pb分别为5.03 mg·kg~(-1)、5.87 mg·kg~(-1),Zn分别为151.12 mg·kg~(-1)、141.30 mg·kg~(-1),不同湿地植物在人工湿地中吸收积累重金属的量存在差异性.系统表层未出现雍水现象,处理后污泥的胞外聚合物(EPS)含量较低,蛋白质平均为1.03 mg·g~(-1)、1.10 mg·g~(-1)、1.16 mg·g~(-1),多糖平均为0.42 mg·g~(-1)、0.36 mg·g~(-1)、0.42 mg·g~(-1).结果说明垂直流人工湿地系统对剩余污泥有较好的脱水和稳定化效果.  相似文献   

5.
狼尾草根系对阿特拉津长期胁迫的氧化应激响应   总被引:2,自引:0,他引:2  
通过盆栽实验研究了抗性植物狼尾草根部丙二醛(MDA)、脯氨酸(Pro)、抗坏血酸(As A)含量及超氧化物歧化酶(SOD)、谷胱甘肽还原酶(GR)等氧化应激生理指标对不同浓度阿特拉津长期(48 d)胁迫的响应规律。结果表明:当阿特拉津胁迫浓度分别高于20 mg·kg~(-1)和50 mg·kg~(-1)时,狼尾草根系的MDA与Pro含量较对照组显著升高(P0.05);随着阿特拉津胁迫浓度的增加,狼尾草根部SOD和GR活性呈先升高后降低的趋势,其中当阿特拉津胁迫浓度为20 mg·kg~(-1)时,SOD和GR活性达到最大值;供试植物根系中As A含量与阿特拉津胁迫浓度呈正相关。综上,中低浓度(≤20 mg·kg~(-1))阿特拉津处理没有对狼尾草的根系产生明显的氧化胁迫效应,狼尾草根系的上述抗氧化应激生理指标对于发挥阿特拉津抗性起着重要的作用。  相似文献   

6.
选择广泛栽培于西北地区的线麻(Cannabis Sativa L.)进行盆栽实验,研究了Cd胁迫对线麻富集和光合特性的影响.结果显示,线麻根、茎、叶中Cd最大富集量分别达到503.40、350.63、77.90 mg·kg~(-1).随着土壤Cd浓度的增加,线麻根、茎、叶的富集量逐渐增加,且表现为:根部茎部叶部.当Cd≥150 mg·kg~(-1)时,Cd从根部向地上部分的转运开始加强,且地上部分组织中主要集中在茎部.线麻株高、比叶重和生物量随Cd浓度的增加先升高后下降.当Cd浓度≥150 mg·kg~(-1)时,株高、比叶重和地下部分生物量明显低于对照(P0.05),而地上部分生物量不存在显著性差异(P0.05).当Cd浓度为50 mg·kg~(-1)时线麻叶绿素含量、类胡萝卜素含量、净光合速率、蒸腾速率、气孔导度、最大净光合速率和光饱和点达到最大值,光补偿点随Cd浓度的增加而持续增加.结果表明,线麻具有较高的Cd富集能力,可以作为潜在的Cd污染土壤修复栽培作物,但野外修复中如何提高线麻的生物量有待于进一步研究.  相似文献   

7.
采用温室盆栽试验方法,模拟不同纳米磁性氧化铁(Fe_3O_4)施加水平(0.1、1.0和10.0 mg·kg~(-1))的土壤,研究接种丛枝菌根(arbuscular mycorrhizal,AM)真菌Glomus caledonium对玉米(Zea mays)植株生长的影响。结果表明,纳米Fe_3O_4在10.0 mg·kg~(-1)施加水平下显著降低(P0.05)玉米植株地上部和地下部生物量、AM真菌侵染率和玉米植株养分(N、P、Ca、Zn)含量,显著增加(P0.05)玉米植株地上部Fe含量。与未接种处理相比,在10.0mg·kg~(-1)的纳米Fe_3O_4施加水平下,接种AM真菌显著提高玉米植株总Fe吸收量和地下部Fe含量(P0.05),但显著降低Fe的转运比率和玉米植株地上部Fe含量(P0.05),改善玉米植株体内养分含量,最终显著促进玉米植株生长(P0.05)。该结果表明接种AM真菌可提高Fe在植物根系的分配比例,降低Fe向植株地上部的转运,从而缓解纳米Fe_3O_4对宿主植物的毒害作用。  相似文献   

8.
为了探讨草甘膦(PMG)与重金属镉(Cd)复合胁迫对作物(玉米幼苗)生长的影响作用机制。通过温室盆栽试验,分别进行了不同浓度的PMG单一处理(浓度分别设计为0、1.25、2.5、5、10、20 mg·kg~(-1))和不同浓度的PMG(浓度分别为0、1.25、2.5、5、10、20 mg·kg~(-1))与浓度5 mg·kg~(-1)Cd2+的复合处理。采用分光光度法和连续激发式荧光仪分别对玉米幼苗抗氧化酶(过氧化物酶POD、过氧化氢酶CAT、超氧化物歧化酶SOD)、丙二醛(MDA)、叶绿素含量、荧光动力学曲线及相关参数进行了测定。结果表明,单一和复合胁迫分别在PMG浓度为1.25~5 mg·kg~(-1)、1.25~2.5 mg·kg~(-1)时,玉米幼苗通过增大抗氧化酶(SOD、POD、CAT)活性,清除积累过多的活性氧自由基,提高叶绿素含量的合成,加大光合作用速率,促进玉米幼苗的生长;单一和复合胁迫分别在PMG浓度为5~20 mg·kg~(-1)、2.5~20 mg·kg~(-1)时,由于玉米幼苗积累了过多的膜脂过氧化物,导致抗氧化系统损坏,阻碍叶绿素含量的合成,同时也损害了PSII的功能(MO、φPO、ΨO、φEO、φDO、ABS/RC、TRO/RC、ETO/RC、DIO/RC、PIABS),导致玉米幼苗光合作用受到抑制,阻碍幼苗的生长。研究表明,草甘膦单一胁迫和与重金属镉复合胁迫,对玉米幼苗酶活性及光合作用的影响,均随处理浓度的升高表现为双阶段性,低浓度促进,高浓度抑制;与同浓度的PMG单一处理相比,Cd2+的存在,加大了PMG单独存在时的损害作用,使得玉米幼苗对PMG胁迫的敏感浓度点从5 mg·kg~(-1)降低到2.5 mg·kg~(-1)。  相似文献   

9.
不同品种蓖麻对镉的响应及修复能力评价   总被引:1,自引:0,他引:1  
蓖麻(Ricinus communis L.)是一种有价值的能源作物,可用于修复镉污染农田同时生产生物能源。本研究在温室条件下(5~32℃)采用盆栽试验,设定2个镉质量分数梯度(2和5 mg·kg~(-1)),对比研究镉胁迫下30个蓖麻品种的生长状况,评估蓖麻对镉的耐性及蓖麻茎、叶和果实中镉的富集特征,以及不同蓖麻品种对镉的修复能力。研究发现,随着土壤中镉质量分数增加,10个蓖麻品种的生物量增加,20个蓖麻品种的生物量减少;表明不同品种蓖麻对镉的耐受程度不同。2 mg·kg~(-1)镉胁迫下,茎、叶和果实中镉质量分数变化范围分别为0.600~1.670、0.310~1.970和0.130~0.909 mg·kg~(-1),平均值分别为1.030、0.831和0.362 mg·kg~(-1)。5 mg·kg~(-1)镉胁迫下,茎、叶和果实中镉质量分数变化范围分别为1.012~4.032、0.698~3.514和0.227~1.525mg·kg~(-1),平均值分别为1.964、1.583和0.694 mg·kg~(-1)。蓖麻地上部分对镉的富集能力大小依次为茎、叶、果实。基于蓖麻品种茎、叶和果实中镉的质量分数,采用聚类分析的方法分析发现,30个蓖麻品种对镉的富集能力存在差异:4个蓖麻品种为高镉富集型,25个蓖麻品种为低镉富集型。根据蓖麻地上部分中镉质量分数及富集系数(小于1),判断蓖麻不是镉的超富集植物。2 mg·kg~(-1)镉胁迫下,蓖麻地上部分吸收的镉含量变化范围为26.3~65.7μg·pot~(-1),平均值为42.4μg·pot~(-1)。5 mg·kg~(-1)镉胁迫下,蓖麻地上部分吸收的镉含量变化范围为37.0~121.6μg·pot~(-1),平均值为76.0μg·pot~(-1)。蓖麻地上部分对镉的富集能力及提取能力主要由品种决定,受土壤中镉浓度的影响相对较小。因此,蓖麻作为一种潜在的镉的植物修复作物,不适用于植物提取的用途,可用于植物固定的用途;选用对镉具有较高耐性蓖麻品种种植可以在健康合理地利用镉污染农田的同时生产生物能源。  相似文献   

10.
对印制电路板行业退锡废硝酸、经氨水中和沉淀回收锡产品后产生的高浓度硝酸铵废液进行资源化利用,制备出新型尿素硝酸铵溶液。有必要开展农作物生长试验,以保护人体健康和土壤生态安全。采用大白菜(Brassica bara L.)、玉米(Zea mays L.)幼苗盆栽试验,在水稻土上设置3种施肥处理,分别为不施肥对照(CK)、施用商品尿素硝酸铵溶液(CUAN)、新型尿素硝酸铵溶液(NUAN)。大白菜、玉米幼苗收获后,分别测定植株生物量、有害重金属含量(以鲜质量计),土壤NPK全量和速效含量、土壤有害重金属有效含量、土壤中脲酶和脱氢酶活性。结果表明,施用CUAN和NUAN的大白菜与玉米幼苗干物质每盆质量分别为5.13、5.03 g·pot-1,13.82、15.12 g·pot-1。施用CUAN和NUAN处理的大白菜(鲜基)均未检出Hg、Pb,而Cd、As、Cr质量分数分别为0.07、0.08 mg·kg~(-1),0.049、0.018 mg·kg~(-1),0.24、0.08 mg·kg~(-1),主要重金属含量均符合《食品国家安全标准食品中污染物限量》(GB 2762—2012)中叶菜类安全标准;施用CUAN和NUAN处理的玉米幼苗(鲜基)也均未检出Hg、Pb,而Cd、As、Cr质量分数分别为0.06、0.08 mg·kg~(-1),0.035、0.034 mg·kg~(-1),0.82、0.95mg·kg~(-1),NUAN的施用对玉米幼苗主要重金属指标没有产生负面影响。施用CUAN与NUAN处理的盆栽大白菜土壤脲酶和脱氢酶的活性分别为0.13、0.11 mg·g~(-1)·d~(-1),6.35、6.88 mg·g~(-1)·h-1;施用CUAN与NUAN处理的盆栽玉米幼苗土壤脲酶和脱氢酶的活性分别为0.17、0.16 mg·g~(-1)·d~(-1),4.81、4.81 mg·g~(-1)·h-1。所有测定指标的结果表明,两种UAN处理的差异均不显著。因此,NUAN的作物效应、以及对土壤生态的影响与CUAN相当,作为肥料施用是安全的。  相似文献   

11.
通过盆栽试验,研究了不同浓度(0、1、10、50、100、200 mg·kg~(-1))镉处理下,海雀稗地上部与地下部的生物量受镉胁迫的影响及其体内镉的富集特征,进一步分析低镉处理(1 mg·kg~(-1))和高镉处理(50 mg·kg~(-1))镉在海雀稗根、茎、叶中的化学形态及根、叶中镉的亚细胞分布特征.结果表明,镉浓度≤50 mg·kg~(-1),海雀稗地上部、地下部生物量和耐性系数都未显著下降,海雀稗根部对镉的积累远大于地上部分;海雀稗根系细胞壁中镉含量分配比例50%,其次为可溶部分,高镉处理中细胞壁、可溶部分中镉的分配比例比低镉处理增加6.14%、0.32%,细胞膜部分和原生质体部分镉分配比例下降;海雀稗镉形态主要为氯化钠、醋酸提取态,高镉处理降低了毒性较高的水提取态和乙醇提取态的比例总和,根中氯化钠和盐酸提取态,茎、叶中醋酸提取态、氯化钠提取态增加.研究表明,海雀稗中毒性较低、活性较弱的盐酸提取态、醋酸提取态和氯化钠提取态Cd分配比例增加,根中细胞壁固持和液泡区隔化可能是海雀稗应对镉胁迫的重要耐性机制.  相似文献   

12.
硒对水稻镉含量及其在亚细胞中的分布的影响   总被引:3,自引:0,他引:3  
通过元素含量测定与亚细胞分离的方法,分析水稻镉在不同器官、组织之间的差异分布特征,从微观水平上阐释硒增强水稻镉耐受能力的机理,阐明硒降低稻米镉累积量的作用机理。研究结果显示,(1)随着硒浓度的增加,植株各营养器官干物重均增加。在2、4、8和16 mg·kg~(-1) Cd质量分数处理时,1.2 mg·kg~(-1) Se处理的糙米干物质量比Se空白处理分别增加了6.81%、7.73%、14.24%和49.62%。(2)当土壤镉质量分数在2~16 mg·kg~(-1)时,水稻各营养器官和糙米、精米中镉含量随土壤镉浓度的增高而显著增加。未施硒时,4、8和16 mg·kg~(-1) Cd处理糙米中镉质量分数分别为0.23、0.37和0.57 mg·kg~(-1),均超过我国国家食品安全标准中稻米镉的限量(0.20 mg·kg~(-1))。(3)相同镉浓度下,随着硒浓度的增加,水稻各营养器官和糙米、精米的镉含量和镉积累量均显著下降,4、8 mg·kg~(-1) Cd处理组中,糙米的镉含量均低于0.20 mg·kg~(-1),且1.2 mg·kg~(-1) Se处理优于0.4和0.8 mg·kg~(-1) Se处理。(4)镉在水稻各器官中的分配比例为:根系茎叶糙米精米。随着硒浓度的增加,镉在精米中的分配比例下降。结论:硒能够通过调整镉在水稻不同器官中的分配比例,降低稻米中的镉含量;而硒元素对镉毒害的抑制作用,可能是通过细胞对镉的区室化分隔而实现的。  相似文献   

13.
以人工湿地修复镉污染水体时,植物在镉离子的沉淀、吸收和积累等过程中起着关键作用,但当前报道的镉富集植物种类较少,湿地植物对镉胁迫的生长及生理响应缺乏系统研究,限制了湿地植物在镉污染水体修复中的应用。笔者以常见湿地植物水蓼(Polygonum hydropiper L.)为对象,设置了4个镉处理浓度(0、0.5、1和2 mg·L~(-1)),研究了水蓼对镉的富集特征以及生长和生理响应。水蓼根、茎和叶的镉含量(以干重计)随镉处理浓度的增加而升高,处理30 d时,在2 mg·L~(-1)处理下分别达到134、47和48 mg·kg~(-1)。处理30 d时,在1 mg·L~(-1)的镉处理下,水蓼的地上部及地下部富集系数和转运系数最高,地上部和地下部富集系数分别为45.6和111.7,转运系数为0.41。在处理15 d时,水蓼生物量、叶绿素含量和超氧化物歧化酶(SOD)活性在2 mg·L~(-1)处理下显著降低。在处理30 d时,水蓼的总生物量在不同镉浓度下无显著差异,但丙二醛(MDA)含量、SOD和过氧化氢酶(CAT)活性在0.5~2 mg·L~(-1)镉处理下均显著升高,叶绿素含量下降。这些结果表明,水蓼可以通过提高抗氧化酶活性等机理抵抗镉胁迫产生的氧化伤害,并且水蓼对镉的富集和转运系数较高,具有在镉污染水体修复中应用的潜力。  相似文献   

14.
通过分析兰州市某交通线路两侧绿化植物叶片金属含量及其相关性,叶绿素和渗透性调节物含量的变化,探究交通线路活动造成的植物重金属污染特征及其对绿化植物生理特性的影响,为筛选适应道路环境的绿化植物提供理论依据。结果表明:在不同道路环境中植物体内重金属含量有明显的差异,路侧植物灌木月季(Rosa chinensis)、乔木冬青(Ilex chinensis)、槐树(Sophora japonica)、梧桐(Firmiana platanifolia)和碧桃(Amygdalus persica var. persica)的Cr、Pb、Ni和Zn积累量高,如冬青叶片Cr达到2.11 mg·kg~(-1),月季叶片Pb为9.14 mg·kg~(-1),Ni在碧桃和槐树叶片中的积累量分别为28.48 mg·kg~(-1)和26.42 mg·kg~(-1),十字交叉采样点的乔灌木植物Pb、Cr、Mn、Ni和Zn积累量比较高,这可能与十字路口有较多的车流量或交通活动频繁有关系。相关性和逐步回归分析表明,交通线路路侧植物体内Cr-Pb、Cr-Zn、Cr-Ca、Pb-Ni、Pb-Fe和Mn-Ni元素之间的相关性表现为显著正相关。在所有绿化植物中,松柏叶绿素含量最低,路侧槐树和碧桃的叶绿素含量最高;与对照点植物相比,路侧冬青和槐树叶片叶绿素含量显著升高,而月季叶片叶绿素含量明显降低。此外,路侧重金属含量高的环境下槐树和碧桃叶片中的脯氨酸含量高,分别达到81.42μg·g~(-1)和91.11μg·g~(-1),月季叶片积累可溶性糖增加,说明不同的绿化植物可能在不同的重金属环境中积累不同的渗透性调节物,以维持细胞渗透性平衡从而抵抗重金属胁迫。  相似文献   

15.
氮肥形态对李氏禾富集铜的影响及生理响应   总被引:2,自引:0,他引:2  
土壤重金属污染是环境和生态领域研究的热点及难点。超富集植物受到土壤各种特性的影响,需要采取强化措施来提高植物修复效率。该文旨在加深对李氏禾(Leersia hexandra Swartz)累积铜的认知,为植物修复铜污染土壤提供理论数据。在土壤中铜污染水平分别为低(100 mg·kg~(-1))、中(300 mg·kg~(-1))、高(500 mg·kg~(-1))时,研究不同氮肥(NH_4)_2SO_4、CO(NH_2)_2、Ca(NO_3)_2、NH_4NO_3处理对超富集植物李氏禾累积铜、植物生长的影响以及生理响应,氮肥按肥土质量比0.3‰以水溶液的形式每周添加1次,李氏禾生长两个月后,收获,进行植株分析。结果表明:在土壤铜污染水平为500 mg·kg~(-1)时,施加Ca(NO_3)_2后李氏禾根、茎、叶中的铜富集量达到最大,分别为6 167.15、1 251.99和975.92 mg·kg~(-1),约为对照处理组的2.5~4.0倍,相对于其他各氮肥处理和对照组差异达显著。在低、中、高Cu污染水平下,施加(NH_4)_2SO_4处理组李氏禾株高均显著高于其他处理组,分别为68.5、65.2和65 cm;CO(NH_2)_2组李氏禾生物量分别为12.75、13.45和11.63 g·10 plants-1;叶绿素质量浓度分别为24.139、22.615、23.752 mg·L~(-1);可溶性蛋白质量分数分别为21.704、23.506和20.940 mg·g~(-1);金属硫蛋白质量分数分别为9 131.06、10 014.02和11 018.04 pg·g-1,均高于其他处理组;而NH_4NO_3处理组李氏禾叶片中丙二醛(MDA)物质的量浓度最少,分别为0.893、0.957和0.859mmol·L~(-1),有效地缓解了铜对李氏禾的损伤。因此,适量施加氮肥可以有效提高李氏禾的生物量以及根、茎、叶各部分铜累积量,增强了李氏禾对铜污染土壤的修复效果。  相似文献   

16.
为探究菠菜幼苗的耐Cu机理及赤霉素(GA_3)对Cu胁迫下菠菜幼苗耐Cu机理的调控效应,比较了正常生长、Cu胁迫以及Cu与GA_3复合作用(700 mg·kg~(-1) Cu+0、3、5、10、20、40、60、80 mg·L~(-1) GA_3)3种条件下,菠菜幼苗生长量、氧化应激反应、脯氨酸和可溶性蛋白含量、Cu2+积累、矿质元素吸收以及细胞超微结构等指标的变化。结果显示,与正常生长相比(C1),700 mg·kg~(-1) Cu胁迫下(C2处理),幼苗叶部、根部的Cu含量显著增加(P0.05),总鲜重和总干重分别下降了31.9%、40.9%,丙二醛(MDA)、O_2~-和H_2O_2含量增至对照的0.12、1.48、0.69倍,Ca、Mg含量减少,细胞器肿胀,核膜、核仁消失,而脯氨酸和可溶性蛋白含量分别增加了55.4%、17.3%,N、P、K、Fe、Zn含量也有增加趋势,表明该植物具有较强的耐Cu性。与Cu胁迫相比(C2处理),喷施低于5mg·L~(-1)的GA_3时(T1、T2处理),幼苗的叶部Cu含量显著下降(P0.05),根部Cu含量显著增加(P0.05),O_2~-和H_2O_2含量显著减少(P0.05),可溶性蛋白含量和植物生长量也显著增加(P0.05);叶部N、K、Ca、Mg的含量平均增加了3.4%、84.4%、90.7%和130%,Zn含量平均减少了23.8%,根部P、K、Ca、Mg、Zn含量平均增加了46.4%、92.3%、17.8%、98.2%和39.9%,Fe含量平均减少了19.5%;叶部细胞内叶绿体肿胀现象基本消失,基粒片层堆叠紧密,均匀分布在叶绿体内部,液泡面积缩小,线粒体清晰可见。继续增加GA_3浓度时,菠菜幼苗叶部Cu含量降幅减少、根部Cu含量增幅减少,氧化应激反应加剧,可溶性蛋白和矿质元素含量减少,生物量降低,叶肉细胞内叶绿体、线粒体、细胞核数量减少,结构模糊不清。综上所述,低于5 mg·L~(-1) GA_3能有效缓解Cu胁迫对菠菜幼苗的毒害作用,超过此浓度会导致Cu胁迫伤害加重。研究结果可为Cu污染地区蔬菜栽培管理和重金属耐性品种筛选提供试验依据。  相似文献   

17.
环境中同时存在着多种重金属元素,联合暴露与单独暴露时,重金属在体内的蓄积分布情况也可能有所差异。为探究重金属元素(汞、铬、砷、铅)对镉(Cd)在体内分布的影响,建立了大鼠在Cd暴露下的药代动力学(PBPK)模型,并进行了包括Cd在内5种重金属的联合毒性实验,比较了Cd单独给药与重金属混合物给药2种方式下大鼠肝脏、肾脏中的Cd浓度水平。结果表明,联合暴露高(Hg Cl23.67 mg·kg~(-1),NaAsO_2 3.67 mg·kg~(-1),CdCl_2 10.55 mg·kg~(-1),K_2Cr_2O_7 6.40 mg·kg~(-1),Pb(OOCCH_3)_2·3H_2O 133.33 mg·kg~(-1))、中(HgCl_20.367 mg·kg~(-1),NaAsO_2 0.367 mg·kg~(-1),CdCl_2 1.055 mg·kg~(-1),K2Cr2O70.640 mg·kg~(-1),Pb(OOCCH_3)_2·3H_2O 13.333 mg·kg~(-1))、低(HgCl_2 0.0367 mg·kg~(-1),Na As O20.0367 mg·kg~(-1),Cd Cl20.1055 mg·kg~(-1),K_2Cr_2O_7 0.0640 mg·kg~(-1),Pb(OOCCH3)2·3H2O 1.3333 mg·kg~(-1))剂量组大鼠肝脏中Cd浓度分别为13.37、0.78和0.06μg·g~(-1);肾脏中Cd浓度分别为14.41、1.64和0.15μg·g~(-1)。与对照组相比,暴露组中Cd浓度有显著升高,且不同剂量组之间均有显著性差异。同剂量Cd单独暴露的PBPK模拟结果显示,肝脏及肾脏中的Cd浓度水平落在联合毒性实验结果的浓度范围内,初步推断其他4种重金属的联合暴露并没有影响Cd在大鼠肾脏和肝脏中的浓度分布。  相似文献   

18.
类芦根系抗氧化酶和植物螯合肽对Cd、Pb胁迫的应答   总被引:3,自引:0,他引:3  
类芦(Neyraudiarey naudiana)是中国南方金属矿区最为常见的耐性植物,且能大量富集重金属,是修复重金属污染的潜能植物。为研究其对重金属胁迫的应答机制,采用营养液培养的方法研究了不同浓度(0、25、50、100μmol·L~(-1))Cd、Pb处理24 h后,类芦根系氧化损伤、抗氧化酶活性和非蛋白巯基化合物含量的变化。结果表明,在Cd、Pb胁迫下,类芦根系H_2O_2和O_2~(·-)含量显著增加,且伴随有MDA含量的升高,当Cd、Pb浓度为100μmol·L~(-1)时,MDA分别达到6.72和16.12nmol·g~(-1),发生膜脂质过氧化,造成植物氧化损伤。Pb胁迫下,SOD,POD活性随着处理浓度的增加呈现先上升后下降的趋势;Cd胁迫下SOD活性变化趋势与Pb胁迫的相似,而POD活性呈下降趋势。根系非蛋白巯基化合物含量检测显示,Cd、Pb处理下,GSH和PCs均呈先增加后下降的趋势。综合分析得出,类芦根系对不同重金属的不同浓度胁迫响应不一,其能通过调节抗氧化酶活性和植物螯合肽等的合成水平,降低重金属的毒性及其对植物的伤害,从而维持自身的稳态。  相似文献   

19.
本文采用半静态暴露实验法,研究了栉孔扇贝(Chlamys farreri)的不同组织对船舶常用燃料油0#柴油分散液和乳化液的富集及其在食物链传递过程中的生物放大效应。结果表明:(1)在不同浓度柴油分散液和柴油乳化液中,扇贝暴露8 d后不同软组织对柴油的生物富集系数BCF均表现为鳃(889.40~127.92 mL·g~(-1)、830.80~123.43 mL·g~(-1))内脏团(293.80~58.46 mL·g~(-1)、184.00~130.53 mL·g~(-1))肌肉(147.60~39.68 mL·g~(-1)、149.80~62.40 mL·g~(-1)),腮和内脏对石油的富集能力强于肌肉,各组织对柴油分散液的富集能力强于柴油乳化液;(2)用石油烃(TPH)浓度分别为1.74×10~(-10)mg·cell~(-1)、4.44×10~(-10)mg·cell~(-1)的三角褐指藻(Phaeodactylum tricornutum Bohlin)喂养扇贝后,扇贝体内石油烃(TPH)浓度随时间的延长和藻体浓度的上升都表现出增加的趋势,到第8天实验结束时扇贝体内TPH浓度达到7.79 mg·kg~(-1)和9.61 mg·kg~(-1),表明TPH通过浮游植物的摄食在扇贝体内造成累积,通过食物链进行了传递。  相似文献   

20.
水稻(Oryza.sativa L.)是我国最重要的粮食作物之一,水稻产量占粮食总产量的一半以上,一旦水稻受到重金属污染,将会影响水稻植株的正常生长和生理特性。目前关于钒胁迫对水稻植株生理特性指标的影响方面报道较少。通过水培实验,研究了不同钒(V)质量浓度(0、4、8、12、16、20 mg·L-1)对水稻幼苗(Oryza.sativa L)生理生化和富集特性的影响。结果表明:随着V胁迫浓度的增加,叶绿素含量、可溶性蛋白含量、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、超氧化物歧化酶(SOD)等均呈现先上升、后下降的变化趋势。当ρ(V)≤12 mg·L-1,与对照相比较,叶绿素含量、可溶性蛋白含量和酶活性增大了135.3%、104.2%、77.8%(CAT)、84.5%(POD)和273.2%(SOD);当ρ(V)〉12 mg·L-1,则分别降低37.2%、39.4%、41.1%、24.1%和24.5%。随着 V 胁迫浓度的增加,丙二醛(MDA)含量和细胞膜透性逐渐增大,与对照相比,分别增加了38.5%~289.3%、21.2%~303.2%,根系活力下降了10.9%~82.2%。可见,低ρ(V)(≤12 mg·L-1)对水稻幼苗的生长有一定的刺激作用,水稻幼苗自身保护酶表现出较强的自我调节能力;高ρ(V)(〉12 mg·L-1)明显抑制叶绿素和蛋白合成、抗氧化酶活性和根系活力,伤害了细胞质膜系统,影响水稻幼苗的生长发育。不同V浓度胁迫下,水稻幼苗累积的V含量为:根〉茎叶。随着V胁迫浓度增加,水稻幼苗各器官V含量增大,其中根部增幅远大于茎叶,当ρ(V)从5 mg·L-1增加到40 mg·L-1,与对照相比较,根部增加了0.98~25.3倍,茎叶部增加了0.26~4.74倍。生物富集系数(BF)先增加后降低,最大值为2.8408;迁移系数(TF)下降,最低值为0.1170,说明水稻对V有较强的富集能力,但迁移能力较低,积累的V主要富集在根部,可减轻V对地上部植物的危害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号