首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecosystem consequences of cyanobacteria in the northern Baltic Sea   总被引:1,自引:0,他引:1  
Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.  相似文献   

2.
Effects of pulp mill chlorate on Baltic Sea algae   总被引:1,自引:0,他引:1  
The long-term effects of pulp mill chlorate on different algal species of the Baltic Sea were studied in land-based model ecosystems simulating the littoral zone. Brown algae (Phaeophyta) exhibited an extraordinarily high sensitivity to chlorate and pulp mill effluents containing chlorate. All brown algal species ceased growth or showed major signs of toxicity at all concentrations tested, down to microgram per litre levels. EC50 levels for growth of Fucus vesiculosus were about 80-100 microg ClO3- litre(-1). Blue-green algae (Cyanophyta) were not deleteriously affected nor were green algae (Chlorophyta). The perennial and annual species of red algae (Rhodophyta) were also unaffected by the effluents. Diatoms did not show any sensitivity and phytoplankton (fresh- and brackish water) were particularly insensitive. A phanerogam, Zostera marina was also unaffected by the treatments.  相似文献   

3.
How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes in environmental conditions. Thirdly, biotic interactions within a trophic level may affect other trophic levels, in some cases ultimately affecting land–atmosphere feedbacks. Finally, differential responses to environmental change may decouple interacting species. These insights form Zackenberg emphasize that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems.  相似文献   

4.
We examined the effects of acidification on herbivore-algal food web linkages in headwater streams. We determined the structure and abundance of consumer and benthic algal assemblages, and gauged herbivory, in 10 streams along a pH gradient (mean annual pH 4.6-6.4). Biofilm taxonomic composition changed with pH but total abundance did not vary systematically across the gradient. Mayflies and chironomids dominated under circumneutral conditions but declined with increasing acidity and their consumption of algae was strongly reduced. Contrary to expectations, several putative shredder species consumed algae, maintaining the herbivore-algal linkage where specialist grazers could not persist. These shifts in functioning could render the communities of acidified streams resistant to reinvasion when acidity ameliorates and water chemistry is restored to a pre-acidification condition. This hypothesis is discussed in the light of recent trends in the chemistry and biology of the UK Acid Waters Monitoring Network sites.  相似文献   

5.
To assess the potential of the macroinvertebrate community for monitoring variation in the environmental quality of large rivers, the response of littoral macrobenthos in Lake Saint-Fran?ois, a fluvial lake of the St Lawrence River (Québec) are described. First, the composition of total macroinvertebrate communities and important taxonomic groups as well as the biotic ICI-SL index in 16 littoral stations varying in sedimentology, water chemistry and contamination are described to define indicator species groups and environmental quality ranks. Thereafter, the relative contribution of ecological and toxicological factors in explaining the variation observed in macroinvertebrate assemblages and biotic index were quantified using partial canonical correspondence analysis. Cluster analyses based on taxonomic composition separated five groups of stations where macroinvertebrate assemblages varied in density, composition and tolerance to pollution. The ICI-SL biotic index varied from 7.2 to 27.2 with a mean value of 19 +/- 6. The ICI-SL values determined for the macroinvertebrate communities in Lake Saint-Fran?ois did not reflect an important deterioration in environmental quality, and there was some agreement between the environmental quality ranking of the stations expressed either by the ICI-SL index or the community cluster analysis. Water conductivity and phosphorus concentration, followed by macrophyte types (Chara, Ceratophyllum) and sediment grain size, were the most significant ecological variables to explain variation in macroinvertebrate communities and derived ICI-SL index in Lake Saint-Fran?ois. Among the toxicological factors, metals in water (Fe, Cr, Pb, Mn, Zn) and sediment (Mn, Pb, Se), as well as the composite indices of metal and organic contamination (water CI, sediment CI, sediment total PAHs) were the most important factors. The contamination factors selected in our models represented contaminant sorption processes rather than direct toxicological effects. The lack of clear relationships between contaminants and macroinvertebrate variables reflected the relative low level of contamination in the stations sampled in Lake Saint-Fran?ois. There were some interactions between toxicological and ecological variables that should be considered in the planning of sampling and interpretation of biomonitoring studies. However, the large amount of unexplained variance (49.2-86.6%) in the CCA models underlined the limitations of the use of the indices of macroinvertebrate community structure that were assessed in this study for biomonitoring purposes in the absence of a contrasting pollution gradient.  相似文献   

6.
Marine macroalgal communities were examined near the outflow of acid mine drainage (AMD) from the Britannia Mine, British Columbia, Canada. No marine algae were present within 100 m of the mouth of Britannia Creek, which carries the AMD into the marine environment. At greater distances (300-700 m) from this Creek, mean summer cover of filamentous green algae, mostly Enteromorpha intestinalis, was >60%, which was significantly higher than at nearby reference stations. At still greater distances (600-1000 m) from Britannia Creek, Fucus gardneri dominated algal communities that were similar to those at reference stations. No consistent differences were detected in mean plant length, mean per cent cover or mean oocyte production between F. gardneri near Britannia Creek and those at reference stations. Cu body burden in F. gardneri near Britannia Creek was five to 17 times higher than in reference plants.  相似文献   

7.
Colonization features and taxonomic relatedness measures of ciliate communities have been used as useful indicators for marine bioassessment. The influence of enumeration time periods on analyzing colonization features measures of periphytic ciliate communities was studied in coastal waters of the Yellow Sea, northern China, during the period of May-June 2010. Ciliated protozoan samples were collected at depths of 1 m using an artificial substratum and were analyzed with different enumeration schemes. The ciliate species were identified using living observation and silver impregnation. Data analyses were conducted using a range of multivariate statistical routines. Enumeration time periods represented a strong influence on analyzing both colonization and taxonomic relatedness features of periphytic ciliate communities, although no significant changes occurred in colonization patterns between two enumeration schemes (within 24 and 24-48 h after sampling). The delayed enumeration (within 24-48 h) may result in the species richness, individual abundance, colonization rate decreasing to standard errors of >10 % in samples with almost all colonization ages, and in the similarities of the communities being reduced to 11-38 %. However, the species biodiversity (e.g., species diversity and evenness, except species richness) and taxonomic relatedness (taxonomic diversity, taxonomic distinctness and average taxonomic distinctness, except variation in taxonomic distinctness) measures of periphytic ciliate communities were weakly sensitive to disturbance from the delayed enumeration, achieving standard errors of <10 and <5 % during the colonization periods, respectively. These results suggest that the enumeration should be completed as soon as possible within 24 h after sampling to analyze colonization and taxonomic relatedness features of periphytic ciliate communities, and that the species diversity and taxonomic distinctness measures can be used on a robust bioindicator with weak dependence on enumeration time limits for monitoring programs and ecological investigations in marine ecosystems.  相似文献   

8.
In 10 different marine algae from the littoral zone (found between the highest and lowest tide marks on the seashore) arsenic compounds were determined by means of a high-performance liquid chromatography (anion and cation exchange)-UV photochemical digestion-hydride generation-atomic fluorescence spectrometry (HPLC-UV-HGAFS) system. Samples (Ceramium sp., Cystoseira barbata, Enteromorpha sp., Fucus virsoides, two different species of Gelidium, Padina pavonica, Polisyphonia sp. and Ulva rigida) were collected along the Adriatic Sea coast of Slovenia. The total arsenic content of the algal samples, as determined by ICP-MS, ranged from 1.35 to 28.1 microg g(-1) (fresh weight). In all algae but two, the most abundant arsenic species found were arsenosugars with minor amounts of other arsenic compounds. Cystoseira barbata and Ceramium sp. contained high amounts of mainly inorganic arsenic. A small quantity of arsenobetaine was detected in most of the investigated Adriatic algae, which probably originates from mesofauna attached to the algae in their natural habitat.  相似文献   

9.
Eutrophication of freshwater and coastal marine ecosystems a global problem   总被引:27,自引:2,他引:27  
GOAL, SCOPE AND BACKGROUND: Humans now strongly influence almost every major aquatic ecosystem, and their activities have dramatically altered the fluxes of growth-limiting nutrients from the landscape to receiving waters. Unfortunately, these nutrient inputs have had profound negative effects upon the quality of surface waters worldwide. This review examines how eutrophication influences the biomass and species composition of algae in both freshwater and costal marine systems. MAIN FEATURES: An overview of recent advances in algae-related eutrophication research is presented. In freshwater systems, a summary is presented for lakes and reservoirs; streams and rivers; and wetlands. A brief summary is also presented for estuarine and coastal marine ecosystems. RESULTS: Eutrophication causes predictable increases in the biomass of algae in lakes and reservoirs; streams and rivers; wetlands; and coastal marine ecosystems. As in lakes, the response of suspended algae in large rivers to changes in nutrient loading may be hysteretic in some cases. The inhibitory effects of high concentrations of inorganic suspended solids on algal growth, which can be very evident in many reservoirs receiving high inputs of suspended soils, also potentially may occur in turbid rivers. Consistent and predictable eutrophication-caused increases in cyanobacterial dominance of phytoplankton have been reported worldwide for natural lakes, and similar trends are reported here both for phytoplankton in turbid reservoirs, and for suspended algae in a large river CONCLUSIONS: A remarkable unity is evident in the global response of algal biomass to nitrogen and phosphorus availability in lakes and reservoirs; wetlands; streams and rivers; and coastal marine waters. The species composition of algal communities inhabiting the water column appears to respond similarly to nutrient loading, whether in lakes, reservoirs, or rivers. As is true of freshwater ecosystems, the recent literature suggests that coastal marine ecosystems will respond positively to nutrient loading control efforts. RECOMMENDATIONS AND OUTLOOK: Our understanding of freshwater eutrophication and its effects on algal-related water quality is strong and is advancing rapidly. However, our understanding of the effects of eutrophication on estuarine and coastal marine ecosystems is much more limited, and this gap represents an important future research need. Although coastal systems can be hydrologically complex, the biomass of marine phytoplankton nonetheless appears to respond sensitively and predictably to changes in the external supplies of nitrogen and phosphorus. These responses suggest that efforts to manage nutrient inputs to the seas will result in significant improvements in coastal zone water quality. Additional new efforts should be made to develop models that quantitatively link ecosystem-level responses to nutrient loading in both freshwater and marine systems.  相似文献   

10.
A new energetic substance hexanitrohexaazaisowurtzitane (or CL-20) was tested for its toxicities to various ecological receptors. CL-20 (epsilon-polymorph) was amended to soil or deionized water to construct concentration gradients. Results of Microtox (15-min contact) and 96-h algae growth inhibition tests indicate that CL-20 showed no adverse effects on the bioluminescence of marine bacteria Vibrio fischeri and the cell density of freshwater green algae Selenastrum capricornutum respectively, up to its water solubility (ca. 3.6 mg l(-1)). CL-20 and its possible biotransformation products did not inhibit seed germination and early seedling (16-19 d) growth of alfalfa (Medicago sativa) and perennial ryegrass (Lolium perenne) up to 10,000 mg kg(-1) in a Sassafras sandy loam soil (SSL). Indigenous soil microorganisms in SSL and a garden soil were exposed to CL-20 for one or two weeks before dehydrogenase activity (DHA) or potential nitrification activity (PNA) were assayed. Results indicate that up to 10,000 mg kg(-1) soil of CL-20 had no statistically significant effects on microbial communities measured as DHA or on the ammonium oxidizing bacteria determined as PNA in both soils. Data indicates that CL-20 was not acutely toxic to the species or microbial communities tested and that further studies are required to address the potential long-term environmental impact of CL-20 and its possible degradation products.  相似文献   

11.
Grandin U 《Ambio》2011,40(8):857-866
The aim was to describe spatiotemporal patterns of colonization of spruce branches by algae and lichens and the relationship with decreasing deposition of N and S. Coverage was estimated annually over 10 years for four Swedish Integrated Monitoring catchments with varying deposition levels. Initial hypotheses were that algal coverage would be positively correlated with deposition and that lichen coverage would be negatively correlated with S and positively with N deposition. Data were analyzed using regression, ANOVA, and partial least square regression. The results showed a temporal decrease in the coverage of algae but an increase in colonization rates, while lichens showed less uniform patterns. Within catchments, algae and lichen coverages were positively correlated with mainly S deposition. Across catchments, coverage of algae increased, while the coverage of lichens decreased with increasing N and S deposition. Colonization rates of both algae and lichens showed weak correlations with both spatial and temporal trends in N and S deposition. Thus, while N and S deposition had an effect on the colonization and coverage of algae and lichens, other factors are also important.  相似文献   

12.
The detailed dynamics of epiphytic lichen communities were observed while studying permanent quadrats in the zone of influence of a phosphorus fertiliser factory in central Lithuania. The most significant changes were induced by several factors: changes in macroenvironment (increase of illumination), bark scaling, succession processes, individual growth characteristics of the community members, and influence of fungal infection and invertebrate grazing. None of these changes could be directly linked with air pollution. These observations have shown that in conditions of more or less stable pollution, epiphytic community dynamics should be evaluated with care, the best indicators of the characteristics of the communities being species richness and presence/absence and abundance of indicator (nitrophilous or acidophilous) species.  相似文献   

13.
Biodiversity within European semi-natural biotopes in agro-ecosystem is declining, and herbicide drift from neighbouring fields is considered as an important factor for the decline. The aim of the present study was to investigate whether the growth and competitive interactions in a model system of two perennial grass species, Festuca ovina and Agrostis capillaris, are affected by sub-lethal doses of glyphosate in field margins. In a glasshouse experiment with ample nitrogen, the interspecific competitive interactions were found to be significantly affected by glyphosate; the competitive effect of F. ovina on A. capillaris increased and the competitive effect of A. capillaris on F. ovina decreased with increasing doses of glyphosate. Furthermore, the importance of interspecific competition increased with the glyphosate dose. The results of the study of competitive interactions are in agreement with the observed plant community dynamics at the field site where F. ovina was found to be more dominant in plots treated with a relatively high dose of glyphosate. Importantly, the effects of glyphosate on the plant community dynamics critically depended on the effect of glyphosate on the plant competitive interactions. The study concludes that the current practice in the environmental risk assessment of non-target effects of herbicides, where single species are tested in the greenhouse, may be inadequate for assessing the effect of herbicides in semi-natural plant communities. The presented methods can be used for assessing the importance of competitive interactions for the sensitivity of non-target plants to herbicides in risk assessment.  相似文献   

14.
Gregor J  Jancula D  Marsálek B 《Chemosphere》2008,70(10):1873-1878
A growth toxicity assay with mixed cultures of cyanobacteria and algae using in vivo fluorescence is presented. Test organisms (the green alga Pseudokirchneriella subcapitata and the cyanobacterium Aphanothece clathrata) growing alone and in a mixture were exposed to selected chemicals. P. subcapitata featured a higher sensitivity to toxicants in the presence of A. clathrata compared to the single species assay. On the other hand, growth of a cyanobacterium was not affected by the presence or absence of the green alga. The proposed method seems to be suitable for pre-screening studies of toxicants (algistatic agents, herbicides) applied into the aquatic environment and for the assessment of their impact on natural phytoplankton communities.  相似文献   

15.
The feasibility for developing a protocol to assess marine water quality based on early colonization features of periphytic ciliate fauna was studied in coastal waters of the Yellow Sea, northern China. The ciliate communities with 3–28-day ages were collected monthly at four stations with a spatial gradient of environmental stress from August 2011 to July 2012. The spatial patterns of both early (3–7 days) and mature (>10 days) communities of the ciliates represented significant differences among the four stations, and were significantly correlated with environmental variables, especially nutrients and chemical oxygen demand (COD). Seven and eight dominant species were significantly correlated with nutrients or COD within the early and mature communities, respectively. The species richness indices were strongly correlated with nutrients, especially in mature communities. These findings suggest that it is possible to assess the status of water quality using early colonization features of periphytic ciliate fauna in coastal waters.  相似文献   

16.
Acidification can affect aquatic organisms directly through hydrogen ion toxicity, and indirectly through disrupted food web dynamics and altered abiotic conditions. Field populations from selected taxa were studied during the Little Rock Lake whole-basin acidification experiment to illustrate patterns whose timing suggests direct (i.e. immediate) or indirect (i.e. delayed or non-uniform) responses to pH change. As the treatment basin was acidified to pH 5.6, 5.2 and 4.7, immediate changes consistent with a direct pH response were observed for species representing several trophic levels. For other taxa (e.g. littoral invertebrates associated with filamentous algal mats, several species of pelagic zooplankton), indirect mechanisms induced by food web changes were more likely explanations for abundance patterns. The results presented here suggest that the responses of aquatic ecosystems to acidification involve a complex interplay between direct pH effects and subsequent indirect interactions.  相似文献   

17.
Moen J 《Ambio》2008,37(4):304-311
This paper examines potential effects of predicted climate changes on the forage conditions during both summer and winter for semidomesticated reindeer in Sweden. Positive effects in summer ranges include higher plant productivity and a longer growing season, while negative effects include increased insect harassment. Forage quality may change in both positive and negative ways. An increase in shrubs and trees in alpine heaths is also likely. A warmer climate means shorter winters, which will have positive effects for the survival of reindeer. However, warmer and wetter weather may also result in increased probabilities of ice-crust formations, which strongly decrease forage availability. A warmer climate with higher forest productivity will also likely reduce lichen availability through competitive interactions. Adaptations to these changes will include maintaining a choice of grazing sites in both summer and winter. However, this capacity may already be severely limited because of other forms of land use.  相似文献   

18.
A Bérard  C Benninghoff 《Chemosphere》2001,45(4-5):427-437
Algae communities exposed to a herbicide like atrazine (PS II inhibitor) are expected to be selected and to be more tolerant to the herbicide than unexposed communities (pollution-induced community tolerance, PICT). The PICT may be an ecotoxicological tool for detecting this selective action of chronic pollution, and this method has been applied to several toxicants in experimental systems and in field studies. But the detection of PICT with PS II inhibitors has sometimes been variable. This work was done to study the long-term effects of exposure to atrazine (10 microg/l) and the PICT responses of phytoplankton communities in repeated outdoor nanocosms. Phytoplankton communities were sampled in Lake Geneva at different periods of the year and the effects of atrazine were analysed by studying community structure, biomass and primary production, and by measuring tolerance to atrazine in a short-term physiological test based on 14C incorporation. We find that PICT is a sensitive method for measuring effects. Even atrazine concentrations causing little restructuring induced tolerance in most of our experiments. But the short- and long-term responses of phytoplankton to atrazine varied between experiments, probably due to the initial compositions of the communities and environmental factors associated with seasonal parameters. The selection and detection steps of PICT to atrazine thus vary greatly with environmental conditions and the physiological adaptations of algae to the herbicide. To monitor risk assessment in aquatic systems, PICT studies applied to algae, must be investigated in the light of seasonal contaminations and seasonal events and successions.  相似文献   

19.
The ability of individual species to tolerate or accumulate heavy metal pollutants has been investigated widely. Although invasive species may become established more easily in disturbed environments, relatively little is known about how an ability to tolerate pollutants might give invasive species a competitive advantage. This study is part of a series of experiments investigating native and invasive species interactions with chemical pollution and other forms of disturbance. The purpose of this experiment was to investigate the effects of lead on the growth of Lythrum salicaria. We exposed plants to different concentrations of lead and measured different growth parameters, such as biomass, length, leaf number, and biomass allocation to roots. For most measures, plants grown in lead-free conditions were larger than plants exposed to lead. Plants in the low (500 mg/l) and medium (1,000 mg/l) lead treatments did not differ from each other, while plants in the high (2,000 mg/l) lead treatment were significantly smaller. However, the biomass allocation to roots was not significantly different among treatments. Although their growth is affected, individuals of Lythrum salicaria demonstrated tolerance to lead contamination, which may aid in their colonization in lead-polluted wetlands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号