首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
武汉市主要绿化树种滞尘效应研究   总被引:18,自引:1,他引:17  
本实验对武汉市城区主干道主要绿化树种的滞尘效应与叶表面结构进行了研究。结果表明:(1)同一尘源条件下,不同树种的滞尘能力差异显著。乔木中悬铃木滞尘能力较高,可达6.9345 g/m2;小乔木中紫薇和紫叶李是滞尘能力较高的树种,滞尘能力分别为1.9543 g/m2和1.8790 g/m2;灌木中红花檵木和杜鹃等有较强的滞尘能力,分别可达4.0373 g/m2和3.8875 g/m2;(2)利用扫描电镜观察叶表面结构发现:叶表具毛被、褶皱、较深的不规则网格等特征的树种滞尘能力较高,叶表平滑或叶表网格结构规则且较浅时滞尘能力较低;(3)同一树种在不同的尘源条件下滞尘能力差异显著,空气中颗粒物浓度越高,滞尘能力也越大。以车流量近似模拟尘源条件表明,滞尘能力与车流量呈正相关。  相似文献   

2.
采集了6个功能区(文教区绿地、城市公园绿地、居住区绿地、商业区绿地、工业区绿地和城市天然林)距离交通密集区不同位置(主干道、二级道路、绿地中心)的3种植物(法桐(Platanus orientalis Linn.)、桂花(Osmanthus fragrans (Thunb.)Lour.)、红叶石楠(Photinia×Fraseri))的叶面颗粒物,定量分析了南京城市森林植物叶面颗粒物的含量及粒径分布。结果表明:(1)3种植物叶面单位面积滞尘量大小依次为红叶石楠((6.189±1.255)g/m~2)、桂花((3.739±0.877)g/m~2)、法桐((2.753±0.744)g/m~2)。红叶石楠植物叶面单位面积滞尘量最高,分别约为桂花和法桐的1.7、2.2倍,且距离交通密集区越近,植物叶面单位面积滞尘量越高;(2)植物叶面颗粒物以粒径10.0~250.0μm的颗粒物为主,但其粒径分布受到植物种类、功能区以及距离交通密集区的远近影响。(3)植物叶面单位面积滞尘量受到植物生理特征、环境因素及尘源特征的共同影响。  相似文献   

3.
10种灌木树种滞留大气颗粒物的能力   总被引:2,自引:0,他引:2  
园林植物能阻滞大气颗粒物,对改善环境污染有重要作用。本研究对青岛市城阳区道路绿地中10种灌木进行了滞尘效益测定,分析了植物叶表面微观结构和叶表面不同粒径颗粒物数量,结果表明:大叶黄杨、火棘、金银木的单位叶面积平均滞尘量较高,紫荆较低;金银木、大叶黄杨的单位体积滞尘量较高,棣棠较低;对叶表面微形态观察表明:叶表粗糙、具蜡质层、气孔开口较大的植物能吸附较多的颗粒物,如大叶黄杨、金银木等;植物叶表面颗粒物大部分是PM_(10)(直径d≤10μm),其数量比例均在80%以上,其中PM_(2.5)(直径d≤2.5μm)达60%以上。  相似文献   

4.
表面活性剂能够增强植物叶面滞尘能力,研究不同表面活性剂对植物滞尘能力的影响,对于利用植物防治粉尘污染有重要意义。以LAS、DTAB、AR和APG200为喷洒试剂,研究了8种植物吸附表面活性剂后滞留粉尘的重量、组分。结果表明,LAS浓度、植物种类、表面活性剂类型对滞尘量和面积比具有显著影响(P0.05);表面活性剂能够有效提高植物滞尘能力,LAS、DTAB效果优于生物型AR、APG200,且测试叶面滞尘量的变化与叶面接触角无明显关系;LAS使除朴树外所有植物的滞尘能力增加的浓度为0.2 g/L,而对滞留粉尘组分改变较大的浓度为0.5 g/L;此外,表面活性剂能改变滞留粉尘的组分,但不具有明显的规律性,粉尘的遮光比变化趋势与叶面滞尘量基本相似。  相似文献   

5.
选取大叶黄杨(Buxus megistophylla Levl.)、海桐(Pittosporum tobira)、红叶石楠(Photiniax fraseri)和桂花(Osmanthus fragrans)为研究对象,测定不同天气下4种植物的叶面滞尘量,并分析其与气象因子和大气中颗粒物浓度的关系。研究表明:(1)叶面滞尘量由大到小依次为海桐(3.47~5.46g/m~2)、桂花(2.37~4.16g/m~2)、大叶黄杨(1.95~3.88g/m~2)、红叶石楠(1.08~2.35g/m~2);(2)在12.4mm降雨的作用下,大叶黄杨和红叶石楠的叶面滞尘量相比降雨前分别降低42%、49%;(3)经历连续6、9d的晴天后,4种植物叶面滞尘量变化幅度极小,基本达到饱和状态;(4)叶面具有脊状突起或较高气孔密度的植物能够有效滞留大气颗粒物,表面光滑的植物对大气颗粒物的滞留能力较弱。因此,海桐和桂花可以选作滞留大气颗粒物的优势植物。  相似文献   

6.
为研究常见绿化植物吸附大气颗粒物的能力,在南京市城区、城郊区和远郊区选择红叶石楠(Photinia serrulata)、海桐(Pittosporum tobira)、桂花(Osmanthus fragrans)和二球悬铃木(Platanus orientalis)进行研究,测定4种植物叶片吸附大气中不同粒径颗粒物的质量及数量特征。结果表明:植物叶片对不同颗粒物的吸附量存在显著的区域差异和种间差异,区域差异表现为城区城郊区远郊区;种间差异表现为二球悬铃木吸附能力最强,红叶石楠和海桐吸附能力相近,桂花吸附能力最弱。植物叶片对不同粒径颗粒物吸附特征为大颗粒物(粒径10.0μm)质量分数最大,细颗粒物(0.2μm粒径≤2.5μm)在数量上占一定优势。植物叶片上下表面微结构分析表明,植物叶片上表面吸附颗粒物的能力明显强于下表面,细颗粒物或更小粒径颗粒物主要被吸附在绒毛和深浅不一的沟槽处。  相似文献   

7.
在湖北孝感采集5种不同类型扬尘(道路尘 、大气降尘 、堆场尘 、土壤尘和建筑尘)样品45个,并采用热光反射法测定其黑碳(BC)、焦炭和烟炱浓度.结果表明:(1)孝感扬尘中BC质量浓度为0.02~10.65 g/kg,平均值为1.45 g/kg,BC平均值表现为道路尘>土壤尘>建筑尘>大气降尘>堆场尘.(2)BC和总有机...  相似文献   

8.
道路径流SS和COD污染特征及出流规律   总被引:1,自引:0,他引:1  
选择芜湖市火车站点进行长期监测,采集降雨7次;同时选择5个不同功能区,采集典型降雨1次。探讨了道路径流中总固体悬浮物(SS)和化学需氧量(COD)的污染特征、影响因素及出流规律,结果表明,7次降雨事件SS和COD平均值范围分别为198~1 529 mg/L和66~367 mg/L。SS和COD污染较为严重。SS在不同功能区中大小顺序为:工业区>居民区>商业区>交通区>文教区,总COD大小顺序为:工业区>交通区>居民区>商业区>文教区,溶解态COD大小顺序为:工业区>交通区>商业区>文教区>居民区,颗粒态COD大小顺序为:工业区>居民区>交通区>文教区>商业区。工业活动对地表径流SS和COD含量影响最大。SS受降雨历时影响较大,溶解态COD受平均雨强影响较大,颗粒态COD受最大雨强影响较大。不同降雨强度下,SS、溶解态COD及颗粒态COD的出流规律不同,降雨强度对径流初期效应的影响显著。  相似文献   

9.
昆明主城区城市地表径流污染特征分析   总被引:8,自引:0,他引:8  
谷雨  张乃明 《环境工程学报》2013,7(7):2587-2595
昆明市位于滇池上游,城市地表径流污染负荷对滇池水质具有直接影响。通过对昆明主城区内不同功能区12个监测点7次降雨径流过程水样的采集与分析,研究了昆明主城区城市地表径流污染特征。结果表明,昆明主城区城市地表径流中TSS、COD、TN和TP的多场降雨平均浓度分别为182.8、138.2、2.37和0.43 mg/L。不同功能区的地表径流水质存在显著差异(p<0.05);各功能区径流污染负荷顺序为:公路区>商业区>住宅区>文教区;不同功能区单场降雨径流水质动态变化规律是:污染物浓度在降雨径流初期相对较高,中后期浓度快速下降,并逐渐趋于稳定;地表利用功能、降雨特征和交通流量是影响城市地表径流水质的主要因素;城市地表径流中COD、TN、TP与TSS之间有较好的相关性,说明大部分的污染物质是以颗粒吸附态存在。  相似文献   

10.
常青道路景观配置对交通噪声的衰减效果   总被引:1,自引:0,他引:1  
选取重庆市主城区常见的3种道路景观植物——石楠(阔叶类植物)、小叶黄杨(中等叶子类植物)和雪松(针叶类植物),研究常青道路植物对交通噪声的衰减效果。结果表明:(1)在相同排列条件下,3种植物的降噪能力依次为石楠>小叶黄杨>雪松。对单一植物种,植物间交叉排列的绿化带对交通噪声的衰减效果比平行排列好。(2)不同种类植物对噪声的插入损失峰值所处的频段不同。针叶类植物对低频(<500Hz)噪声有很好的衰减效果,阔叶类植物对高频(>2 000Hz)噪声有很好的衰减效果,中等叶子类植物对中频(500~2 000Hz)噪声有很好的衰减效果。(3)选择针叶类植物和较大冠幅的阔叶类植物搭配种植,如雪松和石楠,可有效地提高绿化带对各频段的交通噪声的吸收能力。  相似文献   

11.

Purpose

Air pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. The mass artificial plantation is very helpful to absorb dust and reduce pollution for conservation of the urban environment. The foliar surface of plants is an important receptor of atmospheric pollutants. Therefore, selection of suitable plant species for urban environment is very important.

Methods

The dust-retaining capability of urban trees in Guangzhou was determined at four different types of urban area, and the morphological traits of their leaves such as wax, cuticle, stomata, and trichomes were observed under a scanning electron microscope.

Results

It was determined that the dust-retaining capability of any given tree species is significantly different in the same place. Of the four studied tree species in the industrial area (IA) and commercial/traffic areas (CTA) type urban areas, the highest amounts of dust removed by Mangifera indica Linn was 12.723 and 1.482?g/m2, respectively. However, in contrast, the equivalent maxima for Bauhinia blakeana is only 2.682?g/m2 and 0.720?g/m2, respectively. Different plant species have different leaf morphology. The leaf of M. indica has deep grooves and high stomata density which are in favor of dust-retained, and thus, their dust-retained capability is stronger, while B. blakeana has the cells and epicuticular wax with its stomata arranging regularly, resulting in poor dust catching capability. Leaf size was also shown to be related to dust capture for the four studied tree species.

Conclusions

The dust removal capacity of individual tree species should be taken into account in the management of greening plantation in and around an urban area. It was also shown that temporal variation in dust accumulation occurred over the 28-day observation period and this was discussed. Furthermore, spatial contrasts in dust accumulation were evidenced by the data. This reflected the differing pollution loadings of the four urban-type areas. The highest amount of dust accumulation was associated with the industrial area in which shipyard and steelworks occurred whilst the lowest dust accumulation was associated with the grounds of the University which was the control area.  相似文献   

12.
Urban vegetation increasingly plays an important role in the improvement of the urban atmospheric environment. This paper deals with the dust retention capacities of four urban tree species (Ficus virens var. sublanceolata, Ficus microcarpa, Bauhinia blakeana, and Mangifera indica Linn) in Guangzhou. The dust-retaining capacities of four tree species are studied under different pollution intensities and for different seasons. Remote sensing imagery was used to estimate the total aboveground urban vegetation biomass in different functional areas of urban Guangzhou, information that was then used to estimate the dust-retaining capacities of the different functional areas and the total removal of airborne particulates in urban Guangzhou by foliage. The results showed that urban vegetation can remove dust from the atmosphere thereby improving air quality. The major findings are that dust retention, or capture, vary between the four species of tree studied; it also varied between season and between types of urban functional area, namely industrial, commercial/road traffic, residential, and clean areas. Dust accumulation over time was also studied and reached a maximum, and saturation, after about 24 days. The overall aboveground biomass of urban vegetation in Guangzhou was estimated to be 52.0?×?105 t, its total leaf area 459.01 km2, and the dust-retaining capacity was calculated at 8012.89 t per year. The present study demonstrated that the foliage of tree species used in urban greening make a substantial contribution to atmospheric dust removal and retention in urban Guangzhou.  相似文献   

13.
The equilibrium of the structure and functioning of freshwater ecosystems is dependent of detritivores that link all the other functional groups. The preference for feeding leaves with different diameters (particle size) and leaves with metal contamination (several concentrations of the essential metals copper and zinc) were determined for two detritivores, the decapod Atyaephyra desmarestii and the amphipod Echinogammarus meridionalis. Several no-choice and multi-choice assays were done to determinate which leaf diameter the amphipod and the decapod species would eat when they had or not had alternatives available and include a set of dual-choice assays with contaminated and uncontaminated foods. No significant preference was shown by either species relative to the diameter of leaves, either on no-choice or multi-choice assays. The presence of essential metals on food did not had any influence on the feeding choice of these organisms over the concentration range studied. Both showed no preference on ingesting food spiked with these essential metals, except E. meridionalis which preferred ingesting leaves with 2.19 μg.l?1 of copper instead of uncontaminated leaves. For further works, despite no preference for leaves with a certain diameter, the leaves with 0.70 cm (0.385 cm2of area) and with 0.50 cm (1.767 cm2 of area) should be used for A. desmarestii and E. meridionalis, respectively. Furthermore, to maintain E. meridionalis, the diet should include some percentage of copper in order to accomplish metabolic needs.  相似文献   

14.
Asia is one of the major sources of not only mineral dust but also anthropogenic aerosols. Continental air masses associated with the East Asian winter monsoon always contain high contents of mineral dust and anthropogenic species and transported southeastward to Taiwan, which have significant influences on global atmospheric radiation transfer directly by scattering and absorbing solar radiation in each spring. However, few measurements for the long-range transported aerosol and its optical properties were announced in this area, between the Western Pacific and the southeastern coast of Mainland China. The overall objective of this work is to quantify the optical characteristics of different aerosol types in the Eastern Asian. In order to achieve this objective, meteorological parameters, concentrations of PM10 and its soluble species, and optical property of atmospheric scattering coefficients were measured continuously with 1 h time-resolved from 11 February to 7 April 2004 in Taipei Basin (25°00′N, 121°32′E). In this work, the dramatic changes of meteorological parameters such as temperature and winds were used to determine the influenced period of each air mass. Continental, strong continental, marine, and stagnant air masses defined by the back-trajectory analysis and local meteorology were further characterized as long-range transport pollution, dust, clean marine, and local pollution aerosols, respectively, according to the diagnostic ratios. The aerosol mass scattering efficiency of continental pollution, dust, clean marine, and local pollution aerosols were ranged from 1.3 to 1.6, 0.7 to 1.0, 1.4 and 1.4 to 2.3 m2 g−1, respectively. Overall, there are two distinct populations of aerosol mass scattering efficiencies, one for an aerosol chemical composition dominated by dust (<1.0 m2 g−1) and the other for an aerosol chemical composition dominated by anthropogenic pollutants (1.3–2.3 m2 g−1), which were similar to the previous measurements with high degree of temporal resolution.  相似文献   

15.
Thousands of tons of mercury (Hg) are released from anthropogenic and natural sources to the atmosphere in a gaseous elemental form per year, yet little is known regarding the influence of airborne Hg on the physiological activities of plant leaves. In the present study, the effects of low-level air and soil Hg exposures on the gas exchange parameters of maize (Zea mays L.) leaves and their accumulation of Hg, proline, and malondialdehyde (MDA) were examined via field open-top chamber and Hg-enriched soil experiments, respectively. Low-level air Hg exposures (<50 ng m?3) had little effects on the gas exchange parameters of maize leaves during most of the daytime (p?>?0.05). However, both the net photosynthesis rate and carboxylation efficiency of maize leaves exposed to 50 ng m?3 air Hg were significantly lower than those exposed to 2 ng m?3 air Hg in late morning (p?<?0.05). Additionally, the Hg, proline, and MDA concentrations in maize leaves exposed to 20 and 50 ng m?3 air Hg were significantly higher than those exposed to 2 ng m?3 air Hg (p?<?0.05). These results indicated that the increase in airborne Hg potentially damaged functional photosynthetic apparatus in plant leaves, inducing free proline accumulation and membrane lipid peroxidation. Due to minor translocation of soil Hg to the leaves, low-level soil Hg exposures (<1,000 ng g?1) had no significant influences on the gas exchange parameters, or the Hg, proline, and MDA concentrations in maize leaves (p?>?0.05). Compared to soil Hg, airborne Hg easily caused physiological stress to plant leaves. The effects of increasing atmospheric Hg concentration on plant physiology should be of concern.  相似文献   

16.
One question in the use of plants as biomonitors for atmospheric mercury (Hg) is to confirm the linear relationships of Hg concentrations between air and leaves. To explore the origin of Hg in the vegetable and grass leaves, open top chambers (OTCs) experiment was conducted to study the relationships of Hg concentrations between air and leaves of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.). The influence of Hg in soil on Hg accumulation in leaves was studied simultaneously by soil Hg-enriched experiment. Hg concentrations in grass and vegetable leaves and roots were measured in both experiments. Results from OTCs experiment showed that Hg concentrations in leaves of the four species were significantly positively correlated with those in air during the growth time (p?<?0.05), while results from soil Hg-enriched experiment indicated that soil-borne Hg had significant influence on Hg accumulation in the roots of each plant (p?<?0.05), and some influence on vegetable leaves (p?<?0.05), but no significant influence on Hg accumulation in grass leaves (p?>?0.05). Thus, Hg in grass leaves is mainly originated from the atmosphere, and grass leaves are more suitable as potential biomonitors for atmospheric Hg pollution. The effect detection limits (EDLs) for the leaves of alfalfa and ryegrass were 15.1 and 22.2 ng g–1, respectively, and the biological detection limit (BDL) for alfalfa and ryegrass was 3.4 ng m–3.  相似文献   

17.
Tagetes erecta has a high potential for cadmium (Cd) phytoremediation. Through several hydroponic experiments, characteristics of 108Cd distribution and accumulation were investigated in T. erecta with split -roots or removed xylem/phloem. The results showed that 108Cd transport from roots to aboveground tissues showed the homolateral transport phenomenon in split-root seedlings. 108Cd content of leaves on the +108Cd side and the −108Cd side was not significantly different, which implied that there was horizontal transport of 108Cd from the +108Cd side to the −108Cd side in cut-root seedlings. Like 108Cd transport, the transport of 70Zn was homolateral. Reduction of water consumption in the removed xylem treatment significantly decreased 108Cd accumulation; whereas, the removed phloem treatment had no significant effect on water consumption, but did decrease 108Cd accumulation in leaves of the seedlings. The removal of phloem significantly reduced distal leaf 108Cd content, which was significantly lower than that in the basal leaves in both the split-root and unsplit-root seedlings. Overall, the results presented in this study revealed that the root to aboveground cadmium translocation via phloem is as an important and common physiological process as xylem determination of the cadmium accumulation in stems and leaves of marigold seedlings.  相似文献   

18.
Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load.  相似文献   

19.
Leaves of linden (Tilia tomentosa L. and Tilia cordata Mill.) and horse chestnut (Aesculus hippocastanum L.) were analysed as biomonitors of radionuclides in urban air. Samples of soils, leaves and aerosols were collected in Belgrade, Serbia. Activities of 137Cs, 40K, 210Pb and 7Be in the samples were measured on an HPGe detector by standard gamma spectrometry. “Soil-to-leaves” transfer factors were calculated. Student’s t test and linear Pearson correlation coefficients were used for statistical analysis. Differences in local conditions at the sampling sites were not significant, and the mechanisms of the radionuclides’ accumulation in both plant species are similar. Ceasium-137 was detected in some of the leaf samples only. Transfer factors for 137Cs and 40K were (0.03–0.08) and 1.3, respectively. The concentrations of 210Pb and 7Be in leaves were higher in autumn than in spring, and there were some similarities in their seasonal patterns in leaves and in air. Weak to medium correlation was obtained for the 210Pb and 7Be activities in leaves and aerosols. Large positive correlation was obtained for the 210Pb activities in linden leaves and the mean activity in aerosols for the preceding months. Different primary modes of radionuclides accumulation in leaves were observed. Since large positive correlation was obtained for the 210Pb activity in linden leaves and the mean in aerosols for the preceding months, mature linden leaves could be used as biomonitors of recent 210Pb activity in air.  相似文献   

20.
As PM2.5 affect human health, it is important to target tree planting in the role of reducing air pollution concentrations. PM2.5 capture capability of greening trees is associated with leaf morphology, while quantitative research is scanty. In this paper, the PM2.5 capture capability of 25 species in Beijing and Chongqing were examined by a chamber device. Groove proportion, leaf hair, stomatal density, and stomata size were selected as indexes of leaf morphology. Results showed that groove proportion and stomata size significantly relate to PM2.5 capture quantity, while no significantly positive correlations were found for leaf hairs and stomatal density. Broadleaf species are conducive to PM2.5 capture for their rich leaf morphology and have an edge over coniferous in PM2.5 capture per leaf area. However, coniferous had a larger PM2.5 capture capability per tree due to the advantage of a large leaf area. Significant difference existed between the species in Beijing and Chongqing due to the different leaf morphology. Urban greening trees are diverse and the structures are complicated. Complex ecological environment may lead to different morphology characteristics. Climate and pollution conditions should be considered when greening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号