首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
苏州市PM2.5中水溶性离子的季节变化及来源分析   总被引:29,自引:27,他引:2  
2015年在苏州市城区采集大气细颗粒物PM_(2.5)样品共87套,用重量法分析了PM_(2.5)的质量浓度,离子色谱法分析了颗粒物中F-、Cl-、NO_3~-、SO_4~(2-)、Na~+、NH_4~+、K~+、Mg~(2+)和Ca~(2+),共9种水溶性无机离子.观测期间,苏州市PM_(2.5)的年均质量浓度为(74.26±38.01)μg·m-3,其季节特征为冬季春季秋季夏季;9种水溶性离子的总质量浓度为(43.95±23.60)μg·m~(-3),各离子的浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Na~+Cl~-K~+Ca~(2+)F-Mg~(2+);SNA(SO_4~(2-)、NO_3~-和NH_4~+三者的简称)是最主要的水溶性离子;SO_4~(2-)、NO_3~-和NH_4~+三者之间具有显著的相关性,它们在PM_(2.5)中主要是以NH_4NO_3和(NH_4)_2SO_4的结合方式存在.苏州市PM_(2.5)中水溶性离子的主要来源包括工业源、燃烧源、二次过程和建筑土壤尘等.  相似文献   

2.
泉州市大气PM2.5中水溶性离子季节变化特征及来源解析   总被引:2,自引:0,他引:2  
为掌握泉州市大气PM_(2.5)中无机水溶性离子的季节变化特征,于2014年3月~2015年1月同步采集了泉州市5个采样点共116个PM_(2.5)样品.用离子色谱法分析了PM_(2.5)中Na~+、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)等9种水溶性无机离子.观测期间,总水溶性离子浓度季节变化特征为春季(14.24±6.43)μg·m~(-3)冬季(8.54±7.61)μg·m~(-3)夏季(4.10±2.67)μg·m~(-3)秋季(3.91±2.58)μg·m~(-3);SO_4~(2-)、NO_3~-和NH_4~+(SNA)是PM_(2.5)中主要的3种离子,占水溶性离子总质量浓度比例分别为春季(90.3±3.3)%、夏季(68.8±11.7)%、秋季(78.9±7.1)%和冬季(74.0±18.4)%,说明春季二次污染较为严重;PM_(2.5)中阴、阳离子电荷平衡分析显示,阴离子相对亏损,大气细颗粒物组分呈弱碱性;春、冬季NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3等形式存在,而夏、秋季则主要以NH_4HSO_4和NH_4NO_3形式存在;PMF源解析结果表明,泉州市大气PM_(2.5)中水溶性离子主要来自海盐、二次源、建筑扬尘、垃圾焚烧源和生物质燃烧源.  相似文献   

3.
本研究于2015年12月至2016年2月在徐州市城区采集大气细颗粒物PM_(2.5)样品共32套,使用离子色谱法分析了颗粒物中的F~-、Cl~-、NO_3~-、SO2-4、Na~+、Mg~(2+)、NH_4~+、K~+和Ca~(2+)的质量浓度.观测期间,徐州市冬季PM_(2.5)的平均质量浓度为(164.8±77.3)μg·m-3,9种水溶性离子总质量浓度为(67.5±36.1)μg·m~(-3),占PM_(2.5)的40.9%,各离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-Ca~(2+)K~+Na~+Mg~(2+)F~-,其中NH_4~+、NO_3~-和SO_4~(2-)是最主要的水溶性离子.清洁大气、轻度霾和重度霾时期PM_(2.5)中总水溶性无机离子(WSIIs)质量浓度分别为(12.8±8.8)、(59.0±22.8)、(86.3±36.0)μg·m~(-3),SNA分别占WSIIs的86.4%、82.8%和78.9%.NH_4~+、NO_3-和SO_4~(2-)三者之间相关性显著,在PM_(2.5)中的结合方式为(NH_4)_2SO_4和NH_4NO_3.徐州市PM_(2.5)中水溶性离子的主要来源为二次转化、生物质燃烧、化石燃料燃烧和矿物粉尘等.  相似文献   

4.
成都平原大气颗粒物中无机水溶性离子污染特征   总被引:13,自引:6,他引:7  
蒋燕  贺光艳  罗彬  陈建文  王斌  杜云松  杜明 《环境科学》2016,37(8):2863-2870
为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1 476个颗粒物样品,应用离子色谱法对PM10和PM_(2.5)中8种无机水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-)进行测量.结果表明在观测期间,PM_(2.5~10)和PM_(2.5)中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM_(2.5)~10)和ρ(PM_(2.5))的37.8%和46.6%;其中二次离子(SO_4~(2-)、NO_3~-和NH~+4,SNA)约占各自水溶性离子总量的81.1%和89.9%.水溶性离子质量浓度冬季最高,春秋季相当,夏季最低.ρ(SO2-4)/ρ(PM_(2.5))夏秋季较高,而ρ(NO_3~-)/ρ(PM_(2.5))冬季最高,夏季最低.SNA、Cl~-、K~+大多分布在PM_(2.5)中,Ca~(2+)和Mg~(2+)主要分布在PM_(2.5~10)中.PM_(2.5)基本呈中性,水溶性离子主要以(NH_4)_2SO_4、NH_4NO_3、KNO_3、NaCl、KCl等形式存在.ρ(NO_3~-)/ρ(SO_4~(2-))揭示固定源依然是PM_(2.5)的主要来源.硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反.成都平原PM_(2.5)呈区域性复合污染特征,SNA是造成ρ(PM_(2.5))增加的主导因素.  相似文献   

5.
廊坊市秋季环境空气中颗粒物组分昼夜变化特征研究   总被引:3,自引:0,他引:3  
为研究廊坊市区秋季环境空气中颗粒物浓度及其组分昼夜变化特征,于2015年9月12—21日在廊坊市进行PM_(2.5)和PM_(10)采样,并对采集的样品无机元素、水溶性离子和碳组分(OC和EC)分析.结果表明,夜间PM_(2.5)和PM_(10)浓度比白天高,且下半夜出现大幅上升.PM_(2.5)/PM_(10)比值为0.49~0.62,下半夜最高.碳组分、Ba、Cr、Cl~-、NO_3~-、SO_4~(2-)、NH_4~+等主要富集在PM_(2.5)中,而Ca、Al、Si、Mg~(2+)和Ca~(2+)等主要富集在PM_(10)中.通过昼夜颗粒物组分对比发现,夜间EC、Cu、Zn、Cr、Pb、Cl~-、NO_3~-和NH_4~+等浓度明显上升.同时,下半夜OC/EC比值明显变小,Cl-、NO_3~-和NH_4~+浓度明显增大,同时段CO和NO_2浓度上升,而SO_2浓度变化平缓.以上表明采样期间廊坊夜间可能存在移动源和部分工业污染源排放.  相似文献   

6.
张伟  姬亚芹  张军  张蕾  王伟  王士宝 《环境科学》2017,38(12):4951-4957
为了解辽宁省典型城市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,分别于2014年和2016年采集了鞍山市和盘锦市道路扬尘样品,利用再悬浮采样器将其悬浮到滤膜上,用离子色谱仪分析了其中的水溶性无机离子组分,分别用相关分析法和比值法分析了其污染特征,用主成分法初步解析了其主要污染源.结果表明,盘锦市和鞍山市8种水溶性无机离子分别占道路扬尘PM_(2.5)的5.83%±3.34%和5.84%±1.15%.盘锦市NH_4~+与SO_4~(2-)和NO_3~-的结合方式主要为(NH_4)2SO_4和NH_4NO_3,鞍山市NH_4~+与SO_4~(2-)和NO_3~-的主要结合方式为NH_4HSO_4和NH_4NO_3.盘锦市和鞍山市道路扬尘PM_(2.5)中NO_3~-/SO_4~(2-)的均值分别为0.52±0.55和0.46±0.13,表明固定源(燃煤)对其道路扬尘PM_(2.5)的影响较显著.盘锦市道路扬尘PM_(2.5)主要来源于生物质燃烧源、海盐粒子、建筑水泥尘和机动车尾气;鞍山市道路扬尘PM_(2.5)主要来源于燃煤源、生物质燃烧源、海盐粒子和钢铁冶炼尘.  相似文献   

7.
为探讨盘锦市冬季PM_(2.5)水溶性离子污染特征和来源,于2017年1月采集3个点位的PM_(2.5)样品,用ICS-900离子色谱仪分析了8种离子(Na~+、Mg~(2+)、Ca~(2+)、K~+、NH_4~+、SO_4~(2-)、Cl~-和NO_3~-).开展了PM_(2.5)和离子浓度特征分析、硫氧化率(SOR)和氮氧化率(NOR)计算、离子平衡计算、主成分分析等.结果表明:盘锦市冬季PM_(2.5)浓度与水溶性离子浓度特征为文化公园开发区第二中学;SO_4~(2-)、NO_3~-、NH_4~+质量浓度较大;冬季硫氧化率(SOR)和氮氧化率(NOR)的均值均大于0.10,说明SO_4~(2-)、NO_3~-主要由SO_2和NO_x转化而来;阳离子和阴离子当量相关性较强;开发区整体上呈现出中性,文化公园与第二中学呈现出偏碱性;盘锦市PM_(2.5)中水溶性离子主要来源于煤烟尘,生物质燃烧,二次粒子以及扬尘.  相似文献   

8.
长沙市秋季PM2.5中水溶性离子特征及其来源解析   总被引:3,自引:0,他引:3  
为探究长沙市秋季PM_(2.5)水溶性无机离子组成特征和来源,于2017年9月~11月在长沙城区连续采集大气颗粒物PM_(2.5)样品共85个,并用离子色谱仪分析样品中的9种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+)。结果表明,长沙市秋季PM_(2.5)质量浓度的平均值为56. 3±39. 6μg/m~3,总水溶性无机离子质量浓度平均值为29. 47±19. 10μg/m~3,占PM_(2.5)的52. 3%,其中NO_3~-、SO_4~(2-)、NH_4~+是PM_(2.5)中最主要的离子成分。霾天PM_(2.5)平均质量浓度约是清洁天的3倍,NO_3~-、NH_4~+、K~+、Cl~-四种离子的快速增长对霾天PM_(2.5)中离子的贡献最大。由PMF模型解析可知,秋季大气PM_(2.5)主要来源于机动车尾气和燃煤源,而扬尘、生物质燃烧源、工业源和海盐的贡献不到30%。长沙市秋季大气污染呈现机动车尾气等移动源和燃煤等固定源的混合型污染为主。  相似文献   

9.
基于四川省自贡市2015年9月-2016年9月的大气颗粒物采样数据,利用离子色谱仪对其中8种水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、Na~+、K~+、Cl~-、Ca~(2+)和Mg~(2+))进行了浓度测定。分析结果表明,自贡市PM_(10)平均浓度为(88.4±59.2)μg/m~3,PM_(2.5)为(76.2±51.7)μg/m~3,各季节PM_(2.5)/PM_(10)的浓度比值均大于80%,说明自贡市大气颗粒物污染以PM_(2.5)为主;水溶性离子是颗粒物的主要化学组分,其总质量浓度对PM_(10)和PM_(2.5)的贡献率分别为40.3%和42.7%,其中SNA(二次水溶性无机离子,SO_4~(2-)、NO_3~-和NH_4~+)、Cl~-、K~+、Ca~(2+)、Na~+和Mg~(2+)在PM_(2.5)的占比分别为39.5%、1.8%、1.2%、0.5%、0.3%和0.04%;SO_4~(2-)是自贡市春季和秋季污染天主要来源,其在PM_(2.5)水溶性离子中的贡献率均为45.5%,NO_3~-对应的贡献率分别为22.3%和23.6%,冬季污染天SO_4~(2-)和NO_3~-的贡献率分别为33.5%和35.7%,NO_3~-的贡献率显著上升。利用因子分析法对PM_(2.5)中水溶性离子进行源解析发现,其来源主要为二次污染源、燃烧源、农业源以及道路扬尘源。  相似文献   

10.
云冈石窟大气细颗粒物水溶性离子污染特征   总被引:1,自引:0,他引:1  
为了解大同云冈石窟景区大气PM_(2.5)浓度及PM_(2.5)中水溶性离子污染特征,分别于2012年12月16-22日、2013年7月3-6日、10月28-31日、2014年4月13-18日使用中流量大气PM_(2.5)采样器在景区内两采样点共采集PM_(2.5)样品42个,运用称重法计算大气PM_(2.5)质量浓度,使用离子色谱仪测定了PM_(2.5)中Na~+、K~+、Mg~(2+)、Ca~(2+)、NH_4~+、F~-、Cl~-、NO_3~-和SO_4~(2-) 9种水溶性无机离子含 量。结果表明:采样点大气PM_(2.5)质量浓度介于28.1~q257.8μg/m~3。20#石窟采样点大气PM_(2.5)浓度均值普遍高于研究院采样点,与石窟前人类活动较多有关。所测离子中二次离子SO_4~(2-)、NO_3~-、NH_4~+所占比重较大,三者结合方式主要为(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3。除10月外,其它采样期内[NO_3~-]/[SO_4~(2-)]比值均小于1,景区周围固定源对大气二次颗粒物的影响大于移动源。  相似文献   

11.
为探讨常州大气气溶胶中无机组分的昼夜变化特征,在夏冬两季分别连续采集1个月的PM2.5样品,对比分析了11种水溶性离子和13种重金属元素的昼夜特征和来源.结果表明,夏冬两季PM2.5平均质量浓度白天高于夜间,水溶性离子占比夜间稍高于白天.冬季水溶性离子占PM2.5的比例(44%~45%)高于夏季(31%~36%),而重金属元素呈现相反的季节性特征(冬季白天3.03%,夜间2.29%;夏季白天4.40%,夜间4.51%).SO_4~(2-)、NO_3~-、NH_4~+是主要的二次离子,占总水溶性离子77%~85%,说明常州市大气污染呈二次污染为主的复合污染特征.夏季强太阳辐射的光化学反应导致白天SO_4~(2-)占比(49.0%)稍高于夜间(41.1%),而白天高温NH_4NO_3分解,使NO_3~-浓度白天(1.98μg·m-3)远低于夜间(5.10μg·m-3).NH_4~+与SO_4~(2-)、NO_3~-之间好的线性相关性及预测NH_4~+与实测NH_4~+的比值接近1,表明NH_4~+主要以(NH4)2SO4,NH_4NO_3和NH4Cl形态存在.离子平衡表明夏季颗粒物呈弱碱性,冬季呈中性.Fe、Al和Zn这3种重金属元素占比最大,Fe和Al元素白天占比明显高于夜间,Zn正好相反.无机组分相关性及主成分分析表明,无机组分都来自二次生成、扬尘和交通等排放源,表现一定的季节性和昼夜变化特征.  相似文献   

12.
本文针对重庆主城区4个采样点PM2.5中羧酸开展研究,通过GC-MS分析,定量分析了16种饱和脂肪酸、21种不饱和脂肪酸和8种二元羧酸等多种物质的浓度水平,进而对羧酸的季节变化及来源进行了探讨.羧酸日均总浓度为130.42~1953.79 ng·m~(-3),一元脂肪酸和二元羧酸在各采样点浓度差异显著.一元脂肪酸呈明显的季节变化,夏季最高(961.97 ng·m~(-3)),冬季最低(49.24 ng·m~(-3)).饱和脂肪酸中偶数碳优势明显,以C_(16)(棕榈酸)和C_(18)(硬脂酸)最为丰富.二元羧酸也呈明显的季节变化,在冬季最高(432.04 ng·m~(-3)),春季最低(64.57 ng·m~(-3)).二元羧酸以丙二酸、丁二酸和戊二酸为主.细菌活动和烹饪油烟对一元脂肪酸具有较大的贡献,光化学氧化作用则对二元羧酸贡献较大.  相似文献   

13.
河南鸡冠洞CO2季节和昼夜变化特征及影响因子比较   总被引:3,自引:1,他引:2  
岩溶洞穴空气CO_2变化影响次生沉积物沉积和溶蚀,它关系到洞穴旅游景观的稳定性及洞穴环境的舒适性,是岩溶作用发生的关键因素,进行洞穴空气CO_2变化的机制研究对于理解岩溶作用发生规律和现代洞穴合理保护具有重要意义.本文基于对我国南北地理分界区域河南西部鸡冠洞2011年12月至2016年5月近5年连续洞穴CO_2、水文地球化学指标、洞内外温度及湿度、大气降水和游客量等数据监测,并结合2016年5月19~20日洞穴CO_2等指标的昼夜的系统监测,分析了鸡冠洞洞穴空气CO_2时空变化特征和昼夜变化特征及其影响因素,结果表明:1在空间尺度上,越靠近洞口通风效应越强,洞穴空气p CO_2越低,越接近大气的p CO_2;洞穴结构及外界环境变化尤其是气候变化导致的土壤中p CO_2变化也会对鸡冠洞空气p CO_2变化产生影响.2在长时间尺度,鸡冠洞洞穴空气p CO_2夏季明显高于冬季,对比分析发现旅游活动和岩溶作用是其主要的影响因子.3在短时间尺度上(昼夜变化),鸡冠洞洞穴空气p CO_2变化主要受旅游活动的影响,建议景区在进行旅游开发的时候要考虑高峰期游客人数对CO_2的影响及岩溶景观的合理保护.  相似文献   

14.
大气PM2.5中水溶性有机碳和类腐殖质碳的季节变化特征   总被引:3,自引:1,他引:2  
2011年12月至2012年11月期间在上海市华东理工大学采样点采集PM2.5样品,对样品中的水溶性有机碳(WSOC)和类腐殖质碳(HULIS-C)进行了测定,探讨了WSOC和HULIS-C的季节变化特征.结果表明:采样期间PM2.5、WSOC和HULIS-C的年平均质量浓度分别为(66.19±28.59)、(4.21±1.83)和(2.69±1.36) μg·m-3,WSOC和HULIS-C分别占PM2.5质量的6.5%±1.7%和4.1%±1.3%.HULIS-C占WSOC质量的62.8%±11.8%,表明HULIS-C是WSOC的主要成分.WSOC和HULIS-C的质量浓度均具有显著的季节变化特征,呈现冬季>春季>秋季>夏季,而HULIS-C/WSOC比值的季节变化相对较小,其四季平均比值呈现秋冬季略高,春夏季略低的特点.WSOC和HULIS-C质量浓度与能见度、风速呈负相关,与空气污染指数(API)呈显著正相关.WSOC和HULIS-C的浓度水平可能受到多种燃烧源的综合影响,本地燃烧源的贡献不容忽视.此外,在特定气象条件下周边污染源和长距离输送对高浓度WSOC和HULIS-C也会有贡献.  相似文献   

15.
河口湿地近地面大气 CO2浓度日变化和季节变化   总被引:1,自引:0,他引:1  
张林海  仝川  曾从盛 《环境科学》2014,35(3):879-884
2011年12月~2012年11月对闽江河口湿地近地面大气CO2浓度(摩尔分数)进行观测,研究CO2浓度的日变化和季节变化特征,结果表明,闽江河口湿地近地面大气CO2浓度的日变化和季节变化都呈典型的"单峰型",表现为"昼低夜高"和"夏低冬高"的规律,日变幅在16.96~38.30μmol·mol-1之间.春、夏、秋、冬这4个季节近地面大气CO2平均浓度分别为(353.74±18.35)、(327.28±8.58)、(354.78±14.76)和(392.82±9.71)μmol·mol-1,而年平均浓度为(357.16±26.89)μmol·mol-1.闽江河口湿地近地面大气CO2浓度的日变化与温度、风速、光合有效辐射、总辐射等主要气象因子呈负相关关系(P<0.05),而1月近地面大气CO2浓度日变化与潮汐水位呈负相关,7月与潮汐水位呈正相关.  相似文献   

16.
Trend and seasonal variations of atmospheric CH4 in Beijing   总被引:1,自引:0,他引:1  
The atmospheric CH4 in Beijing is still increasing, even though its increasing rate has significantly decreased from 1.76 %/a during 1985-1989 to 0.50 %/a during 1990-1997. The seasonal variation of CH4 concentration showed a double-peak pattern, one peak appearing in winter and the other in summer. It is evident that the annually seasonal variations of atmospheric CH4 in Beijing are different. From 1986 to 1997, the atmospheric CH4 increased by 185 ppbv, 37% and 21% of which were due to the increase in winter and in summer, respectively. After 1993, the annually seasonal increasing rate of CH4 concentration in summer (due to emission from biogenic sources) is negative while the increasing rate in winter (due to emission from non-biogenic sources) is positive about 25 ppbv/a. As a result, the increase of CH4 emission from non-biogenic sources in winter is the major reason that caused theannually seasonal increasing rate from 1993 to 1997. The biogenic sources in Beijing are shrinking while the non-biogenic ones (such as fossil fuel combustion) are enlarging.  相似文献   

17.
2011~2012北京大气PM2.5中重金属的污染特征与来源分析   总被引:14,自引:12,他引:2  
为研究北京PM_(2.5)中重金属污染特征,于2011年夏季~2012年夏季每3 d采集一次PM_(2.5)样品.利用电感耦合等离子体质谱(ICP-MS)分析了Li、V、Cr、Mn、Co、Cu、Zn、As、Se、Ti、Ga、Ni、Sr、Cd、In、Ba、Tl、Pb、Bi和U的浓度,选取其中Zn、Pb、Mn、Cu、As、V和Cr 7种主要重金属元素进行深入讨论.北京市PM_(2.5)中重金属Zn、Pb、Mn、Cu、As、V和Cr的平均质量浓度分别为(331.30±254.52)、(212.64±182.06)、(85.96±47.00)、(45.19±27.74)、(17.13±19.02)、(4.92±3.38)和(9.04±7.84)ng·m-3.采样期间秋冬季节PM_(2.5)中重金属污染较春夏季节严重,这可能与北京秋冬季节取暖导致煤燃烧增加有关.霾过程会加剧北京PM_(2.5)中主要重金属Zn、Pb、Mn、Cu、As、V和Cr的污染,霾天对重金属污染的增加作用呈现一定的季节变化特征.源分析结果表明北京大气颗粒物中重金属主要来源于扬尘(包括建筑扬尘和道路扬尘)和煤燃烧,少量来自远距离输送和其他工业来源.  相似文献   

18.
为了研究重庆市北碚区城区气溶胶中水溶性无机离子的浓度和分布特征,于2014年3月~2015年2月利用安德森采样器连续采集大气气溶胶分级样品,并用离子色谱法分析了不同粒径(9.00、5.80、4.70、3.30、2.10、1.10、0.65和0.43μm)中Na~+、NH~_4~+、K~+、Mg~(2+)、Ca~(2+)、F-、Cl-、NO_3~-、SO_4~(2-)这9种水溶性无机离子.结果表明,SO_4~(2-)、NH~_4~+、NO_3~-、Cl-、Na~+、K~+主要分布在细粒子中,Mg~(2+)、Ca~(2+)、F-主要分布在粗粒子中.SNA(SO_4~(2-)、NH~_4~+和NO_3~-三者的简称)呈明显单峰型分布,其峰值均出现在0.65~1.10μm的液滴模态,且在细粒子中主要以(NH4)2SO4和NH4NO3形式存在.SO_4~(2-)的形成主要来自云内过程,部分来自SO_2的氧化.Na~+、Cl-、Mg~(2+)在粗、细粒子中呈双峰型分布;K~+在0.43~1.10μm呈单峰型分布;F-、Ca~(2+)在粗粒子中出现峰值.观测期间,PM2.1和PM9.0中总水溶性离子的年均质量浓度分别为(32.68±15.28)μg·m~(-3)和(48.01±19.66)μg·m~(-3),且浓度具有相似季节变化特征,均表现为冬季春季夏季秋季.大部分离子(Na~+、NH~_4~+、K~+、Cl-、NO_3~-、SO_4~(2-))浓度表现为冬春季偏高,夏秋季偏低;而少数离子(F-、Mg~(2+)、Ca~(2+))浓度在秋季最低,其他季节浓度变化稍有不同.SNA是PM2.1中最主要的水溶性离子;而PM9.0中水溶性离子的主要成分除了SNA外,还包括Ca~(2+).PM2.1和PM9.0中阳离子总浓度明显高于阴离子,且不同离子间均具有一定的相关性.主成分分析结果表明,该地区水溶性离子的主要来源包括机动车尾气的排放源、燃烧源、土壤源和建筑道路扬尘.分析气象因素的影响,发现气温对二次离子的生成有明显关系(P0.05),而相对湿度、风速的影响则不显著(P0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号