首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
使用带能谱的高分辨率场发射扫描电镜(FESEM)和图像分析技术对奎屯—独山子区冬季PM_(2.5)样品进行微观形貌测定,研究其数量—粒度分布、体积—粒度分布特征。结果表明:单颗粒主要包含矿物颗粒、球形颗粒、烟尘集合体和其他颗粒。工厂、电厂、机动车尾气、道路扬尘是奎屯—独山子区域大气污染的主要来源。矿物颗粒对奎屯—独山子区域PM_(2.5)的数量贡献最大。各采样点各种类别颗粒物数量百分含量的不同,反映了污染物来源的不同。冬季各种颗粒主要分布在0.1~0.6μm的粒径范围内。  相似文献   

2.
经过长距离传送的管网自来水,其悬浮颗粒较为复杂。由于散射浊度测定的颗粒粒径非常微小,应是1nm至100nm的胶体溶液(丁达尔效应规范的颗粒物)。然而,管网水质的大悬浮颗粒点有较多比例,显然采用散射浊度测定方式是不合适的,而应以透射光检测为主。本试验采用长光程(500mm)和激光光度传感器进行颗粒浓度(FTU)透射光的灵敏检测。最小可分辨0.01FTU。并研究采用GPRS无线传感网络,完成监测数据的昼夜遥传,实现预警监控城乡区域管网水质的突发污染事故。  相似文献   

3.
利用单颗粒气溶胶质谱仪对张家口市2015年春季的一次典型沙尘过程进行了监测,分析了沙尘过程对当地大气颗粒物成分的影响。结果表明,监测期间的颗粒物类型主要分为8种:矿物质(MD)、左旋葡聚糖(LEV)、元素碳(EC)、有机碳(OC)、混合碳(ECOC)、重金属(HM)、富钾(K)、其他(Other)。对比沙尘天气来临前、中、后3个时段,随着沙尘天气的来临,本地大气颗粒物成分发生较大变化,矿物质、左旋葡聚糖等成分含量升高,而有机碳、重金属等成分含量下降,其中矿物质在PM10峰值时段小时比例高达27.8%;沙尘天气期间,由于矿物质颗粒占比增加,使得总颗粒物的粒径分布向0.9μm以上的粗粒径段偏移;此外,沙尘天气期间的颗粒物各成分与二次组分的混合程度相较非沙尘天气时段的低,说明其老化程度相对较低。  相似文献   

4.
采集了南京市2012年冬季4个功能区的PM2.5、PM10、TSP样品,对不同粒径大气颗粒物中的颗粒态汞测试。结果表明,南京冬季大气颗粒物TSP中汞的质量浓度为49.26 pg/m3~257.14 pg/m3,平均质量浓度为161.27 pg/m3;PM10中汞的质量浓度为44.82 pg/m3~228.29 pg/m3,平均质量浓度为147.38 pg/m3;PM2.5中汞的质量浓度为35.98 pg/m3~178.58 pg/m3,平均质量浓度为104.10 pg/m3。不同功能区大气颗粒态汞质量浓度的分布趋势为:交通综合区>旅游区>住宿综合区>商业区。大气颗粒态汞60%以上存在于可吸入肺的PM2.5中,细颗粒物富集汞的能力比粗颗粒物强。  相似文献   

5.
采用在线单颗粒气溶胶质谱技术源解析方法,对桂林市PM2.5典型排放源的粒径和化学成分进行质谱分析,采集燃煤/燃气源、工业工艺源、扬尘源、油烟源4类共计7个典型排放源。结果表明,桂林市4类排放源细颗粒物的粒径分布为0.25~1.25μm,80%以上的细颗粒分布在0.2~1.0μm的小粒径范围,峰值约0.68μm。细颗粒物离子成分含有Na~+、Mg~+、K~+、NH~+4、Fe~+、Pb~+、Cd~+、V~+、Mn~+、Li~+、Al~+、Ca~+、Cu~+、Zn~+、Cr~+、CN~-、PO_3~-、NO_2~-、NO_3~-、Cl~-、SO_4~(2-)、SiO_3~-等成分,桂林市细颗粒物为元素碳、有机碳元素碳、有机碳、富锰颗粒、富铁颗粒、富钾颗粒、矿物质、左旋葡聚糖以及其他金属等9类。  相似文献   

6.
采用气相色谱-质谱法,于2016年9月和12月对南京市2个典型地区大气中16种多环芳烃(PAHs)的质量浓度进行分析,并开展了PAHs组成特征、来源解析及人体健康风险评价研究。结果表明,工业区(六合区)和生活区(江宁区)大气(气态和可吸入颗粒态)中16种PAHs的质量浓度分别为914.82和712.27 ng/m~3,苯并[a]芘毒性等效浓度分别为274.1和309.84 ng/m~3,且呈现冬季高、秋季低的特征。比值法源解析结果表明,燃煤污染是六合区PAHs污染主要来源,而江宁区主要表现为交通污染。人体健康风险评价结果表明,六合区和江宁区人群通过大气吸入PAHs的超额致癌风险分别为5.17×10~(-5)和5.85×10~(-5),均略高于可接受水平10~(-6)。  相似文献   

7.
乌鲁木齐城市土壤与灰尘粒径空间分布特征   总被引:1,自引:0,他引:1  
结合野外调研的基础,按照四分法采集乌鲁木齐市城市土壤与城市灰尘样品共计306个,利用激光粒度仪和ArcGIS分析了城市土壤与灰尘样品的全粒径(0.02~2 000μm)组成与空间分布特征。研究结果表明:乌鲁木齐城市土壤与灰尘在小粒径范围内空间分布差异不明显,城市土壤粒径主要集中在10~50μm,城市灰尘集中于100~250μm;城市重工业对城市土壤和灰尘小粒径颗粒分布影响更大,而城市商业、居住等为主的人类其他活动行为对大粒径颗粒影响更为显著。乌鲁木齐城市土壤可能对城市灰尘PM_1、PM_(2.5)、PM_(10)粒径分布的贡献比较突出,应从城市土壤、城市灰尘、颗粒物粒径空间分布、气象等因素综合考虑乌鲁木齐市大气污染的防控。  相似文献   

8.
大气气溶胶的吸湿特性改变了颗粒物的粒径、光学性质、云凝结核活性,进而对大气能见度、地面辐射强迫和人体健康产生重要影响。针对长三角腹地城市南京重污染天气频发现象,笔者使用吸湿串联电迁移差分分析仪(H-TDMA)结合在线气体组分及气溶胶监测系统(MARGA)和相关气象数据对冬季南京城区气溶胶吸湿增长特性进行外场观测研究。结果表明:灰霾期间SO_4~(2-)、NO_3~-、NH_4~+的质量浓度分别为(17.57±9.07)(26.16±11.39)(13.61±6.68)μg/m~3,非灰霾期间为(9.62±3.58)(12.12±7.51)(5.78±3.59)μg/m~3,前者是后者的2倍。水溶性组分质量浓度大小依次为NO_3~-SO_4~(2-)NH_4~+Cl~-K~+Ca~(2+)Na~+Mg~(2+)。其中NO_3~-的贡献最大,占PM_(2.5)的29%,其次是SO_4~(2-)占14%,NH_4~+占8%。其他水溶性组分(Cl~-、K~+、Ca~(2+)、Na~+、Mg~(2+))约占PM_(2.5)的5.9%。SO_4~(2-)、NO_3~-、NH_4~+的质量浓度没有明显日变化且保持在较高水平。观测期间气溶胶的不同粒径段粒子吸湿增长因子概率密度分布(GF-PDF)均呈双峰,随粒径增大,强吸湿组粒子的吸湿性增大,而弱吸湿组的吸湿性减弱。其中,40 nm粒径段粒子强、弱吸湿增长因子分别为1.335±0.03和1.054±0.008,80 nm粒径段为1.348±0.03和1.053±0.011,40 nm较80 nm粒径段的粒子弱吸湿峰更为明显。灰霾期间粒子的吸湿增长因子分别为1.307±0.08和1.413±0.07,非灰霾期间为1.230±0.03和1.300±0.03。冷锋过境时气溶胶弱吸湿组谱分布没有明显的变化,强吸湿组谱分布明显向弱吸湿方向偏移,吸湿性减弱。灰霾期间和整个观测期间PM_(2.5)的平均质量浓度分别为(87.56±25.87)(69.31±28.75)μg/m~3,灰霾期间主要的二次气溶胶质量浓度占PM_(2.5)的66%,而粒子的平均吸湿增长因子从1.325±0.03降低到1.301±0.07。特殊时段春节期间弱吸湿组粒子的吸湿性增大,而强吸湿组粒子的吸湿性减弱。其中110 nm粒径段粒子强吸湿组吸湿增长因子明显下降,SO_4~(2-)、NO_3~-、NH_4~+的质量浓度也发生明显下降,吸湿增长因子和水溶性化学组分的变化呈良好一致性。  相似文献   

9.
采用场发射带能谱扫描电镜(FESEM/EDS)法分析北京怀柔地区PM10与秸秆燃烧排放颗粒的形貌特征和成分差异。结果显示:秸秆燃烧后排放颗粒物多为大粒径颗粒,成分上都含S、Cl和K元素。含有生物质燃烧标志元素K的PM10颗粒物多为含Si、Al和Na元素的燃煤飞灰和矿物颗粒,与秸秆燃烧排放颗粒组成化学元素差异明显。据此推断,北京区域PM10受秸秆燃烧排放影响相对较弱,化石燃料燃烧来源影响仍然显著。  相似文献   

10.
为深入了解邢台市PM_(10)、PM_(2.5)浓度变化情况和气流后向轨迹,对邢台市2013—2016年环境大气颗粒污染物监测数据进行了分析,同时利用HYSPLIT模型计算出逐日72 h后向气流轨迹。结果表明:邢台市的PM_(10)和PM_(2.5)质量浓度在2013—2016年间呈逐年下降趋势,PM_(10)和PM_(2.5)质量浓度高值出现在冬季(296μg/m~3和192μg/m~3),最低值出现在夏季(140μg/m~3和80μg/m~3),PM_(10)和PM_(2.5)质量浓度在日变化上均呈"双峰双谷"型分布;后向轨迹的季节聚类分析表明,春季大气颗粒物污染以粒径2.5~10μm的颗粒污染物为主,夏季、秋季和冬季的大气颗粒物污染以PM_(2.5)为主;逐日聚类分析表明,在路径为西北偏西向的、途经多个沙源地的气流影响下,邢台市的PM_(10)和PM_(2.5)质量浓度处于一个相对高值;来源于偏南向的气流由于化合反应,污染物积聚导致PM_(10)、PM_(2.5)质量浓度也处于相对高值;在来源于西北向和偏北向的、水汽含量相对较低的气流影响下,邢台市的PM_(10)、PM_(2.5)质量浓度出现一个明显的下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号