首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.

This study aimed to perform a comparative analysis of the performance of five models (Gompertz, logistic, Richards, the first-order, artificial neural networks) in predicting methane production rate from anaerobic digestion of livestock manures. The input variables were fermentation time, digestion temperature, biogas temperature, ambient temperature, pH, and specific biogas production rate. The physicochemical compositions of cow manure and sheep manure showed that volatile solid (VS) contents were close to each other in manure compositions (77.6% and 64.7%, respectively), while the potential of methane production from cow manure (673.44 mL CH4/g VS) was greater than that from sheep manure (320.32 mL CH4/g VS). The determination coefficients (R2) for logistic function, Gompertz, Richards, the first-order, and ANN models were obtained as 0.968, 0.967, 0.975, 0.825, and 0.995 for the cow manure, respectively. In case of the sheep manure, the R2 values obtained from these models were 0.976, 0.979, 0.981, 0.968 and 0.991, respectively. Although the determination coefficients of all models were in satisfactory agreement with the experimental data, the ANN model showed competitive lower RMSE values of 0.111 and 0.164 for cow and sheep manure data sets, respectively, indicating its superior performance than other models.

  相似文献   

2.
In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.  相似文献   

3.
The performance of the only dairy manure biogas plant in Cantabria (Northern coast of Spain) was evaluated in terms of liquid-solid separation and anaerobic digestion of the liquid fraction. Screened liquid fraction was satisfactorily treated in a CSTR digester at HRTs from 20 to 10 days with organic loading rates ranging from 2.0 to 4.5 kg VS/(m(3)d). Stable biogas productions from 0.66 to 1.47 m(3)/(m(3)d) were achieved. Four anaerobic effluents collected from the digester at different HRTs were analyzed to measure their residual methane potentials, which ranged from 12.7 to 102.4 L/gVS. These methane potentials were highly influenced by the feed quality and HRT of the previous CSTR anaerobic digestion process. Biomethanization of the screened liquid fraction of dairy manure from intensive farming has the potential to provide up to 2% of total electrical power in the region of Cantabria.  相似文献   

4.
Dry anaerobic digestion of high solids animal manure is of increasing importance since conventional slurry digestion is not an effective system for these manures. The investment costs for large-size reactors, costs for heating these reactors, handling, dewatering, and the disposal of the digested residue decrease the benefits of conventional slurry anaerobic digestion for high solids animal manure. Even though leaching bed reactors (LBR) constitute a promising option for dry anaerobic biogasification of animal manure, no study is cited in the literature for animal manure, excluding a single study on cattle waste which utilized a similar concept in a different experimental set-up, namely a packed bed digester. Therefore, this work was undertaken to investigate the anaerobic biogasification of undiluted dairy manure in LBRs. To this purpose anaerobic leaching bed reactors (ALBR) packed with a mixture of dairy manure, anaerobic seed and wood powder/chips were operated. The ALBRs were fed with water, and the leachate that was collected from their effluents was subjected to biochemical methane potential (BMP) experiments to determine the biogas production. The results revealed that LBRs can successfully be applied to anaerobic digestion of undiluted dairy manure with around 25% improvement in biogas production relative to conventional (slurry) anaerobic digesters.  相似文献   

5.
The anaerobic co-digestion of biomass waste, a promising process of reusing resources, is capable of improving methane production. However, the characteristics and composition of fermenting raw material negatively influence the efficiency of methane production. Optimization experiments were systematically performed in this study through anaerobic co-digestion with urea-ammoniated rice straw (UARS) and food waste (FW) as co-substrates. Anaerobic co-digestion of UARS and FW in biogas production under mesophilic conditions (35 °C) was investigated in a 1 L enclosed triangular flask with a total organic load of 6 g volatile solids (VS)/L. The optimal mixing ratio of UARS to FW was close to 1:3, and the methane yield increasing by 8.83% compared with the sole substrate. Furthermore, based on the optimization ratio, supplementation of cobalt (Co) and nickel (Ni) on co-digestion were significantly superior to that of a single element. Additionally, kinetic analysis indicated that trace element remarkably facilitated the reaction rate of co-digestion. Noteworthy, the addition of Co, Ni, and the combination of Co and Ni achieved very significant (p < 0.01) improvement of 6.45, 8.36, and 13.65%. Meanwhile, Ni was substantially promoted the removal rate of VS, enhanced the operational stability of co-digestion and increased the methane content significantly.  相似文献   

6.
Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH(4)/kg VS(feed) for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36°C, for an OLR of 1.2g VS/Lday. Increasing the OLR to 1.5g VS/Lday led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55°C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.  相似文献   

7.
The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Twenty-two (22) large-scale biogas plants are currently under operation in Denmark. Most of these plants use manure as the primary feedstock but their economical profitable operation relies on the addition of other biomass products with a high biogas yield. Wheat straw is the major crop residue in Europe and the second largest agricultural residue in the world. So far it has been used in several applications, i.e. pulp and paper making, production of regenerated cellulose fibers as an alternative to wood for cellulose-based materials and ethanol production. The advantage of exploiting wheat straw for various applications is that it is available in considerable quantity and at low-cost. In the present study, the codigestion of swine manure with wheat straw in a continuous operated system was investigated, as a method to increase the efficiency of biogas plants that are based on anaerobic digestion of swine manure. Also, the pretreatment of wheat straw with the wet explosion method was studied and the efficiency of the wet explosion process was evaluated based on (a) the sugars release and (b) the methane potential of the pretreated wheat straw compared to that of the raw biomass. It was found that, although a high release of soluble sugars was observed after wet explosion, the methane obtained from the wet-exploded wheat straw was slightly lower compared to that from the raw biomas s. On the other hand, the results from the codigestion of raw (non-pretreated) wheat straw with swine manure were very promising, suggesting that 4.6 kg of straw added to 1 t of manure increase the methane production by 10%. Thus, wheat straw can be considered as a promising, low-cost biomass for increasing the methane productivity of biogas plants that are based mainly on swine manure.  相似文献   

8.
Inactivation of indigenous indicator micro-organisms such as faecal coliforms, coliphages, and faecal streptococci was investigated in a full-scale biogas plant that mainly digested cow manure. The biogas plant consisted principally of a feed reservoir, fermentation tank (37 degrees C), heat-inactivation process (70 degrees C), and five reservoirs for the heat-inactivated, digested manure that was used by a local livestock farmer as liquid fertilizer. Although all the indicators tended to exhibit stepwise decreases with each stage of treatment, coliphages were found to be more capable of surviving than faecal coliforms and faecal streptococci under mesophilic anaerobic conditions as well as high temperature conditions (heat-inactivation at 70 degrees C). Liquid fertilizer produced at the biogas plant had faecal coliform densities less than the stipulations of the US EPA 40 CFR 503 Class A limits. Heat-inactivation tests indicated that although coliphages exhibited more tolerance than other bacterial indicators between 37 and 70 degrees C, they were more sensitive to continuous temperature increase than faecal coliforms and faecal streptococci.  相似文献   

9.
Palm pressed fiber (PPF) and cattle manure (CM) are the waste which can be managed properly by anaerobic co-digestion. The biogas production in co-digested PPF and CM at three volatile solids (VS) ratios of 3:1, 1:1, and 1:3 was investigated in a series of batch experiments at an organic loading rate of 30.0 g VS/L under mesophilic (37 ± 1 °C) conditions. The highest daily biogas yield of PPF and CM only, was 90.0 mL/g VSadded at day 12 and 23.4 mL/g VSadded at day 7. For co-digestion of PPF/CM at mixing ratios of 3:1, 1:1 and 1:3, there were 93.6 mL/g VSadded at day 11, 86.8 and 26.4 mL/g VSadded at day 8. VS removal rate for PPF, CM, and co-digestion at mixing ratio of 3:1, 1:1, and 1:3 were 91.1%, 86.0% and 71.0%, respectively. The anaerobic digestion of PPF and CM and their co-digestion systems were stable in operation with low range of volatile fatty acids (VFA)/TIC (total inorganic carbon) of (0.035–0.091). The main volatile fatty acids were propionic, and iso-butyric acids for PPF, iso-butyric and n-butyric acids for CM. The VFAs and ammonium inhibition were not occurred. The modified Gompertz model can be used to perform a better prediction with a lower difference between the measured and predicted biogas yields. A VS ratio of 3:1 is recommended for practice.  相似文献   

10.
We present studies on solid-feed anaerobic digesters (SOFADs) in which chopped Colocasia esculenta was fed without any other pretreatment, in an attempt to develop an efficient means of utilizing the semi-aquatic weed that is otherwise an environmental nuisance. Two types of SOFADs were studied. The first type had a single vessel with two compartments. The lower portion of the digester, 25% of the total volume, was separated from the upper by a perforated PVC disk. The weed was charged from the top and inoculated with anaerobically digested cow dung-water slurry. The fermentation of the weed in the digester led to the formation of volatile fatty acids (VFAs) plus some biogas. The bioleachate, rich in the VFAs, passed through the perforated PVC disk and was collected in the lower compartment of the digester. The other type of digesters, referred to as anaerobic multi-phase high-solids digesters (AMHDs), had the same type of compartmentalized digester unit as the first type and an additional methaniser unit. Up-flow anaerobic filters (UAFs) were used as methaniser units, which converted the bioleachate into combustible biogas consisting of approximately 60% methane. All SOFADs developed a consistent performance in terms of biogas yield within 20 weeks from the start. Among the two types of digesters studied, the AMHDs were found to perform better with a twofold increase in biogas yield compared to the first type of digesters.  相似文献   

11.
In this experimental study, the biogas digestate from mesophilic batch anaerobic co-digestion of poultry manure and an agricultural residue, sunflower hulls, was characterized, particularly in terms of heavy metal content, in order to evaluate whether the biogas digestate was suitable for land applications. Ni, Zn, Cu, Pb, Cr, Cd, and Hg were detected in the biogas digestate in each trial, however, their concentrations were always lower than the limit values stated in Turkish regulations. The main source of heavy metals in the biogas digestate seemed to be the poultry manure, not the agricultural residue. The commercial feedstuffs that are frequently supplemented with various essential elements to promote optimum nutrient supply and optimum growth rates may have contributed to heavy metals presence in the biogas digestate. The results indicated that the biogas digestate from anaerobic co-digestion of manure and agricultural residue could be utilized as fertilizer in agricultural applications.  相似文献   

12.
Ensilage of pineapple processing waste for methane generation   总被引:3,自引:0,他引:3  
Pineapple peel wastes, which are seasonal, comprise of peels and rags. Their disposal poses a serious environmental pollution problem. Since pineapple peel is rich in cellulose, hemicellulose and other carbohydrates it was found to be a potential substrate for methane generation by anaerobic digestion. Ensilaging of pineapple peel resulted in the conversion of 55% carbohydrates into volatile fatty acids. The ensilage of pineapple processing wastes reduced the biological oxygen demand by 91%. Biogas digester fed with ensilaged pineapple peel resulted in the biogas yield of 0.67 m3/kg volatile solids (VS) added with methane content of 65% whereas fresh and dried pineapple peels gave biogas yields of 0.55% and 0.41 m3/kg VS added and methane content of 51% and 41% respectively.  相似文献   

13.
The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm3/kgVS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM = 70:20:10 by weight) was only 336 dm3/kgVS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant.  相似文献   

14.
Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.  相似文献   

15.
Biochemical methane potentials (BMP) of two different substrates from macroalgae (MA) and market place wastes (MPW) were investigated using anaerobic granulated sludge from food industry with different ratios of substrate to inoculum (S/X). The substrates were used as MA only, MPW only, MA–MPW mixture, pretreated MA, and pretreated MA–MPW mixture. Research involved investigation of the effects of parameters such as temperature (35, 45, and 55 °C), substrate to inoculum ratio (S/X = 0.5, 2.0, 4.0, and 6.0 as g VSsubstrate/g VSinoculum), and the type of pretreatment (by microwave, thermal, and ultrasonic) on BMP. BMP assays were performed for all substrates. The highest cumulative biogas production (and BMP) were obtained for MA only at an S/X ratio of 4.0 g VS/g VS as 357 Lbiogas/kg VS (197 L CH4/kg VS) and 33 Lbiogas/kg VS (17 L CH4/kg VS), respectively, at 35 and 55 °C. For pretreated substrates, the highest cumulative biogas production and BMP were observed as 287 Lbiogas/kg VS and 146 L CH4/kg VS using pretreated macroalgae at 35 °C. Results suggested that MA only and MA–MPW mixtures are suitable substrates for biogas production. It is also concluded that any type of pretreatment has adverse effects on biogas and methane productions.  相似文献   

16.
Journal of Material Cycles and Waste Management - This research aimed to evaluate the production of biogas from anaerobic digestion (AD) using swine manure inoculum associated with different...  相似文献   

17.
This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS?1, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.  相似文献   

18.
Co-digestion of food waste with dairy manure is increasingly utilized to increase energy production and make anaerobic digestion more affordable; however, there is a lack of information on appropriate co-digestion substrates. In this study, biochemical methane potential (BMP) tests were conducted to determine the suitability of four food waste substrates (meatball, chicken, cranberry and ice cream processing wastes) for co-digestion with flushed dairy manure at a ratio of 3.2% food waste and 96.8% manure (by volume), which equated to 14.7% (ice-cream) to 80.7% (chicken) of the VS being attributed to the food waste. All treatments led to increases in methane production, ranging from a 67.0% increase (ice cream waste) to a 2940% increase (chicken processing waste) compared to digesting manure alone, demonstrating the large potential methane production of food waste additions compared to relatively low methane production potential of the flushed dairy manure, even if the overall quantity of food waste added was minimal.  相似文献   

19.
In this study, a lab-scale thermophilic anaerobic digestion of food waste collected from G-district in Seoul was performed to assess its feasibility and applicability in field-scale biogas plants. Monitoring parameters included biogas production, methane composition, pH, alkalinity, and volatile fatty acid (VFA) concentrations. Accumulation of VFA caused successive depression in pH, which inhibited microbial activity of methane-forming microorganisms. Signals of biological instability and inhibition of methanogenesis suggest possible process failure, as indicated by reduction in methane production. Results revealed that modifications in certain conditions, such as decreased organic loading rate (OLR) or additional insertion of alkalinity, must be made for its application in industrial-scale biogas plants, and that thermophilic anaerobic digestion of food waste may not be feasible without any modification.  相似文献   

20.
Journal of Material Cycles and Waste Management - Based on the different characteristics of cow manure and rice straw, liquid- and solid-state coupling anaerobic digestion (L-SS-AD) is designed in...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号