首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Chemosphere》2008,70(11):1815-1820
This work was conducted to investigate the possibility of using stillage from ethanol distilleries as substrate for sulfate reducing bacteria (SRB) growth and to evaluate the removal efficiency of heavy metals present in wastewaters containing sulfates. The experiments were carried out in a continuous bench-scale Upflow Anaerobic Sludge Blanket reactor (13 l) operated with a hydraulic retention time of 18 h. The bioreactor was inoculated with 7 l of anaerobic sludge. Afterwards, an enrichment procedure to increase SRB numbers was started. After this, cadmium and zinc were added to the synthetic wastewater, and their removal as metal sulfide was evaluated. The synthetic wastewater used represented the drainage from a dam of a metallurgical industry to which a carbon source (stillage) was added. The results showed that high percentages of removal (>99%) of Cd and Zn were attained in the bioreactor, and that the removal as sulfide precipitates was not the only form of metal removal occurring in the bioreactor environment.  相似文献   

2.
Zhao Y  Ren N  Wang A 《Chemosphere》2008,72(2):233-242
The roles of fermentative acidogenic bacteria and sulfate-reducing bacteria (SRB) in lactate degradation and sulfate reduction in a sulfidogenic bioreactor were investigated by traditional chemical monitoring and culture-independent methods. A continuously stirred tank reactor fed with synthetic wastewater containing lactate and SO(2-)(4) at 35 degrees C, 10h of hydraulic retention time was used. The results showed that sulfate removal efficiency reached 99%, and sulfide and acetate were the main end products after 20 d of operation. 16S rRNA gene based clone libraries and single-strand conformation polymorphism profiles demonstrated that the proportion of SRB increased from 16% to 95%, and that Desulfobulbus spp., Desulfovibrio spp., Pseudomonas spp. and Clostridium spp. formed a stable, dominant community structure. The decreasing COD/SO(2-)(4) ratio had little effect on the community pattern except that Pseudomonas spp. and Desulfobulbus spp. increased slightly. The addition of molybdate to the influent significantly changed the microbial community, sulfate removal efficiency and the pattern of end products. Clostridium spp., Bacteroides spp. and Ruminococcus spp. became the dominant community members. The main end products switched from acetate to ethanol and then to propionate with the oxidation-reduction potentials increasing from -420 to -290 mV. A lactate degradation pathway was deduced: lactate served as the electronic donor for Desulfovibrio spp., or was fermented by Clostridium spp. and Bacteroides spp. to produce propionate or ethanol, which were subsequently utilized by Desulfobulbus spp. and Desulfovibrio spp. The acidotrophic SRB oxidized part of the acetate finally.  相似文献   

3.
Removal of insoluble heavy metal sulfides from water   总被引:1,自引:0,他引:1  
Banfalvi G 《Chemosphere》2006,63(7):1231-1234
The necessity of heavy metal removal from wastewater has led to increasing interest in absorbents. We have developed a new approach to obtain high metal adsorption capacity by precipitating metal sulfides with sodium sulfide on the surface of bentonite and adhere them to the absorbent. This method allowed to remove approximately 90% of cadmium as CdS from 10(-4)-10(-6) M CdCl2 solutions. Additional reactions are related to the removal of excess sodium sulfide by the release of hydrogen sulfide and oxidation to sulfur using carbogen gas (5% CO2, 95% O2) followed by aeration.  相似文献   

4.
Chong AM  Wong YS  Tam NF 《Chemosphere》2000,41(1-2):251-257
A series of batch experiments was conducted to compare the ability of 11 microalgal species of the same cell density in removing nickel (Ni) and zinc (Zn) from synthetic wastewater. These included Chlorella vulgaris (commercially available), Chlorella sorokiniana and Scenedesmus quadricauda (isolates from polluted water of Wuhan, China), and eight different isolates from Hong Kong. The Wuhan isolate of Scenedesmus removed most Ni, probably due to its large biomass. Nickel concentration was reduced from an initial 30 to 0.9 mg/l after 5 min (97% Ni removal), and further declined to 0.4 mg/l after 90 min of treatment. In wastewater containing 30 mg/l Ni and 30 mg/l Zn, more than 98%, Ni and Zn were removed simultaneously at the end of 5 min treatment, indicating that the presence of Zn in wastewater did not affect Ni removal by this Scenedesmus isolate. The second most effective species for Ni removal was an isolate, tentatively identified as Chlorella miniata, Ni concentration was reduced to 10 mg/l after 90 min, and was only slightly interfered by the presence of Zn. In terms of metal removal per unit biomass or unit surface area of algal cells, C. miniata was the best species in removing Ni and Zn. At the other extreme, one Hong Kong isolate (Synechocystis sp.) did not remove any Ni and only achieved 40% Zn removal. Performance of the other isolates was comparable with the commercial C. vulgaris, less than 50% Ni was removed after 5 h of treatment and Ni removal was significantly reduced by the presence of Zn. All algae tested were found to be viable, showing these 11 species could tolerate a mixture of 30 mg/l Ni and 30 mg/l Zn in wastewater.  相似文献   

5.
Chang IS  Kim BH 《Chemosphere》2007,68(2):218-226
Electroplating wastewater (EW) containing heavy metals was treated by a two-stage packed-bed reactor system. The EW was highly contaminated with hexavalent chromium and other heavy metals as well as sulfate because sulfuric acid had been mainly used to polish the surface of metals to be electroplated. This acidic EW was effectively neutralized in an alkaline reactor where limestone had been packed. The neutralized wastewater together with organic wastewater from a starch-processing factory (SPW) was fed to a bioreactor packed with waste biomass. The SPW was used to supplement the electron donor in the sulfidogenic bioreactor. During the whole operation, we investigated the stoichiometry of electron to see what could be a major factor to remove Cr in the wastewater. The removal rates of sulfate and Cr(VI) were dependent on the consumption rate of organic materials in the wastewater. The stoichiometric studies also showed that about 63% of electrons from oxidation of organic materials were used to reduce sulfate. When the electrons of sulfide oxidation to elemental sulfur was at least 1.3 times higher than that of Cr(VI) reduction to Cr(III), Cr(VI) was completely removed. This result suggests that Cr(VI) reduction can be expected to take place under sulfate-rich anaerobic conditions, and sulfide produced by sulfate reducing bacteria could be used to immobilize soluble chromium through Cr(VI) reduction.  相似文献   

6.
培养方式对废水脱氮与沼气脱硫污泥驯化影响   总被引:1,自引:0,他引:1  
实验研究了底物、接种污泥和微生物生长方式对猪场废水脱氮和沼气脱硫耦联污泥驯化及活性恢复的影响,以解决快速富集培养废水脱氮与沼气脱硫微生物的问题。研究发现,就脱氮脱硫均达到60%的时间而言,接种厌氧污泥反应器为9 d,比接种好氧污泥反应器(18 d)和不接种污泥加填料反应器(21 d)更短。以含氮含硫废水为底物驯化时,接种厌氧污泥更有利于脱氮脱硫污泥的驯化;而同为接种好氧污泥时,以含氮含硫废水为底物的驯化方式更有利于脱氮脱硫污泥的驯化。污泥活性恢复实验中,以含氮废水+沼气(H2S)为底物培养驯化的污泥,硫转化活性恢复所用的时间为15 d,比含氮含硫废水为底物驯化污泥的活性恢复时间更长。  相似文献   

7.
采用氢氧化钙、碳酸钠和硫化钠处理含锌废水,在溶液pH、锌离子浓度、颗粒粒径、颗粒Zeta电位、上清液浊度和污泥体积等指标测定的基础上,结合沉淀产物表征,探讨了沉淀剂用量对锌离子去除率的影响及沉淀机理。研究结果表明,n(Ca(OH)2∶n(Zn)=1.5,去除率达到最大值99.65%,n(Na2CO3)∶n(Zn)=1.5,去除率达到最大值99.89%,n(Na2S)∶n(Zn)=2.5,去除率达到最大值99.95%。X-射线衍射和热重分析表明,氢氧化钙与废水生成的沉淀物为碳酸钙和氧化锌,碳酸钠与废水生成的沉淀物为氧化锌和碱式碳酸锌,硫化钠与废水生成的沉淀物为硫化锌,这对污泥处理处置以及回收利用有指导意义。  相似文献   

8.
Chowdhury N  Nakhla G  Zhu J 《Chemosphere》2008,71(5):807-815
A novel liquid-solid circulating fluidized bed bioreactor (LSCFB) configured with anoxic and aerobic columns and lava rock as the biofilm carrier was used to treat synthetic municipal wastewater. Four different empty bed contact times (EBCTs) of 0.82, 0.65, 0.55, and 0.44 h were examined to optimize nutrient removal capability of the system. The LSCFB demonstrated tertiary effluent quality organic and nitrogen removal efficiencies. Effluent characteristics of the LSCFB were soluble biological oxygen demand (SBOD)10 mg l(-1) and total nitrogen (TN)<10 mg l(-1) at organic loading rate (OLR) of 5.3 kg m(-3)d(-1) and nitrogen loading rate of 0.54 kg Nm(-3)d(-1). Remarkably low yields of 0.14, 0.17, 0.19, and 0.21 g VSS g(-1)COD were observed at OLR of 2.6, 3.2, 4.1 and 5.3 kg COD m(-3)d(-1), where increment of biomass growth and detachment rate were also experienced with increasing OLR. However the system demonstrated only 30% phosphorus removal, and mass balances along the anoxic and aerobic columns showed biological phosphorus removal in the system. Organic mass balance showed that approximately 40% of the influent COD was utilized in the anoxic column and the remaining COD was oxidized in the aerobic column. The system is very efficient in nitrification-denitrification, with more than 90% nitrification of ammonium and overall nitrogen removal in the LSCFB was 70+/-11% even at an EBCT of 0.44 h.  相似文献   

9.
Seven metals (Cd, Co, Cr, Cu, Fe, Ni and Pb) were monitored at the Seine-Aval wastewater treatment plant during 6 sampling campaigns in April 2004. Particulate and dissolved metals have been measured in 24 h composite samples at each treatment stage (primary settling, secondary activated sludge and tertiary flocculation by FeCl3). In addition, the diffusive gradient in thin film technique (DGT) was used to determine the dissolved inert and labile metal fraction. Although all treatment stages were able to decrease particulate metals concentrations in wastewater, most dissolved metals concentrations were mainly affected during primary settling. This unexpected result was attributed to tertiary sludge filtrate recirculation. Metals added via the FeCl3 reagent at the tertiary treatment were shown to lower the overall Cr removal from wastewater and to enrich Ni in effluents. The plant operating conditions (recirculation and reagent addition) appear therefore as important as treatment processes for the metals removal. Total metal fluxes were highly decreased by the whole treatment plant for Cd, Cr, Cu and Pb and to a lesser extend for Co and Ni. However, the labile metal fluxes were poorly decreased for Cu (18%), not significantly decreased for Ni and increased for Fe. The labile fraction of Cd, Co and Cr was not detectable at any stage of the plant. Discharged labile fluxes, at least for Ni, were potentially significant compared to the labile metal fluxes in the river measured downstream the plant. Treated urban wastewater discharges should be carefully considered as a possible source of bioavailable trace metals.  相似文献   

10.
Membrane associated alpha-glucosidase activity was investigated in a methanogenic bioreactor (MR) and a biosulfidogenic bioreactor (SR). Temperature and pH optima studies showed temperature optima of 50 degrees C and pH optima of 8.0 for the alpha-glucosidases from both the MR and SR. Sulfide (at a concentration of 150 mg l(-1)) resulted in the complete loss of all alpha-glucosidase activity in both the MR and SR. beta-Glucosidase activities in our bioreactors were previously shown to be stimulated in the presence of sulfide. alpha-Glucosidases, in contrast, are inhibited by sulfide. This differential effect of sulfide on alpha-glucosidase and beta-glucosidase activities is highlighted and is of crucial consequence to the respective degradation and utilization of starch and cellulose substrates in natural anaerobic environments and anaerobic bioreactors specifically designed for the accelerated digestion of wastewater sludge under biosulfidogenic conditions.  相似文献   

11.
Hydrogen sulfide (H2S) is one of the most toxic and offensively odorous gases and is generated in anaerobic bioreactors. A middle-thermophilic sulfur-oxidizing bacterium (SOB), Thiomonas sp. strain RAN5, was isolated and applied for H2S removal from both artificial and anaerobically digested gas. When a bioreactor containing medium inoculated with RAN5 was aerated continuously with artificial gas (containing 100 ppm H2S) at 45 degrees C for 156 hr, the H2S concentration in the vented gas was reduced by 99%. This was not affected by the presence of other microbes in the bioreactor The H2S removal efficiency of the RAN5 bioreactor for anaerobically digested gas was greater than 99% at influent H2S concentrations ranging from 2 to 1800 ppm; the efficiency decreased to 90% at influent H2S concentrations greater than 2000 ppm. Thiomonas sp. strain RAN5 cannot survive at room temperature, and thus its leakage from a wastewater treatment plant would not damage sewage systems. These data suggest that Thiomonas sp. strain RAN5 may be a useful microorganism for H2S removal.  相似文献   

12.
Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.  相似文献   

13.
Biodegradation of nonylphenol in sewage sludge   总被引:18,自引:0,他引:18  
Chang BV  Chiang F  Yuan SY 《Chemosphere》2005,60(11):1652-1659
We investigated the effects of various factors on the aerobic degradation of nonylphenol (NP) in sewage sludge. NP (5 mg/kg) degradation rate constants (k1) calculated were 0.148 and 0.224 day−1 for the batch experiment and the bioreactor experiment, respectively, and half-lives (t1/2) were 4.7 and 3.1 days, respectively. The optimal pH value for NP degradation in sludge was 7.0 and the degradation rate was enhanced when the temperature was increased and when yeast extract (5 mg/l) and surfactants such as brij 30 or brij 35 (55 or 91 μM) were added. The addition of aluminum sulfate (200 mg/l) and hydrogen peroxide (1 mg/l) inhibited NP degradation within 28 days of incubation. Of the microorganism strains isolated from the sludge samples, we found that strain CT7 (identified as Bacillus sphaericus) manifested the best degrading ability.  相似文献   

14.
实验模拟生活污水,考察了连续式膜生物反应器(continuous membrane bioreactor,CMBR)和序批式膜生物反器(sequencing batch membrane bioreactor,SMBR)的膜污染和污染物去除效果.结果表明CMBR和SMBR出水COD的平均浓度分别为15.42 mg/L和...  相似文献   

15.
生物转盘是一种有效的生物膜法污水处理技术。对传统生物转盘进行改良,制成填料式生物转笼反应器,在转笼中投加多面空心球作为生物载体,研究该反应器对生活污水的处理效果。结果表明:转笼转速为9~12 r/min,在HRT从10 h逐级降至4.5 h的过程中,当进水COD、NH3-N和TN浓度分别为215.9~241.0 mg/L、22.1~24.0 mg/L和30.3~33.9 mg/L时,去除率分别在85.0%~90.2%,80.0%~98.3%及21.3%~34.2%之间。实验验证了该反应器用于生活污水处理的可行性,为农村小规模生活污水的有效处理提供了适用技术。  相似文献   

16.
This study monitors the long term performance of membrane bioreactor (MBR) for the treatment of synthetic municipal wastewater at solid retention time (SRT) of 40 and 20d with particular emphasis on simultaneous nitrification-denitrification (SND). SND was greatly influenced by the operating dissolved oxygen (DO). It was found that at an SRT of 20d, nitrogen removal through assimilation into biomass increases as a result of higher biomass yield. The profile of soluble microbial products (SMP) conformed to a cyclical pattern in the MBR with respect to SRT. Decrease in SRT from 40 to 20d resulted in doubling of accumulated SMP concentration (to 56mgl(-1)) in the MBR. This however, was accompanied by a simultaneous drop in percentage of SMP with MW>100kD, from 42.4% to 33%. Also, the sludge filterability decreased by 24-folds despite a decrease in the biomass concentration, following the above reduction in SRT. It was found that the volumetric oxygen transfer coefficient (K(l)a) was a function of biomass concentration in MBR with the ratio of the oxygen transfer coefficient in mixed liquor to that of clean water (alpha) to be 0.2-0.5.  相似文献   

17.
Biological production of hydrogen sulfide (H(2)S) using sulfate-reducing bacteria (SRB) has important potential within environmental biotechnology. The aim of this work was to study the possibility of using SRB for the treatment of an acid mine drainage (AMD) at bench-scale. This process involved three stages: the optimization of H(2)S production through the utilization of total volatile fatty acids (TVFAs) by SRB, the establishment of a biofilm reactor for sulfide production, and the precipitation of metals by using the biologically produced H(2)S. The substrates used for TVFAs production consisted of papaya, apple and banana. The H(2)S produced from the degradation of TVFAs was utilized for the precipitation of a metal-contaminated effluent collected from Bolivar mine (Oruro, Bolivia). The maximum concentration of H(2)S obtained was approximately 16mM. Removal efficiencies of ca. 100% for copper, above 94% for zinc, and above 92% for lead were achieved.  相似文献   

18.

Purpose

Chitosan with nylon 6 membranes was evaluated as adsorbents to remove copper and cadmium ions from synthetic industrial wastewater.

Methods

Chitosan and nylon 6 with glutaraldehyde blend ratio with (1:1+Glu, 1:2+Glu, and 2:1+Glu) have been prepared and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. Characterization of the synthesized membrane has been done with FTIR, XRD, TGA/DTA, DSC, and SEM. Chemical parameters for quantities of adsorption of heavy metal contamination have been done and the kinetics of adsorption has also been carried out.

Results

The optimal pH for the removal of Cd(II) and Cu(II) using chitosan with nylon 6. Maximum removal of the metals was observed at pH 5 for both the metals. The effect of adsorbent dose also has a pronounced effect on the percentage of removal of the metals. Maximum removal of both the metals was observed at 5 g/100 ml of the adsorbent.

Conclusion

Copper and cadmium recovery is parallel at all time. The percentage of removal of copper increased with increase in the pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu2+ ions on chitosan increased rapidly with increasing contact time from 0 to 360 min and then reaches equilibrium after 360 min; the equilibrium constant for copper and cadmium ions is more or less the same for the adsorption reaction.  相似文献   

19.

Introduction  

This paper deals with the removal of two natural estrogens, estrone (E1) and 17β-estradiol (E2) and a synthetic one 17α ethinylestradiol (EE2) from wastewater in a laboratory-scale membrane bioreactor (MBR).  相似文献   

20.
Acid mine drainage (AMD), which contains high concentrations of sulphate and dissolved metals, is a serious environmental problem. It can be treated in situ by sulphate reducing bacteria (SRB), but effectiveness of the treatment process depends on the organic substrate chosen to supply the bacteria's carbon source. Six natural organic materials were characterized in order to investigate how well these promote sulphate reduction and metal precipitation by SRB. Maple wood chips, sphagnum peat moss, leaf compost, conifer compost, poultry manure and conifer sawdust were investigated in terms of their carbon (TOC, TIC, DOC) and nitrogen (TKN) content, as well as their easily available substances content (EAS). Single substrates, ethanol, a mixture of leaf compost (30% w/w), poultry manure (18% w/w), and maple wood chips (2% w/w), and the same mixture spiked with formaldehyde were then tested in a 70-day batch experiment to evaluate their performance in sulphate reduction and metal removal from synthetic AMD. Metal removal efficiency in batch reactors was as high as 100% for Fe, 99% for Mn, 99% for Cd, 99% for Ni, and 94% for Zn depending on reactive mixtures. Early metal removal (0-12d) was attributed to the precipitation of (oxy)hydroxides and carbonate minerals. The lowest metal and sulphate removal efficiency was found in the reactor containing poultry manure as the single carbon source despite its high DOC and EAS content. The mixture of organic materials was most effective in promoting sulphate reduction, followed by ethanol and maple wood chips, and single natural organic substrates generally showed low reactivity. Formaldehyde (0.015% (w/v)) provided only temporary bacterial inhibition. Although characterization of substrates on an individual basis provided insight on their chemical make-up, it did not give a clear indication of their ability to promote sulphate reduction and metal removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号