首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
采用田间试验方法研究代森锰锌及其代谢物乙撑硫脲(ETU)在马铃薯和土壤中的残留动态.气相色谱法定量分析,本方法马铃薯中代森锰锌和ETU的平均回收率分别为85.41%-95.47%和87.71%-92.19%;土壤中代森锰锌和ETU的平均回收率分别为85.61%-103.09%和91.08%-94.46%.结果表明:代森锰锌和ETU在马铃薯茎叶中消解较快,在合肥市和天津市两地其消解半衰期分别为6.41-7.89d和6.16-7.15d;在土壤中的消解半衰期分别为5.26-7.71d和9.80-10.16d.在马铃薯上使用了72%锰锌·霜脲可湿性粉剂,按照推荐剂量的2倍(3240gai·ha-1)最多施药4次,采收期距最后一次施药7d,马铃薯中代森锰锌残留量小于1.0mg·kg-1,ETU小于0.05mg·kg-1.说明该药为低残留、易消解农药.  相似文献   

2.
对烯肟菌酯在苹果和土壤中的残留消解规律和最终残留进行分析,结果表明,烯肟菌酯的最小检出量为4.10×10-13 g,对苹果和土壤中烯肟菌酯的最小检出浓度分别为0.002 mg·kg-1和0.003mg·kg-1,苹果中烯肟菌酯的平均回收率为92.19%-97.69%,变异系数为4.78%-10.71%;土壤中烯肟菌酯平均回收率为100.43%-107.84%,变异系数为2.21%-4.61%.烯肟菌酯在苹果中的消解动态以及最终残留试验显示,烯肟菌酯消解较快,在天津市和合肥市两地苹果中降解的半衰期分别为7.74d和2.91d,土壤中降解的半衰期分别为8.85d和11.09d.在苹果树上按推荐剂量的2倍使用18%氟环唑·烯肟菌酯悬浮剂施药3次,距最后一次施药21d,烯肟菌酯在苹果和土壤中的残留量分别为0.0247mg·kg-1-0.0843mg·kg-1和0.1013mg·kg-1-0.1480mg·kg-1,苹果收获时烯肟菌酯的消解率在90%以上.  相似文献   

3.
啶虫脒和仲丁威在水稻、土壤及田水中的残留消解动态   总被引:3,自引:0,他引:3  
在天津、浙江和山东三地开展了两年田间试验研究,建立了一种同时测定水稻、土壤及田水中啶虫脒和仲丁威残留量的分析方法.结果表明,在0.005—0.5 mg.kg-1添加水平范围内,啶虫脒在水稻、土壤和田水中的添加平均回收率为74.21%—106.5%,变异系数为5.6%—14.2%;仲丁威在水稻、土壤和田水中的添加平均回收率为81.12%—108.6%,变异系数为2.31%—10.9%.啶虫脒和仲丁威的最小检出量分别为3.8×10-11g和2.3×10-11g;在稻米、稻壳、植株和土壤中的最低检出浓度为0.01 mg.kg-1,在田水中的最低检出浓度为0.005 mg.kg-1.田间试验结果表明,啶虫脒和仲丁威在水稻植株、土壤和田水中的残留消解动态规律均符合一级动力学反应模型,啶虫脒在水稻植株、土壤和田水中的残留消解半衰期分别为7.0—20.4 d、2.8—7.62d和6.7—15.0 d;仲丁威在水稻植株、土壤和田水中的残留消解半衰期分别为5.7—10.0 d、10.8—15.2 d和2.6—9.5 d.以推荐施药剂量60 g/亩和1.5倍推荐施药剂量90 g/亩,在水稻灌浆期开始第1次施药,最多施药3次,距最后一次施药21 d时,啶虫脒和仲丁威在稻米中的最高残留量分别为0.42 mg.kg-1和0.054 mg.kg-1,低于我国农业行业标准规定的小麦中啶虫脒最大残留限量0.5 mg.kg-1和我国国家标准规定的糙米中仲丁威最大残留限量0.5 mg.kg-1.  相似文献   

4.
新型除草剂硝磺草酮在玉米和土壤中的残留及降解行为   总被引:4,自引:0,他引:4  
孙约兵  徐应明  孙扬  秦旭  王倩  高阳 《环境化学》2013,32(1):144-149
利用高效液相色谱及田间试验方法,建立了硝磺草酮在土壤、玉米和植株中残留分析方法,研究了硝磺草酮在土壤和植株中的消解动态规律以及玉米中的最终残留状况.研究结果表明,在0.1—2.0 mg.kg-1质量浓度范围内,硝磺草酮的仪器响应值与质量浓度呈良好的线性关系,相关系数达到0.999以上.通过外标法定量(0.01—0.5 mg.kg-1),硝磺草酮在土壤、玉米和植株中的添加回收率分别达到75.10%—97.74%、80.08%—107.43%、86.49%—103.38%,其变异系数分别为4.01%—10.42%、3.44%—9.05%和3.06%—6.97%,在土壤、玉米和植株中硝磺草酮最低检出浓度均为0.001 mg.kg-1,该方法的灵敏度和回收率均可满足农药残留分析要求.在天津和南京开展的两年两地田间试验结果表明,硝磺草酮在土壤和植株中的残留消解动态规律符合一级动力学反应模型,硝磺草酮在土壤和植株中的残留消解半衰期分别为3.51—3.83 d和2.97—3.07 d.按推荐剂量和1.5倍推荐剂量在玉米上喷施10%硝磺草酮1次,在收获前20 d和收获时采集玉米样品,硝磺草酮最终残留量均低于方法最低检出浓度0.001 mg.kg-1.  相似文献   

5.
代森锰锌及其代谢产物在荔枝与土壤中的残留动态   总被引:1,自引:0,他引:1  
采用田间试验方法,研究了代森锰锌及其代谢物乙撑硫脲(ETU)在荔枝及土壤中的残留动态。结果表明,质量分数为80%的代森锰锌可湿粉剂在荔枝树上喷施后,主要残留在荔枝果皮中,且消解速度较快,其中母体消解半衰期为4. 02~5. 14d; ETU消解半衰期为2. 52~3. 24d;代森锰锌及ETU在土壤中消解较快,半衰期分别为5. 63~9. 88d和4. 95~14. 2d。施药1 600mg·L-1,使用4次,末次施药距收获间隔10、20和30d,荔枝果肉中代森锰锌残留量均小于1mg·kg-1,代谢产物ETU均小于0. 02mg·kg-1。该药为易消解农药(t1 /2 <30d),按推荐剂量使用是安全的。  相似文献   

6.
建立了土壤和小麦种子、茎杆中苯达嗪丙酯的残留分析方法.研究了高剂量施药条件下土壤中的消解动态,并测定了土壤、小麦种子和茎杆中的最终残留.苯达嗪丙酯的最低检出限为10ng,在土壤和小麦中的最低检出浓度为0.05mg·kg-1.方法的平均添加回收率为88.7%—103.3%,变异系数为4.3%—16.4%.苯达嗪丙酯的消解动态试验表明:高剂量施药条件下苯达嗪丙酯在土壤中的半衰期分别为2.5d(北京)和3.1d(石家庄);当按推荐剂量施药时,小麦收获前10d,在土壤、小麦种子和茎杆中,北京和石家庄两地均未检出苯达嗪丙酯.  相似文献   

7.
虱螨脲在棉花和土壤中的残留动态   总被引:3,自引:1,他引:2  
在长沙和郑州2地进行田间试验,采用液相色谱技术研究虱螨脲在棉籽、棉叶及土壤中的残留动态.结果表明:虱螨脲在棉叶、棉籽和土壤中的添加回收率分别为86.0%~94.7%、88.5%~92.1%和83.9%~97.7%;最低检出浓度分别为0.025、0.025和0.006 mg·kg-1.虱螨脲在棉叶和土壤中的半衰期分别是3.06~3.45和2.51~2.88 d.在推荐使用剂量和高剂量条件下,收获的棉籽中虱螨脲最终残留量均未检出,拟推荐我国棉籽中虱螨脲的MRL(最高残留限量)值为0.05 mg·kg-1.  相似文献   

8.
HPLC法检测灭蝇胺在黄瓜和土壤中的残留   总被引:11,自引:0,他引:11  
建立了高效液相色谱测定灭蝇胺在黄瓜和土壤中残留的方法,灭蝇胺的最小检出量为4×10-10g.对黄瓜样品,在005—50mg·kg-1时,平均回收率为762—862%;变异系数为04—20%,最低检出浓度为002mg·kg-1.对土壤样品,在02—50mg·kg-1时,平均回收率为854—881%;变异系数为06—14%,最低检出浓度为002mg·kg-1.  相似文献   

9.
噻苯隆在甜瓜和土壤中的残留及消解动态   总被引:4,自引:0,他引:4  
建立了超高效液相色谱-串联质谱分析噻苯隆在甜瓜和土壤中残留的方法.本方法甜瓜中噻苯隆的平均回收率为90.2%—107.3%,变异系数为3.5%—12.9%;土壤中噻苯隆的平均回收率为81.4%—94.0%,变异系数为3.1%—8.8%.采用田间试验研究了噻苯隆在甜瓜和土壤中的残留动态.结果表明,河南和山东,噻苯隆在甜瓜中的消解半衰期为0.7—1.2d,土壤中的消解半衰期为4.1—7.6d.在甜瓜上使用0.1%的噻苯隆可湿性粉剂,按照最高推荐剂量和最高推荐剂量的1.5倍,施药一次,收获期距最后一次施药35d,噻苯隆在甜瓜和土壤中最终残留量均小于0.001mg.kg-1.说明噻苯隆为低残留,易降解农药.  相似文献   

10.
建立了一种固相萃取-反相高效液相色谱检测60%唑醚·代森联水分散粒剂中吡唑醚菌酯在葡萄和土壤中的残留方法.方法的回收率为80.4%-98.4%,变异系数为1.8%-3.8%.最小检出量为2×10-10g,最低检测浓度为0.01 mg·kg-1.消解动态研究表明,吡唑醚菌酯在葡萄和土壤中消解较快,其半衰期分别为3.7-3.8d和8.7-10.2d.最终残留试验表明,60%唑醚·代森联水分散粒剂900mg(a.i.)·kg-1喷雾,4次药后7d,吡唑醚菌酯在葡萄和土壤中的最终残留量分别为0.1585-0.1886mg·kg-1和0.6935-0.7245 mg·kg-1,低于CAC规定吡唑醚菌酯在葡萄中的最高允许残留量(MRL值)2.0 mg·k-1.  相似文献   

11.
茚虫威对映体在土壤中的选择性降解   总被引:1,自引:0,他引:1  
研究了茚虫威在4种不同类型的农田土壤中的降解动态和选择性降解行为.结果表明,添加水平在0.1—5.0 mg.kg-1的条件下,茚虫威对映体在土壤中添加回收率在(78.56±3.16)%—(108.16±5.32)%之间,最低检测限为0.01 mg.kg-1,定量限为0.05 mg.kg-1.茚虫威在土壤中的消解符合一级动力学规律,消解过程受土壤pH值、有机质含量等因素的影响.茚虫威对映体在1#—4#土壤中的降解速率存在明显的差异性,E1的半衰期分别为15.33 d、19.09 d、10.61 d、11.40 d,E2的半衰期分别为15.44 d、15.61 d、8.58 d、11.13 d,降解快慢顺序为:3#>4#>1#>2#,表明茚虫威在偏碱性的土壤中的降解速率要快于在酸性土壤中,且对映体的半衰期差异在有机质含量较高的土壤中表现得更加明显;对映体分数EF值(enantiomer fraction)表明茚虫威对映体在4种供试土壤中除了1#土壤外均存在明显的立体选择性降解.  相似文献   

12.
氯虫苯甲酰胺在甘蓝和土壤中的残留及消解动态   总被引:5,自引:0,他引:5  
参照《农药残留试验准则》,采用田间试验方法,研究了济南和杭州两年两地的氯虫苯甲酰胺在甘蓝和土壤中的消解动态和最终残留。结果表明,氯虫苯甲酰胺最终残留在甘蓝、土壤中的质量分数分别是〈0.297 mg.kg-1,〈0.097 mg.kg-1;在甘蓝、土壤中的降解均符合一级动力学方程,降解半衰期分别为7.2~8.9 d和6.9~10.7 d;统计分析表明,两地区甘蓝中的残留消解行为无显著性差异,土壤中的残留消解行为差异性显著,土壤性质的不同是影响消解过程的主要因素。文章为制定该农药在甘蓝上最大残留限量标准和合理使用准则以及风险评估提供了科学依据。  相似文献   

13.
高效氯氟氰菊酯在玉米和土壤中的残留及消解动态   总被引:2,自引:0,他引:2  
研究了济南和哈尔滨两年两地的玉米Zea maysL.经高效氯氟氰菊酯种子处理微囊悬浮剂拌种后,高效氯氟氰菊酯在玉米植株、籽粒和土壤中的最终残留量,以及在玉米植株和土壤中的降解动力学规律。结果表明,高效氯氟氰菊酯最终残留在植株、籽粒和土壤中的质量分数分别是〈0.005mg·kg-1、〈0.001mg·kg-1和≤0.053mg·kg-1;在土壤中的降解符合一级动力学方程,降解半衰期19.6~28.1d,消解速率哈尔滨慢于济南,这可能与土壤含水量和气温等有关。本研究为制定该农药在玉米上最大残留限量标准和合理使用准则以及风险评估提供了科学依据。  相似文献   

14.
多效唑在番茄和土壤中的残留与降解动态研究   总被引:2,自引:0,他引:2  
研究了多效唑(paclobutrazol)在番茄(Lycopersicon eseulentum)和土壤中的残留分析方法及残留动态。建立番茄和土壤样品中多效唑残留的固相萃取-高效液相色谱(SPE-HPLC)检测方法,样品用乙腈提取,再用φ(甲醇-二氯甲烷)=5∶95混合溶剂经LC-NH2固相萃取柱净化,以φ(乙腈-水)=55∶45作流动相,Shiseido C18色谱柱(4.6 mm×250 mm,5μm)于222 nm波长检测,外标法定量。在0.1~5.0 mg·L-1范围内,多效唑峰面积与其质量浓度之间呈良好线性关系,相关系数为0.9995。采用田间试验方法,在番茄幼苗期施用不同多效唑质量分数50、100、200、600 mg·kg-1,研究在不同处理时间1、6 h,1、2、3、7、14、21、30、45、60 d,多效唑在番茄以及土壤中的残留动态变化。添加质量分数水平为0.05、0.1、0.5 mg·kg-1时,多效唑在果实、植株和土壤中的添加回收率分别为92.45%~103.70%、94.52%~98.85%和94.30%~102.10%,变异系数分别为3.69%~5.00%、1.58%~4.53%和1.28%~3.35%。结果表明:多效唑在番茄植株和土壤中的降解规律均符合一级动力学方程C=Coe-kt。当施用质量分数为600 mg·kg-1时,其在番茄植株中的残留半衰期为1.66 d,在土壤中的半衰期为2.78 d;在植株中的降解速率大于在土壤中的降解速率。按照推荐使用的施用浓度,采收时多效唑在番茄和土壤中无残留,证明推荐施用浓度是合理的。  相似文献   

15.
老化是影响土壤重金属生物可利用性和毒性的重要因素。为了解老化对土壤Sb形态和毒性的影响,结合化学分析和生物测试,以模式生物跳虫(Folsomia candida)为受试生物,研究了北京潮土中外源Sb(Ⅲ)分别老化7 d、60 d后价态、水溶态和急性/慢性毒性的变化。结果表明,老化仅7 d后,土壤较低浓度的Sb主要以Sb(Ⅴ)存在,而浓度较高(1 600、2 400、4 800 mg·kg-1)时Sb(Ⅴ)分别仅占47.4%、27.5%和2.2%,但老化长达60 d后,浓度最高(4 800 mg·kg-1)的土壤中Sb(Ⅴ)的比重上升到38.1%,其他浓度处理的土壤中,均以Sb(Ⅴ)为主。随着老化时间的延长,土壤中水溶态Sb含量占总Sb的比例显著降低。与土壤老化过程中毒性较大的Sb(Ⅲ)向毒性较小的Sb(Ⅴ)转化与水溶态Sb含量下降相一致,Sb对跳虫的毒性随老化时间的延长明显减弱:7 d老化后土壤Sb对跳虫急性存活的半数致死浓度(LC50)为2 105 mg·kg-1,对跳虫慢性存活的LC50为683 mg·kg-1,对跳虫繁殖的半数效应浓度(EC50)为307 mg·kg-1;老化60 d后土壤Sb对跳虫急性存活、慢性存活的LC50均大于设置的最高浓度,对跳虫繁殖的EC50为1 419 mg·kg-1。因此,对于Sb这种变价金属而言,当进行土壤Sb生态毒性评价时,为避免高估其生态风险,考虑老化作用显得尤为重要。  相似文献   

16.
刘爱菊  方殿梅  王超  李梦红 《生态环境》2014,(12):1986-1990
随着养殖业的规模化发展,Cu、Zn等重金属元素作为饲料添加剂被广泛应用于畜禽养殖,并随着畜禽粪便的大量、广泛农用,Cu、Zn等低生物毒性的重金属元素在土壤中的逐渐累积以及污染问题日趋严重,这对土壤生态系统的稳定造成了严重的威胁。为探讨Cu胁迫下土壤生态功能的动态变化,文章采用室内模拟培养法,测定了红壤、黄土等8种典型土壤的潜在硝化势对Cu污染胁迫的时间效应;并利用统计分析手段研究了影响Cu胁迫下土壤的硝化功能恢复的主要因素。研究结果表明,在试验处理剂量下,Cu污染处理一周,各土壤潜在硝化势均受到完全抑制,即抑制率在80%以上;随着污染胁迫时间的延长,各土壤的硝化功能均有不同程度的恢复,且在540 d后,500 mg·kg-1 Cu处理土壤(除pH较低的红壤和黑土外)潜在硝化势的恢复率均达到其初始值的80%,即土壤硝化功能基本完全恢复;1000 mg·kg-1 Cu处理土壤(除褐土、棕壤和黄土3中土壤外)潜在硝化势的恢复率均显著低于80%。这表明Cu污染程度的增加可延迟土壤硝化功能的恢复。多元逐步回归分析表明,Cu 污染胁迫下土壤硝化功能的恢复与其初始硝化功能以及其对 Cu 耐受能力显著相关。由此可知,长期Cu污染胁迫下,土壤的硝化功能的恢复主要取决于土壤初始的硝化活性及其对Cu的耐受能力。  相似文献   

17.
采用分散固相萃取(QuEChERS)样品前处理方法,建立了超高效液相色谱-串联质谱(UPLC-MS/MS)快速检测大豆和土壤中氟磺胺草醚的残留分析方法.大豆和土壤样品采用乙腈(含0.5%甲酸)提取,N-丙基乙二胺(PSA)或石墨化碳黑(GCB)净化,UPLC-MS/MS外标法检测定量.在0.005—0.5 mg.kg-1添加范围内,氟磺胺草醚在土壤、大豆和大豆植株中的平均回收率在79.4%—109.0%之间,变异系数在3.6%—10.1%之间.在山东、河南、吉林进行了氟磺胺草醚在大豆植株和土壤中的降解动态研究,结果表明,试验点中氟磺胺草醚在土壤中的降解半衰期为8.5—23.7 d;在大豆植株中的降解半衰期为2.7—9.8 d.  相似文献   

18.
城市污泥的重金属含量超标是限制其资源化利用的主要瓶颈,论文采用石灰+硫粉+生物淋滤的方法去除重金属,制备改性污泥,探讨其对矿区Cu、Cd污染农田土壤的修复效果,以期实现以废治污的目标。供试水稻土采自江西某矿区附近农田,土壤Cu和Cd的TCLP(Toxicity characteristic leaching procedure)浸出量分别为40.34 mg·kg-1和660.1μg·kg-1,其中Cu的质量分数超过国际标准值15 mg·kg-1。通过室内土培的方法,将改性污泥分别按土重的0%、1%、3%、5%和10%施入供试土壤培养30 d后,分析土壤Cu和Cd的活性、形态变化以及土壤蛋白酶和脲酶活性等指标评价改性污泥对污染土壤的修复效果及作用机理。结果表明,改性污泥对土壤Cu产生显著的钝化作用,且各施用量对Cu的有效态含量表现出显著差异。当改性污泥的用量为土重的5%时,Cu的有效态含量降至12.03 mg·kg-1,低于国际标准。改性污泥对土壤Cd的钝化效果相对较弱。当改性污泥的用量为1%时,土壤Cd的活性反而有所增加。当改性污泥的用量为5%时,Cd的活性显著降低,土壤Cd的浸出量降至539.6μg·kg-1。土壤重金属形态分析的结果表明,土壤Cu主要以碳酸盐结合态、有机结合态和残渣态存在。改性污泥用量增加,可交换态Cu含量下降,当改良剂用量为土重的5%时,可交换态Cu由8.10%降至4.10%。相反,有机结合态Cu含量由26.45%增加至32.34%。土壤的可交换态Cd含量由36.80%降至30.69%。说明施用改性污泥,土壤可交换态Cu、Cd向有机结合态发生转化。土壤蛋白酶和脲酶的活性变化能较好地指示修复效果,且土壤脲酶的指示效果优于蛋白酶。  相似文献   

19.
为评价二氯喹啉酸在水稻及其土壤中的安全性,建立其在水稻上的使用规范,于2008、2009年在杭州、济南和铁力三地进行田间试验,研究了二氯喹啉酸在水稻、土壤和田水中消解动态及最终残留量。建立了二氯喹啉酸在水稻、土壤和田水中残留量的超高效液相色谱串联质谱测定方法。在添加水平5~100μg.kg-1范围内,二氯喹啉酸的平均回收率在81.6%~105.7%之间,相对标准偏差均低于17.9%。残留试验结果表明,二氯喹啉酸在植株、土壤和田水中消解均符合一级动力学方程,消解半衰期分别为16.4~18.6、16.6~21.9和15.4~16.9 d;二氯喹啉酸在植株、土壤、糙米和稻壳中最终残留量均未检出(〈5μg.kg-1)。若二氯喹啉酸在水稻中的最高残留限量推荐值为0.5 mg.kg-1,建议每年以有效成分25 g.mu-1的剂量,于水稻移栽后10 d喷施1次,用于防治水稻田中稗草。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号