首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential impacts of land use on large woody debris (LWD) were examined in Sourdough Creek Watershed, a rapidly growing area encompassing Bozeman, Montana, USA. We identified six land classes within a 250 m buffer extending on either side of Sourdough Creek and assessed aquatic habitat and geomorphologic variables within each class. All LWD pieces were counted, and we examined 14 other variables, including undercut bank, sinuosity, and substrate composition. LWD numbers were generally low and ranged from 0 to 8.2 pieces per 50 m of stream. Linear regression showed that LWD increased with distance from headwaters, riparian forest width, and sinuosity in four of the six land classes. Statistically significant differences between land classes for many aquatic habitat and geomorphologic variables indicated the impacts of different land uses on stream structure. We also found that practices such as active wood removal played a key role in LWD abundance. This finding suggests that managers should prioritize public education and outreach concerning the importance of in-stream wood, especially in mixed-use watersheds where wood is removed for either aesthetic reasons or to prevent stream flooding.  相似文献   

2.
Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1myr(-1) and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4x10(8)m(3)yr(-1), about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of the riparian corridor for birds and other wildlife. Conservation and water management strategies to enhance the delta habitats are discussed in light of the findings.  相似文献   

3.
The United States Congress established Grand Canyon National Park in 1919 to preserve for posterity the outstanding natural attributes of the canyon cut by the Colorado River. In some cases National Park Service attempts to maintain Grand Canyon's natural environment have been thwarted by activities outside the park. One of the most obvious external threats is Glen Canyon Dam, only 26 km upstream from the park boundary. Constructed in 1963, this gigantic dam has greatly altered the physicochemical and biological characteristics of 446 km of the Colorado River in Grand Canyon National Park. The river's aquatic ecosystem has been greatly modified through the loss of indigenous species and the addition of numerous exotics. We consider this anexotic ecosystem. The riparian ecosystem has been less modified, with addition of a few exotics and no loss of natives—this we consider anaturalized ecosystem.The great dilemma now faced by park managers is that, after 20 years of managing resources along a river controlled by Glen Canyon Dam, the Bureau of Reclamation has proposed major changes in operational procedures for the dam. Scientists and managers from the National Park Service, Bureau of Reclamation, and cooperating federal and state resource management agencies are using a systems analysis approach to examine the impacts of various Colorado River flow regimes on aquatic, riparian, and recreational parameters in the park. This approach will help in the development of management alternatives designed to permit the most efficient use of that river's natural resources without their destruction.  相似文献   

4.
The Alfeios River, the longest and highest flow-rate river in Peloponnisos, constitutes an important water resource and ecosystem in Greece. In the present study, human activities in the Alfeios River Basin are described, and their impacts on water quality and the ecosystem are analyzed; effects resulting from interventions on river geomorphology between Flokas Dam and the river delta are determined. These actions have caused significant adverse impacts on the infrastructure (the dam, railroad, and road bridges), the level of aquifer water table and area water uses, and the aquatic and riparian ecosystem. A general integrated management strategy is formulated and a master management plan is proposed for resolving management problems in river basins. The plan considers local conditions and national requirements and complies with the European Communities legislation; it would help prevent further basin deterioration, improve water quality, and protect water resources and ecosystems in the area in accordance to sustainable development. The Alfeios River Basin serves as a case study in the development of the plan.Published online Note: This version was published online in June 2005 with the cover date of August 2004.  相似文献   

5.
Encroachment of riparian vegetation into regulated river channels exerts control over fluvial processes, channel morphology, and aquatic ecology. Reducing encroachment of terrestrial vegetation is an oft-cited objective of environmental flow recommendations, but there has been no systematic assessment of the evidence for and against the widely-accepted cause-and-effect mechanisms involved. We systematically reviewed the literature to test whether environmental flows can reduce the encroachment of terrestrial vegetation into river channels. We quantified the level of support for five explicit cause-effect hypotheses drawn from a conceptual model of the effects of flow on vegetation. We found that greater inundation, variously expressed as changes in the area, depth, duration, frequency, seasonality, and volume of surface water, generally reduces riparian vegetation abundance in channels, but most studies did not investigate the specific mechanisms causing these changes. Those that did show that increased inundation results in increased mortality, but also increased germination. The evidence was insufficient to determine whether increased inundation decreases reproduction. Our results contribute to hydro-ecological understanding by using the published literature to test for general cause-effect relationships between flow regime and terrestrial vegetation encroachment. Reviews of this nature provide robust support for flow management, and are more defensible than expert judgement-based approaches. Overall, we predict that restoration of more natural flow regimes will reduce encroachment of terrestrial vegetation into regulated river channels, partly through increased mortality. Conversely, infrequent deliveries of environmental flows may actually increase germination and subsequent encroachment.  相似文献   

6.
Segura, Catalina and Derek B. Booth, 2010. Effects of Geomorphic Setting and Urbanization on Wood, Pools, Sediment Storage, and Bank Erosion in Puget Sound Streams. Journal of the American Water Resources Association (JAWRA) 46(5):972-986. DOI: 10.1111/j.1752-1688.2010.00470.x Abstract: Interrelationships between urbanization, the near-riparian zone, and channel morphology were examined in 44 lowland stream reaches in the Puget Lowlands of western Washington, United States. Both the degree of urbanization and channel type control channel response to a range of instream and riparian conditions. Some of these relationships are not evident in lumped datasets (i.e., with all channel types and/or degrees of urbanization) and highlight the importance of fluvial geomorphology in determining channel response. We found that in low-urbanized watersheds dominated by forced pool-riffle and plane-bed morphologies, the frequency and distribution of large woody debris (LWD), pool spacing, sediment storage, and bank erosion have a strong relationship with channel confinement and characteristics of near-riparian vegetation. In contrast, high-urbanized reaches dominated by simplified morphologies are substantially less sensitive to the condition of the near-riparian zone (e.g., size of the near-riparian vegetation and the level of channel confinement), due to the common disconnection of stream and floodplain caused by the placement of stabilizing structures in the banks. These structures are typically placed to prevent erosion; however, they also result in fewer LWD and pools, less sediment storage, and higher potential for incision.  相似文献   

7.
Kline, Michael and Barry Cahoon, 2010. Protecting River Corridors in Vermont. Journal of the American Water Resources Association (JAWRA) 46(2):227-236. DOI: 10.1111/j.1752-1688.2010.00417.x Abstract: The Vermont Agency of Natural Resources’ current strategy for restoring aquatic habitat, water quality, and riparian ecosystem services is the protection of fluvial geomorphic-based river corridors and associated wetland and floodplain attributes and functions. Vermont has assessed over 1,350 miles of stream channels to determine how natural processes have been modified by channel management activities, corridor encroachments, and land use/land cover changes. Nearly three quarters of Vermont field-assessed reaches are incised limiting access to floodplains and thus reducing important ecosystem services such as flood and erosion hazard mitigation, sediment storage, and nutrient uptake. River corridor planning is conducted with geomorphic data to identify opportunities and constraints to mitigating the effects of physical stressors. Corridors are sized based on the meander belt width and assigned a sensitivity rating based on the likelihood of channel adjustment due to stressors. The approach adopted by Vermont is fundamentally based on restoring fluvial processes associated with dynamic equilibrium, and associated habitat features. Managing toward fluvial equilibrium is taking hold across Vermont through adoption of municipal fluvial erosion hazard zoning and purchase of river corridor easements, or local channel and floodplain management rights. These tools signify a shift away from primarily active management approaches of varying success that largely worked against natural river form and process, to a current community-based, primarily passive approach to accommodate floodplain reestablishment through fluvial processes.  相似文献   

8.
A study of the impact of two flood control reservoirs and pollution influx was conducted on two streams within the Sandy Creek Watershed, Mercer County, Pennsylvania, USA. Fecal coliforms were significantly reduced in the outflows without affecting water chemistry, thereby improving the overall water quality. The size and composition of the aquatic communities as well as stream metabolism varied seasonably among the different sampling stations. Pollution influx primarily from communities and agricultural drainage had a greater impact on the stream ecosystem than did impounding of the streams. Natural wetlands and riparian vegetation were important factors in reducing the pollution load in these streams. The reestablishment and maintenance of riparian vegetation should therefore be an integral part of the land-use plan for watersheds in order to improve water quality and wildlife habitats. In the future, the maintenance of riparian vegetation should be given prime consideration in the development of watershed projects.  相似文献   

9.
Societal constraints often limit full process restoration in large river systems, making local rehabilitation activities valuable for regeneration of riparian vegetation. A target of much mitigation and restoration is the federally threatened Valley elderberry longhorn beetle and its sole host plant, blue elderberry, in upper riparian floodplain environments. However, blue elderberry ecology is not well understood and restoration attempts typically have low success rates. We determined broad-scale habitat characteristics of elderberry in altered systems and examined associated plant species composition in remnant habitat. We quantified vegetation community composition in 139 remnant riparian forest patches along the Sacramento River and elderberry stem diameters along this and four adjacent rivers. The greatest proportion of plots containing elderberry was located on higher and older floodplain surfaces and in riparian woodlands dominated by black walnut. Blue elderberry saplings and shrubs with stems <5.0 cm in diameter were rare, suggesting a lack of recruitment. A complex suite of vegetation was associated with blue elderberry, including several invasive species which are potentially outcompeting seedlings for light, water, or other resources. Such lack of recruitment places increased importance on horticultural restoration for the survival of an imperiled species. These findings further indicate a need to ascertain whether intervention is necessary to maintain functional and diverse riparian woodlands, and a need to monitor vegetative species composition over time, especially in relation to flow regulation.  相似文献   

10.
This study presents a method for assessing conservation opportunity on private land based on landholders' socio-economic, behavioral, and farm characteristics. These characteristics include age, gender, education, level of off-farm income, farm size, proportion of remnant native vegetation on-farm, and ecological value of native vegetation on-farm. A sample of landholders who own greater than 2 ha of land in the South Australian Murray-Darling Basin region were sent a mail-based survey about their values and preferences for environmental management (N = 659, 52% response). Cross-tabulations and ANOVA statistical analysis techniques were used to compare the socio-economic attributes across three landholder classes: disengaged, moderately engaged, and highly engaged in native vegetation planting. Results indicate that highly engaged landholders were more likely to be female, formally educated, hobby farmers who managed small parcels of land and have high off-farm incomes, whereas disengaged landholders held significantly stronger farming connections (more farming experience, family have lived on the farm for more generations). Spatial analysis revealed area-specific differences in conservation opportunity and conservation priority. In some areas, properties of high ecological value were managed by highly engaged landholders, but nearby properties of high value were managed by moderately engaged or disengaged landholders. Environmental managers therefore cannot assume areas of high conservation priority will be areas of high conservation opportunity. At the regional scale, the potential for revegetation seems most promising within the moderately engaged landholder group considering the vast amount of land managed by this group in areas of high ecological value, particularly within the less represented Mallee and Coorong and Rangelands sub-regions. We suggest that incentive schemes which purchase conservation need to be targeted at disengaged landholders; mentoring schemes led by commercial farmers highly engaged in native vegetation planting should be directed at moderately engaged landholders, and; awards programs which acknowledge conservation successes should be targeted at highly engaged landholders.  相似文献   

11.
Rehabilitation of river ecosystems is generally initiated when a river is no longer able to provide benefits to humans and other living beings. The major purposes of river rehabilitation projects are improving water quality, conserving nature, rehabilitating fisheries and riparian habitats, flood mitigation, and creating recreational opportunities. For a river rehabilitation project to be successful, it must have specific and clearly explained objectives, although these objectives will vary for each project depending upon factors such as economics, public demand, ecosystem benefits, and the like. In this article, we provide a critical analysis of the purposes that drive river rehabilitation projects and we identify and discuss impediments that can cause a project to deviate from its intended goals. We also discuss major constraints on rehabilitation efforts that can result in failed projects.  相似文献   

12.
Riparian forests are important for the structure and functioning of stream ecosystems, providing structural components such as large woody debris (LWD). Changes in these forests will cause modifications in the LWD input to streams, affecting their structure. In order to assess the influence of riparian forests changes in LWD supply, 15 catchments (third and fourth order) with riparian forests at different conservation levels were selected for sampling. In each catchment we quantified the abundance, volume and diameter of LWD in stream channels; the number, area and volume of pools formed by LWD and basal area and tree diameter of riparian forest. We found that riparian forests were at a secondary successional stage with predominantly young trees (diameter at breast height <10 cm) in all studied streams. Results showed that basal area and diameter of riparian forest differed between the stream groups (forested and non-forested), but tree density did not differ between groups. Differences were also observed in LWD abundance, volume, frequency of LWD pools with subunits and area and volume of LWD pools. LWD diameter, LWD that form pools diameter and frequency of LWD pools without subunits did not differ between stream groups. Regression analyses showed that LWD abundance and volume, and frequency of LWD pools (with and without subunits) were positively related with the proportion of riparian forest. LWD diameter was not correlated to riparian tree diameter. The frequency of LWD pools was correlated to the abundance and volume of LWD, but characteristics of these pools (area and volume) were not correlated to the diameter of LWD that formed the pools. These results show that alterations in riparian forest cause modifications in the LWD abundance and volume in the stream channel, affecting mainly the structural complexity of these ecosystems (reduction in the number and structural characteristics of LWD pools). Our results also demonstrate that riparian forest conservation actions must consider not only its extension, but also successional stage to guarantee the quantity and quality of LWD necessary to enable the structuring of stream channels.  相似文献   

13.
Removal of nonnative riparian trees is accelerating to conserve water and improve habitat for native species. Widespread control of dominant species, however, can lead to unintended erosion. Helicopter herbicide application in 2003 along a 12-km reach of the Rio Puerco, New Mexico, eliminated the target invasive species saltcedar (Tamarix spp.), which dominated the floodplain, as well as the native species sandbar willow (Salix exigua Nuttall), which occurred as a fringe along the channel. Herbicide application initiated a natural experiment testing the importance of riparian vegetation for bank stability along this data-rich river. A flood three years later eroded about 680,000 m3 of sediment, increasing mean channel width of the sprayed reach by 84%. Erosion upstream and downstream from the sprayed reach during this flood was inconsequential. Sand eroded from channel banks was transported an average of 5 km downstream and deposited on the floodplain and channel bed. Although vegetation was killed across the floodplain in the sprayed reach, erosion was almost entirely confined to the channel banks. The absence of dense, flexible woody stems on the banks reduced drag on the flow, leading to high shear stress at the toe of the banks, fluvial erosion, bank undercutting, and mass failure. The potential for increased erosion must be included in consideration of phreatophyte control projects.  相似文献   

14.
A methodology is described that allows determination of instream flow requirements for maintenance of riparian trees. Tree-ring data revealed strong relationships between tree growth and stream flow volume for riparian species at Rush Creek, an alluvial stream within an arid setting; these relationships allowed development of models that predict growth rates from hydrologic variables. The models can be used to assess instream flow requirements under the assumption that certain levels of growth are necessary to maintain the population. There is a critical need for development and use of instream flow methodologies for riparian vegetation, since present methodologies focus on needs of aquatic animals (e.g., fish) and may underestimate needs of the entire riparian ecosystem.  相似文献   

15.
Over the last three decades, livestock exclosure research has emerged as a preferred method to evaluate the ecology of riparian ecosystems and their susceptibility to livestock impacts. This research has addressed the effects of livestock exclusion on many characteristics of riparian ecosystems, including vegetation, aquatic and terrestrial animals, and geomorphology. This paper reviews, critiques, and provides recommendations for the improvement of riparian livestock exclosure research. Exclosure-based research has left considerable scientific uncertainty due to popularization of relatively few studies, weak study designs, a poor understanding of the scales and mechanisms of ecosystem recovery, and selective, agenda-laden literature reviews advocating for or against public lands livestock grazing. Exclosures are often too small (<50 ha) and improperly placed to accurately measure the responses of aquatic organisms or geomorphic processes to livestock removal. Depending upon the site conditions when and where livestock exclosures are established, postexclusion dynamics may vary considerably. Systems can recover quickly and predictably with livestock removal (the “rubber band” model), fail to recover due to changes in system structure or function (the “Humpty Dumpty” model), or recover slowly and remain more sensitive to livestock impacts than they were before grazing was initiated (the “broken leg” model). Several initial ideas for strengthening the scientific basis for livestock exclosure research are presented: (1) incorporation of meta-analyses and critical reviews. (2) use of restoration ecology as a unifying conceptual framework; (3) development of long-term research programs; (4) improved exclosure placement/design; and (5) a stronger commitment to collection of pretreatment data.  相似文献   

16.
Willows (Salix Spp.), while not endemic to Australia, form dense stands in many stream locations. Australia has been experiencing a long-term drought and potential water extraction by willows is considered a significant problem, although little global scientific evidence exists to support such concerns. The extent of willow occupation in Australian streams has been deemed large enough to warrant investigation of their evapotranspiration rates and quantification of potential water savings from willow removal. Willows situated in-stream (permanent water) and on stream banks (semi-permanent water) were monitored over three summers from August 2005 to May 2008 employing heat pulse velocity sap flux sensors and field measurement of water balance components. A comparative study of native riparian River Red Gum trees was also undertaken. Differences in transpiration flux rates between willows with permanent and semi-permanent access to water were substantial, with peak transpiration of 15.2 mm day(-1) and 2.3 mm day(-1) respectively. Water balance calculations over the three year period indicate that an average potential net water saving of 5.5 ML year(-1)ha(-1) of crown projected area is achievable by removal of in-stream willows with permanent access to water. On stream banks, replacement of willows with native riparian vegetation will have no net impact on site water balances. Results also indicate that under the influence of natural environmental events such as drought, heat stress and willow sawfly infestation, evapotranspiration rates from in-stream willows remain greater than that from open water. These results will have important implications in environmental management of willows and in future water resource allocation and planning in Australia.  相似文献   

17.
Non-native shrub species in the genus Tamarix (saltcedar, tamarisk) have colonized hundreds of thousands of hectares of floodplains, reservoir margins, and other wetlands in western North America. Many resource managers seek to reduce saltcedar abundance and control its spread to increase the flow of water in streams that might otherwise be lost to evapotranspiration, to restore native riparian (streamside) vegetation, and to improve wildlife habitat. However, increased water yield might not always occur and has been substantially lower than expected in water salvage experiments, the potential for successful revegetation is variable, and not all wildlife taxa clearly prefer native plant habitats over saltcedar. As a result, there is considerable debate surrounding saltcedar control efforts. We review the literature on saltcedar control, water use, wildlife use, and riparian restoration to provide resource managers, researchers, and policy-makers with a balanced summary of the state of the science. To best ensure that the desired outcomes of removal programs are met, scientists and resource managers should use existing information and methodologies to carefully select and prioritize sites for removal, apply the most appropriate and cost-effective control methods, and then rigorously monitor control efficacy, revegetation success, water yield changes, and wildlife use.  相似文献   

18.
Streamside vegetation frequently regenerates faster than upland vegetation following wildland fire and contributes to the recovery of riparian and stream ecosystems. Limited data are available, however, on the post‐fire growth of riparian species and the influence of herbivory on regeneration. To determine post‐fire regrowth of riparian vegetation, height, crown area, crown volume, and browse levels were measured for key riparian shrub species in streamside burned and unburned plots along second‐order streams in western Wyoming. Shrubs in the burned plots were subject to high levels of browse ‐ up to 84 percent of the leaders were browsed ‐ by native ungulates in 2002, the second post‐fire year (September 2001 to September 2002). In summer 2003, the burned watershed was also grazed by livestock, resulting in increased browse levels and decreased shrub heights for several species. In the third post‐fire year, September 2002 to September 2003, four of the six most common species showed no increase in crown area or crown volume, indicating that the combination of native ungulate and cattle browsing suppressed their growth. Potential impacts of grazing on post‐fire recovery of stream and riparian ecosystems are discussed.  相似文献   

19.
A conceptual model of the morphological development of the riparian margins of newly cut river channels is presented, suggesting early feedbacks between vegetation growth and bank form. To test the model, observations of long and cross profiles, bank sediment and seed deposition, and bank vegetation development were collected over the first 2 years of river flows through a reach of the River Cole, West Midlands, UK. The newly created channel had a sinuous planform and varying asymmetric trapezoidal cross section in sympathy with the planform. No imposed bedforms or bank reseeding were included in the design. Over the 2 years, development of bedforms was rapid, with bed sediment sorting and bank profile adjustment occurring more steadily and progressively. Six classes of bank profile were identified by the end of the study period, illustrating close associations with sediment aggradation, vegetation colonization, and growth patterns. Vegetation colonization of the banks was seeded predominantly from local sources during the summer and from hydrochory (transport by the river) during the winter. Colonizing vegetation on the riverbanks appeared to act as a significant propagule source by the second summer and as an increasingly important roughness element, trapping both propagules and sediment, within the second year and providing early feedback into bank evolution. As a result, the time required for riparian margin development in the conceptual model was found to be considerably longer than observed in the study river. In addition, the role of surface wash/bank failure in modifying the bank profile and transporting seeds onto the upper bank face during the first year of bank development was found to be important in initiating rapid bank vegetation colonization and surface stabilization. This set of processes had not been incorporated in the initial conceptual model. In relation to channel restoration, this research illustrates that in small temperate rivers of modest energy the provision of an initial, sinuous corridor is sufficient to induce rapid development of fluvial features and vegetation cover without the need to construct bed forms or to seed the banks.  相似文献   

20.
ABSTRACT: Riparian zones perform a variety of biophysical functions that can be managed to reduce the effects of land use on instream habitat and water quality. However, the functions and human uses of riparian zones vary with biophysical factors such as landform, vegetation, and position along the stream continuum. These variations mean that “one size fits all” approaches to riparian management can be ineffective for reducing land use impacts. Thus riparian management planning at the watershed scale requires a framework that can consider spatial differences in riparian functions and human uses We describe a pilot riparian zone classification developed to provide such a framework for riparian management in two diverse river systems in the Waikato region of New Zealand. Ten classes of riparian zones were identified that differed sufficiently in their biophysical features to require different management. Generic “first steps” and “best practical” riparian management recommendations and associated costs were developed for each riparian class. The classification aims to not only improve our understanding of the effectiveness of riparian zone management as a watershed management tool among water managers and land owners, but to also provide a basis for deciding on management actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号