首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
首次研究凹凸棒土对饮用水中腐殖酸的低温吸附性能,考察5℃条件下,吸附时间与腐殖酸初始浓度、吸附剂投加量、pH对凹凸棒土吸附腐殖酸的影响,确定吸附剂的吸附等温线、吸附动力学和热力学等相关理论参数,研究凹凸棒土对腐殖酸的吸附性能与机理。结果表明,江苏盱眙凹凸棒土在温度5℃、pH=4、水中腐殖酸初始浓度为5 mg/L,投加量为15 g/L的条件下,吸附180 min后对腐殖酸的去除率可达97.26%。凹凸棒土对腐殖酸的吸附符合二级吸附动力学方程与Freundlich吸附等温式,吸附过程由孔隙内扩散过程控制,吸附为自发的吸热过程,包括物理吸附与化学吸附。根据Fre-undlich吸附等温式拟合计算,5℃、pH=7时理论最大吸附量为9 mg/g,说明凹凸棒土对于低温饮用水中腐殖酸具有良好的吸附效果。  相似文献   

2.
采用氯化钙改性凹凸棒,并对其进行了透射电镜、红外光谱分析。用改性后的凹凸棒泥浆处理亚甲基蓝废水,讨论了动力学和热力学吸附性质。结果表明:(1)利用氯化钙改性凹凸棒,泥浆粘度在21Pa.s条件下对亚甲基蓝废水的吸附动力学和热力学性质进行了研究。在研究范围内,改性凹凸棒泥浆对亚甲基蓝的吸附符合准二级反应动力学方程,并且Langmuir等温方程能更好地描述吸附过程。(2)改性凹凸棒泥浆对亚甲基蓝的平衡吸附量随亚甲基蓝初始浓度的增加而增大,随pH的增大而减小。(3)改性凹凸棒泥浆对亚甲基蓝主要以表面吸附为主。ΔG00、ΔH00表明吸附过程可以自发进行,并且为放热反应。ΔS00意味着随温度的增加,改性凹凸棒泥浆对亚甲基蓝的吸附趋于有序性。  相似文献   

3.
研究了不同浓度磷酸改性凹凸棒粘土的比表面积、孔结构性质以及其对水中Pb(Ⅱ)的吸附.结果表明,凹凸棒粘土磷酸改性后比表面积明显增大,具有明显的中孔分布;9 mol/L磷酸改性处理的凹凸棒粘土吸附能力最佳,在改性凹凸棒粘土加入量为20~30 g/L,水样pH=5条件下,废水中Pb(Ⅱ)的被吸附率接近99%.  相似文献   

4.
磷酸改性凹凸棒粘土对Pb^2+的吸附研究   总被引:5,自引:0,他引:5  
研究了不同浓度磷酸改性凹凸棒粘土的比表面积、孔结构性质以及其对水中Pb(Ⅱ)的吸附.结果表明,凹凸棒粘土磷酸改性后比表面积明显增大,具有明显的中孔分布;9 mol/L磷酸改性处理的凹凸棒粘土吸附能力最佳,在改性凹凸棒粘土加入量为20~30 g/L,水样pH=5条件下,废水中Pb(Ⅱ)的被吸附率接近99%.  相似文献   

5.
凹凸棒粘土接枝聚丙烯腈的条件优化及吸附性能研究   总被引:1,自引:1,他引:0  
采用自由基聚合的方法在硅烷偶联剂改性凹凸棒粘土表面接枝聚合丙烯腈,优化了反应条件:引发剂浓度[K2S2O8]=1.5×10-3mol/L,单体浓度40%(w/w),聚合温度60℃、聚合时间5 h、凹凸棒粘土的添加量2%;并考察了复合材料特性粘数及凹凸棒粘土添加量对其吸附性能的影响。结果表明,随着复合材料特性粘数的增加,复合材料对Pb2+的平衡吸附量先降低后增加;随着凹凸棒粘土添加量的增加,复合材料对Pb2+的平衡吸附量先增加后减小。  相似文献   

6.
采用反相乳液聚合法以凹凸棒土为原料,合成了新型NH4+-N吸附剂淀粉-g-丙烯酸/凹凸棒土,并进行了氨氮吸附对比实验。结果表明:凹凸棒土氨氮单位吸附量为4.243 mg/g;淀粉-g-丙烯酸/凹凸棒土氨氮单位吸附量为5.301 mg/g,吸附能力比未改性的凹凸棒土提高了25%。淀粉-g-丙烯酸/凹凸棒土的氨氮吸附过程比凹凸棒土更符合Freundlich等温吸附模型。随着pH、温度的升高,凹凸棒土和淀粉-g-丙烯酸/凹凸棒土对NH4+-N吸附量逐渐增大。  相似文献   

7.
采用批量平衡实验,研究阳离子表面活性剂十六烷基三甲基铵离子(HDTMA)改性的zeo-HDTMA(有机沸石)、mont-HDTMA(有机蒙脱土)和atta-HDTMA(有机凹凸棒土)及其原粘土对典型有机氯农药DDT代谢产物p,p'-DDE的吸附解吸特性.结果表明,随原粘土阳离子交换容量(CEC)的增大,有机粘土吸附量增大,且有机粘土的吸附量比原粘土大大提高;有机粘土和原粘土对p,p'-DDE的吸附能力顺序为:zeo-HDTMA>mont-HDTMA>atta-HDTMA≥mont(蒙脱土)>atta(凹凸棒土)>zeo(沸石),这一顺序与它们的有机碳质量分数大小顺序一致.原粘土对p,p'-DDE的吸附等温线符合Langmuir吸附等温方程,吸附呈单分子层形式,且存在竞争吸附;有机粘土对p,p'-DDE的吸附等温线符合Linear吸附等温方程,吸附是p,p'-DDE在有机粘土中有机相的分配所致.当CaCl2质量浓度从0增加到50 g/L时,mont-HDTMA对p,p'-DDE吸附量提高了10.3%.有机粘土和原粘土对p,p'-DDE的解吸率大小顺序为:zeo>atta>mont>atta-HDTMA>mont-HDTMA>zeo-HDTMA,这一顺序与它们的有机碳质量分数大小顺序相反.  相似文献   

8.
利用十六烷基三甲基溴化铵(HDTMA)对凹凸棒土进行有机改性,并通过SEM、XRD、FT—IR、表面积及孔径分析对改性前后的凹凸棒土进行结构表征,结果表明,利用HDTMA对凹凸棒土改性仅是表面的负载修饰,并未改变凹凸棒土的内部结构;改性凹土对4-氯苯酚的吸附实验表明,吸附速率很快,30min即达到吸附平衡,吸附符合准二级动力学方程,吸附等温线符合H型吸附等温方程,在pH为中性的环境下有利于吸附。  相似文献   

9.
以酸热、有机改性凹凸棒和聚醚砜为原料,利用液-液分离技术制备了聚醚砜/改性凹凸棒毫米级杂化微球。利用扫描电镜和比表面仪分析所制杂化微球表观特征。实验探讨了改性凹凸棒掺杂比和溶液pH对杂化微球吸附双酚A效果的影响,并深入研究了吸附动力学和热力学原理。实验结果表明:杂化微球对双酚A的吸附性能受pH影响较小;相比纯聚醚砜微球,掺杂后的杂化微球对双酚A吸附量从1.97μmol·g~(-1)提升到11.80μmol·g~(-1);吸附过程符合准二级动力学模型和Langmuir模型。根据Langmuir模型计算可知,25℃时杂化微球最大吸附量为116.28μmol·g~(-1)。5次乙醇再生后,杂化微球对双酚A的去除依然保持在95%以上。杂化微球作为吸附剂在水处理中具有潜在应用价值。  相似文献   

10.
利用海藻酸钠和氯化钙成球原理,包埋制备有机凹凸棒土颗粒(GOAT)吸附剂,通过SEM图和红外谱图进行表征,通过批量实验考察了凹凸棒土颗粒吸附剂对水体天然有机质单宁酸的吸附行为,结果表明,凹凸棒土颗粒吸附剂内部形貌和粉体吸附剂(POAT)相比无明显变化;平衡吸附量(142 mg/g)稍低于粉体吸附剂(148 mg/g);吸附速率较快,100min时吸附趋于平衡,吸附行为符合准二级动力学方程;吸附等温线符合Freundlich等温方程,吸附为放热反应;p H为6时吸附性能最佳。  相似文献   

11.
Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ~585 m2/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD). Typical TPD data indicated that each activation method may lead to varying amounts of acidic and basic functional groups on the surface of the adsorbent, which may be a crucial factor in determining the adsorption capacity. It was shown that ACs developed during the present study are good adsorbents, especially for the removal of a model textile dye methylene blue (MB) from aqueous solution. As MB is a basic dye, H2O2-treated rice husk showed the best adsorption capacity, which is in agreement with the acidic groups present on the surface. Removal of the dye followed Langmuir isotherm model, whereas MB adsorption on ACs followed pseudo-second-order kinetics.  相似文献   

12.
The activated carbon was prepared using industrial solid waste called sago waste and physico-chemical properties of carbon were carried out to explore adsorption process. The effectiveness of carbon prepared from sago waste in adsorbing Rhodamine-B from aqueous solution has been studied as a function of agitation time, adsorbent dosage, initial dye concentration, pH and desorption. Adsorption equilibrium studies were carried out in order to optimize the experimental conditions. The adsorption of Rhodamine-B onto carbon followed second order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity Q0 was 16.12 mg g(-1) at initial pH 5.7 for the particle size 125-250 microm. The equilibrium time was found to be 150 min for 10, 20 mg l(-1) and 210 min for 30, 40 mg l(-1) dye concentrations, respectively. A maximum removal of 91% was obtained at natural pH 5.7 for an adsorbent dose of 100mg/50 ml of 10 mg l(-1) dye concentration and 100% removal was obtained when the pH was increased to 7 for an adsorbent dose of 275 mg/50 ml of 20 mg l(-1) dye concentration. Desorption studies were carried out in water medium by varying the pH from 2 to 10. Desorption studies were performed with dilute HCl and show that ion exchange is predominant dye adsorption mechanism. This adsorbent was found to be both effective and economically viable.  相似文献   

13.
In this study, the adsorption behavior of azo dye Acid Orange 7 (AO7) from aqueous solution onto macrocomposite (MC) was investigated under various experimental conditions. The adsorbent, MC, which consists of a mixture of zeolite and activated carbon, was found to be effective in removing AO7. The MC were characterized by scanning electron microscopy (SEM), energy dispersive X-ray, point of zero charge, and Brunauer–Emmett–Teller surface area analysis. A series of experiments were performed via batch adsorption technique to examine the effect of the process variables, namely, contact time, initial dye concentration, and solution pH. The dye equilibrium adsorption was investigated, and the equilibrium data were fitted to Langmuir, Freundlich, and Tempkin isotherm models. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model. For the kinetic study, pseudo-first-order, pseudo-second-order, and intraparticle diffusion model were used to fit the experimental data. The adsorption kinetic was found to be well described by the pseudo-second-order model. Thermodynamic analysis indicated that the adsorption process is a spontaneous and endothermic process. The SEM, Fourier transform infrared spectroscopy, ultraviolet–visible spectral and high performance liquid chromatography analysis were carried out before and after the adsorption process. For the phytotoxicity test, treated AO7 was found to be less toxic. Thus, the study indicated that MC has good potential use as an adsorbent for the removal of azo dye from aqueous solution.  相似文献   

14.
采用溴化十六烷基吡啶(CPB)对天然沸石进行改性制备得到了CPB改性沸石,通过批量吸附实验考察了CPB改性沸石对水中阴离子染料甲基橙的去除作用。结果表明,天然沸石对水中甲基橙的吸附能力很差,而CPB改性沸石则可以有效吸附去除水中的甲基橙。CPB改性沸石对水中甲基橙的吸附能力随CPB负载量的增加而增加,CPB负载量最大的改性沸石对水中甲基橙的吸附能力最强。双分子层CPB改性沸石对水中甲基橙的去除率随吸附剂投加量的增加而增加,而CPB改性沸石对水中甲基橙的单位吸附量则随吸附剂投加量的增加而降低。双分子层CPB改性沸石对水中甲基橙的吸附平衡数据可以采用Langmuir等温吸附模型加以描述。根据Langmuir模型计算得到的CPB负载量为341 mmol/(kg沸石)的双分子层CPB改性沸石对水中甲基橙的最大吸附容量为63.7 mg/g(303 K和pH 7)。准二级动力学模型适合用于描述双分子层CPB改性沸石对水中甲基橙的吸附动力学过程。pH和反应温度对双分子层CPB改性沸石吸附水中甲基橙的影响较小。以上结果说明,双分子层CPB改性沸石适合作为一种吸附剂用于去除废水中的甲基橙。  相似文献   

15.
An agricultural by-product, natural wheat straw (NWS), was soaked in 1 % cationic surfactant (hexadecylpyridinium bromide, CPB) solution for 24 h (at 293 K), and modified wheat straw (MWS) was obtained. Analysis of FTIR, XFR, and nitrogen element showed that CPB was adsorbed onto surface of NWS. Then, MWS was used as adsorbent for the removal of light green dye (LG, anionic dye) from aqueous solution. The experiment was performed in batch and column mode at room temperature (293 K). Sodium chloride (up to 0.1 mol/L) existed in solution was not favor of LG dye adsorption. The equilibrium data were better described by Langmuir isotherm, and adsorption capacity of q m from Langmuir model was 70.01?±?3.39 mg/g. In fixed-bed column adsorption mode, the effects of initial LG concentration (30, 50, 70 mg/L) and flow rate (6.5, 9.0, 14.5 mL/min) on adsorption were presented. Thomas and modified dose–response models were used to predict the breakthrough curves using nonlinear analysis method, and both models can fit the breakthrough curves. Theoretical and experimental breakthrough curves were drawn and compared. The results implied that MWS can be used as adsorbent material to remove LG from aqueous solution.  相似文献   

16.
Natural adsorbent (Cinnamomum camphora sawdust) modified by organic acid (oxalic acid, citric acid, and tartaric acid) was investigated as a potential adsorbent for the removal of hazardous malachite green (MG) dye in aqueous media in a batch process. The extent of MG adsorption onto modified sawdust increased with increasing organic acid concentrations, pH, contact time, and temperature but decreased with increasing adsorbent dosage and ionic strength. Kinetic study indicated that the pseudo-second-order kinetic model could best describe the adsorption kinetics of MG. Equilibrium data were found to fit well with the Langmuir model, and the maximum adsorption capacity of the three kinds of organic acid-modified sawdust was 280.3, 222.8, and 157.5 mg/g, respectively. Thermodynamic parameters suggested that the sorption of MG was an endothermic process. The adsorption mechanism, the application of adsorbents in practical wastewater, the prediction of single-stage batch adsorption system, and the disposal of depleted adsorbents were also discussed.  相似文献   

17.
Incineration is a traditional method of treating sewage sludge and the disposal of derived ash is a problem of secondary waste treatment. In this study, sewage sludge ash (SSA) was coated with ferrite through a ferrite process and then used as an adsorbent for ionic dyes (methylene blue [MB] and Procion Red MX-5B [PR]). The modified SSA possessed surface potential that provided electrostatic attraction toward MB and PR. Adsorbent FA10 (named on the basis of being produced from 10 g of SSA in the ferrite process) was used for the adsorption of MB. Ideal pH for adsorption was 9.0 and maximum adsorption capacity based on Langmuir isotherm equation was 22.03 mg/g. Adsorbent FA2.5 (named on the basis of being produced from 2.5 g of SSA in the ferrite process) was used for PR adsorption. Ideal pH for adsorption was 3.0 and the maximum adsorption capacity (calculated as above) was 28.82 mg/g. Kinetic results reveal that both MB and PR adsorption fit the pseudo-second-order kinetic model better than the pseudo-first-order model. The values of activation energy calculated from rate constants were 61.71 and 9.07 kJ/mol for MB and PR, respectively.

Implications:

Magnetic modified adsorbent could be synthesized from sewage sludge ash (SSA). In this study, the adsorption ability of SSA toward ionic dye (methylene blue [MB] and Procion Red MX-5B [PR]) was enhanced by ferrite process. The synthesized Fe3O4 can act as an active site and provide electrostatic attraction toward cationic dye and anionic dye at different pH. The application of magnetic modified adsorbent in wastewater treatment can not only recycle the SSA, but also make SSA become an environmentally friendly material.  相似文献   


18.
一种新型纳米固相萃取吸附剂,由阴离子表面活性剂十二烷基磺酸钠(SDS)包裹在Fe3O4磁性纳米颗粒表面形成,用于吸附水溶液中的重金属离子。研究了吸附过程的主要影响因素(如SDS浓度、溶液pH等)以及解吸过程的最佳条件,并对其机理进行了初步的探讨。研究结果表明,共沉淀法制备的Fe3O4颗粒粒径分布均匀,平均粒径约为54 nm;SDS浓度为300 mg/L时,Fe3O4/SDS磁性纳米颗粒吸附Cd2+和Zn2+的能力最强;在一定浓度范围内,Fe3O4/SDS体系对Cd2+和Zn2+的吸附平衡数据符合Langmuir吸附等温方程,饱和吸附量分别为22.42 mg/g和13.95 mg/g。最终结果表明,Fe3O4/SDS磁性纳米颗粒具有较强磁分离能力和较好的吸附效果。  相似文献   

19.
Fe3O4/SDS磁性纳米颗粒吸附水体中的Cd2+和Zn2+   总被引:3,自引:1,他引:2  
黄文  周梅芳 《环境工程学报》2012,6(4):1251-1256
一种新型纳米固相萃取吸附剂,由阴离子表面活性剂十二烷基磺酸钠(SDS)包裹在Fe3O4磁性纳米颗粒表面形成,用于吸附水溶液中的重金属离子。研究了吸附过程的主要影响因素(如SDS浓度、溶液pH等)以及解吸过程的最佳条件,并对其机理进行了初步的探讨。研究结果表明,共沉淀法制备的Fe3O4颗粒粒径分布均匀,平均粒径约为54 nm;SDS浓度为300 mg/L时,Fe3O4/SDS磁性纳米颗粒吸附Cd2+和Zn2+的能力最强;在一定浓度范围内,Fe3O4/SDS体系对Cd2+和Zn2+的吸附平衡数据符合Langmuir吸附等温方程,饱和吸附量分别为22.42 mg/g和13.95 mg/g。最终结果表明,Fe3O4/SDS磁性纳米颗粒具有较强磁分离能力和较好的吸附效果。  相似文献   

20.
In this study, rice husk was modified with NaOH and used as adsorbent for dynamic adsorption of methylene blue (MB) from aqueous solutions. Continuous removal of MB from aqueous solutions was studied in a laboratory scale fixed-bed column packed with NaOH-modified rice husk (NMRH). Effect of different flow rates and bed heights on the column breakthrough performance was investigated. In order to determine the most suitable model for describing the adsorption kinetics of MB in the fixed-bed column system, the bed depth service time (BDST) model as well as the Thomas model was fitted to the experimental data. An artificial neural network (ANN)-based model was also developed for describing the dynamic dye adsorption process. An extensive error analysis was carried out between experimental data and data predicted by the models by using the following error functions: correlation coefficient (R 2), average relative error, sum of the absolute error and Chi-square statistic test (χ 2). Results show that with increasing bed height and decreasing flow rate, the breakthrough time was delayed. All the error functions yielded minimum values for the ANN model than the traditional models (BDST and Thomas), suggesting that the ANN model is the most suitable model to describe the fixed-bed adsorption of MB by NMRH. It is also more rational and reliable to interpret dynamic dye adsorption data through a process of ANN architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号