首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Bats produce echolocation signals that reflect the sensory tasks they perform. In open air or over water, bats encounter few or no background echoes (clutter). Echolocation of such bats is the primary cue for prey perception and varies with the stage of approach to prey, typically comprising search, approach, and terminal group calls. In contrast, bats that glean stationary food from rough surfaces emit more uniform calls without a distinct terminal group. They use echolocation primarily for orientation in space and mostly need additional sensory cues for finding food because clutter echoes overlap strongly with food echoes. Macrophyllum macrophyllum is the only Neotropical leaf-nosed bat (Phyllostomidae) that hunts in clutter-poor habitat over water. As such, we hypothesized that, unlike all other members of its family, but similar to other trawling and aerial insectivorous bats, M. macrophyllum can hunt successfully by using only echolocation for prey perception. In controlled behavioral experiments on Barro Colorado Island, Panamá, we confirmed that echolocation alone is sufficient for finding prey in M. macrophyllum. Furthermore, we showed that pattern and structure of echolocation signals in M. macrophyllum are more similar to aerial and other trawling insectivorous bats than to close phylogenetic relatives. Particularly unique among phyllostomid bats, we found distinct search, approach, and terminal group calls in foraging M. macrophyllum. Call structure, however, consisting of short, multiharmonic, and steep frequency-modulated signals, closely resembled those of other phyllostomid bats. Thus, echolocation behavior in M. macrophyllum is shaped by ecological niche as well as by phylogeny.  相似文献   

2.
Many bat species regularly need to find new day roosts as they require numerous shelters each breeding season. It has been shown that bats exchange information about roosts among colony members, and use echolocation and social calls of conspecifics in order to find roosts. However, it is unclear if wild bats discriminate between social calls of conspecifics and other bat species while searching for roosts. Furthermore, the extent that bats are attracted to potential roosts by each of these two call types is unknown. We present a field experiment showing that social calls of conspecifics and other bat species both attract bats to roosts. During two summers, we played back social calls of Bechstein’s bats (Myotis bechsteinii) and Natterer’s bats (Myotis nattereri) from different bat boxes that can serve as roosts for these species. All experimental bat boxes were monitored with infrared video to identify the approaching bat species. Three species (M. bechsteinii, M. nattereri, and Plecotus auritus) approached the boxes significantly more often during nights when bat calls were played compared to nights without playbacks. Bechstein’s bats and Natterer’s bats were both more attracted to social calls of conspecifics than of the other species, whereas P. auritus did not discriminate between calls of either Myotis species. Only Bechstein’s bats entered experimental boxes and only at times when calls from conspecifics were played. Our findings show that wild bats discriminate between social calls of conspecifics and other bat species although they respond to both call types when searching for new roosts.  相似文献   

3.
We used both field and flight cage observations to investigate the echolocation and foraging behavior of the seldom studied, small, aerial insectivorous bat Myotis nigricans (Vespertilionidae) in Panama. In contrast to its temperate congeners, M. nigricans foraged extensively in open space and showed an echolocation behavior well adapted to this foraging habitat. It broadcast narrowband echolocation signals of 7 ms duration that enhance the chance of prey detection in open space. Because of rhythmical alternations of signal amplitude from signal to signal in our sound recordings of search signals in open space, we conclude that the bats scanned their environment with head movements, thereby enlarging their search volume. In edge-and-gap situations, and in the flight cage, M. nigricans introduced an initial broadband component to its search calls. In the field and in the flight cage, M. nigricans hawked for prey in aerial catches; gleaning was never observed. M. nigricans demonstrates call structures, such as narrow bandwidth and rather long signals adapted to foraging predominantly in open space. Moreover, call structure is highly plastic, allowing M. nigricans to forage in edge-and-gap situations also. These adaptations in call structure and plasticity have evolved convergently at least twice within the genus Myotis. Finally, M. nigricans echolocation and foraging behavior parallels that of the small, aerial, insectivorous pipistrelle bats (Vespertilionidae), which are not closely related to M. nigricans but forage in similar habitats.  相似文献   

4.
We studied the role of echolocation and other sensory cues in two small frugivorous New World leaf-nosed bats (Phyllostomidae: Artibeus watsoni and Vampyressa pusilla) feeding on different types of fig fruit. To test which cues the bats need to find these fruit, we conducted behavioral experiments in a flight cage with ripe and similar-sized figs where we selectively excluded vision, olfaction, and echolocation cues from the bats. In another series of experiments, we tested the discrimination abilities of the bats and presented sets of fruits that differed in ripeness (ripe, unripe), size (small, large), and quality (intact(infested with caterpillars). We monitored the bats' foraging and echolocation behavior simultaneously. In flight, both bat species continuously emitted short (<2 ms), multi-harmonic, and steep frequency-modulated (FM) calls of high frequencies, large bandwidth, and very low amplitude. Foraging behavior of bats was composed of two distinct stages: search or orienting flight followed by approach behavior consisting of exploration flights, multiple approaches of a selected fruit, and final acquisition of ripe figs in flight or in a brief landing. Both bat species continuously emitted echolocation calls. Structure and pattern of signals changed predictably when the bats switched from search or orienting calls to approach calls. We did not record a terminal phase before final acquisition of a fruit, as it is typical for aerial insectivorous bats prior to capture. Both bat species selected ripe over unripe fruit and non-infested over infested fruit. Artibeus watsoni preferred larger over smaller fruit. We conclude from our experiments, that the bats used a combination of odor-guided detection together with echolocation for localization in order to find ripe fruit and to discriminate among them.  相似文献   

5.
The shape of the sonar beam plays a crucial role in how echolocating bats perceive their surroundings. Signal design may thus be adapted to optimize beam shape to a given context. Studies suggest that this is indeed true for vespertilionid bats, but little is known from the remaining 16 families of echolocating bats. We investigated the echolocation beam shape of two species of emballonurid bats, Cormura brevirostris and Saccopteryx bilineata, while they navigated a large outdoor flight cage on Barro Colorado Island, Panama. C. brevirostris emitted more directional signals than did S. bilineata. The difference in directionality was due to a markedly different energy distribution in the calls. C. brevirostris emitted two call types, a multiharmonic shallowly frequency-modulated call and a multiharmonic sweep, both with most energy in the fifth harmonic around 68?kHz. S. bilineata emitted only one call type, multiharmonic shallowly frequency-modulated calls with most energy in the second harmonic (~46?kHz). When comparing same harmonic number, the directionality of the calls of the two bat species was nearly identical. However, the difference in energy distribution in the calls made the signals emitted by C. brevirostris more directional overall than those emitted by S. bilineata. We hypothesize that the upward shift in frequency exhibited by C. brevirostris serves to increase directionality, in order to generate a less cluttered auditory scene. The study indicates that emballonurid bats are forced to adjust their relative harmonic energy instead of adjusting the fundamental frequency, as the vespertilionids do, presumably due to a less flexible sound production.  相似文献   

6.
Acoustic signals which are used in animal communication must carry a variety of information and are therefore highly flexible. Echolocation has probably such functions and could prove as flexible. Measurable variabitlity can indicate flexibility in a behaviour. To quantify variability in bat sonar and relate to behavioural and environmental factors, I recorded echolocation calls of Euderma maculatum, Eptesicus fuscus, Lasiurus borealis and L. cinereus while the bats hunted in their natural habitat. I analysed 3390 search phase calls emitted by 16 known and 16 unknown individuals foraging in different environmental and behvioural situations. All four species used mainly multiharmonic signals that showed considerable intra- and inter-individual variability in the five signal variables I analysed (call duration, call interval, highest and lowest frequency and frequency with maximum energy) and also in the shape of the sonagram. A nested multivariate analysis of variance identified the influences of individual, hunting site, close conspecifics and of each observation on the frequency with maximum energy in the calls, and on other variables measured. Individual bats differed in multiple comparisons, most often in the main call frequency and least often in call interval. In a discriminant function analysis with resubstitution, 56–76% of a species' calls were assigned to the correct individual. Distinct individual call patterns were recorded in special situations in all species and the size of foraging areas in forested areas influenced temporal and spectral call structure. Echolocation behaviour was influenced by the presence of conspecifics. When bats were hunting together, call duration decreased and call interval increased in all species, but spectral effects were less pronounced. The role of morphometric differences as the source of individually distinct vocalizations is discussed. I also examined signal adaptations to long range echolocation and the influence of obstacle distance on echolocation call design. My results allow to discuss the problems of echo recognition and jamming avoidance in vespertilionid bats.  相似文献   

7.
When searching for flying insects, Molossops temminckii uses unusual echolocation calls characterized by upward modulation of frequency vs time (UFM). Call frequency increases asymptotically in the relatively long (∼8 ms) pulses from a starting frequency of ∼40 kHz to a long narrowband tail at ∼50 kHz. When approaching a prey, the bat progressively increases the duration of calls and intersperses in the sequence broadband downwardly frequency-modulated signals with a terminal frequency of about 53 kHz, which totally replaces the UFM signals at the end of the approach phase. The sequence progresses to a capture buzz resembling those from other molossid and vespertilionid bats. The M. temminckii wing morphology is characterized by an average aspect ratio and a high wing loading, suggesting that it is more maneuverable than the typical Molossidae but less than typical Vespertilionidae. M. temminckii regularly forages near clutter, where it needs to pay attention to the background and might face forward and backward masking of signals. We hypothesize that the UFM echolocation signals of M. temminckii represent an adaptation to foraging near background clutter in a not very maneuverable bat needing a broad attention window. The broadband component of the signal might serve for the perception of the background and the narrowband tail for detection and perhaps classification of prey. Bats may solve the signal masking problems by separating emission and echoes in the frequency domain. The echolocation behavior of M. temminckii may shed light on the evolution of the narrowband frequency analysis echolocation systems adopted by some bats foraging within clutter.  相似文献   

8.
We test the hypothesis that echolocation behavior can be used to find the border between bat habitats. Assuming that bats react to background targets in “edge space” but not in “open space”, we determined the border between these two habitat types for commuting individuals of the parti-colored bat Vespertilio murinus. We recorded sequences of bats’ echolocation signals while they flew parallel to the walls of large buildings and to the ground and determined the signals’ average bandwidth, duration, and pulse interval. These parameters varied systematically with the estimated horizontal and vertical distances between the bats and the background. A distinct effect of horizontal distance to the background on echolocation behavior was found for horizontal distances of less than 6 m, thus indicating the border between edge and open space. Only a few bats flew at vertical distances below 5 m. However, enough passages at vertical distances of 5 m and above indicated that the vertical border is somewhere below a distance of 5 m. Within edge space, V. murinus reacted to the background by reducing signal duration, increasing bandwidth at closer distances, and often emitting one signal per wing beat. In open space, signal parameters did not vary as a function of distance to the background. There, V. murinus emitted the longest signals with the narrowest bandwidth and often made one or two wing beats without emitting a pulse. With our data we support with statistical methods the hypothesis that echolocation behavior reveals the border between the habitat types “edge” and “open space”.  相似文献   

9.
Summary Male treefrogs, Smilisca sila (Hylidae), produce calls of varying complexity and demonstrate a remarkable ability to synchronize their calls with those of neighbors. The bat Trachops cirrhosus eats frogs and uses the frogs' advertisement calls as locational cues. The bats are less likely to respond to synchronous calls than to asynchronous calls, and when given a choice prefer complex calls to simple calls.Experiments with bat models indicate that, like other frogs, S. sila probably uses visual cues to detect hunting bats. In response to bat models the frogs decreased both the number and the complexity of their calls. The calling behavior of the frogs was sampled in the field during periods with and without artificial illumination. The frogs produced fewer and less complex calls, and they tended to call from more concealed sites, during the period without illumination, when presumably it would have been more difficult for the frogs to detect hunting bats. S. sila tended to call from sites with higher ambient noise level, the noise primarily originating from waterfalls. The frequencies of the dominant energies in the waterfall sounds completely overlapped the frequency range of the S. sila call; thus waterfalls might mask the frog calls. When given a choice between calls produced near and away from waterfall sounds, bats preferred the latter.  相似文献   

10.
The echolocation calls used by Nyctalus leisleri during search phase in open air space are between 9 and 14 ms long, with the peak energy between 24 and 28 kHz. The pulses are shallowly frequency-modulated with or without an initial steep frequency-modulated component. The diet consists primarily of small flies (Diptera), including many chironomids (wingspan 9–12 mm) and yellow dung flies (Scatophaga; wingspan 24 mm), but also of some larger insects such as dung beetles (Coleoptera; Scarabaeoidea), caddis-flies (Trichoptera) and moths (Lepidoptera). The echo target strength of some prey items was measured. Contrary to models based on standard targets such as spheres or disks, the echo strength of real insects was found to be virtually independent of the emitted frequency within the 20–100 kHz frequency range. A model was used to calculate probable detection distances of the prey by the bat. Using narrow-band calls of 13.7 ± 2.7 ms duration, a bat would detect the two smallest size classes of insect at greatest range using calls of 20 kHz. The results may therefore explain why many species of large and medium sized aerial-hawking bats use low-frequency calls and still eat mostly relatively small insects. The data and model challenges the assumption that small prey are unavailable to bats using low-frequency calls.  相似文献   

11.
We studied the echolocation and hunting behavior of three aerial insectivorous species of bats (Vespertilionidae: Pipistrellus) in the field in order to characterize the signals used by the bats and to determine how call structure varies in relation to habitat structure (uncluttered versus cluttered space). We documented free-flying, naturally foraging wild pipistrelles in various habitats using multiflash stereophotography combined with simultaneous sound recordings. Then we reconstructed the bat's flight position in three-dimensional space and correlated it with the corresponding echolocation sequences. In all three species of pipistrelles, signal structure varied substantially. In echolocation sequences of the search phase we found a consistent association of signal types with habitat types. In uncluttered habitats (obstacles more than 5 m from the bat) pipistrelles emitted almost exclusively narrowband signals with bandwidths less than 15 kHz. In cluttered habitats (obstacles less than 5 m from the bat) they switched to signals with bandwidths of more than 15 kHz. Wideband signals were also used when the bats were turning in cluttered and uncluttered spaces and for an instant after turning away from obstacles. Prey detection occured only when the outgoing signal did not overlap with the returning echo from potential prey. The bats also avoided overlap of echoes from potential prey and obstacles. Based on the results of this study, we propose an overlap-free window within which pipistrelles may detect potential prey and which allows predictions of minimum distances to prey and clutter-producing objects. Correspondence to: E.K.V. Kalko  相似文献   

12.
Many nocturnal katydids (Orthoptera: Tettigoniidae) produce intense calling songs, and some bat species use these songs to detect and locate prey. One Nearctic katydid species, Neoconocephalus ensiger, ceases or pauses singing in response to bat echolocation calls. We tested the hypothesis that song cessation is an effective defence against gleaning bats (i.e., bats that take prey from surfaces). We observed Myotis septentrionalis, a sympatric bat species that uses prey-generated sounds when gleaning, attack and feed on singing N. ensiger in an outdoor flight room. These bats demonstrated a preference for the calling song of N. ensiger over a novel cricket calling song when they were broadcast from a speaker in the flight room. Bats attacked speakers broadcasting N. ensiger calling song as long as the song was continuous and aborted their attack if the sound stopped as they approached, regardless of whether a katydid was present as a physical target on the speaker. Echolocation calls were recorded during attacks and no significant differences were found between continuous and interrupted song approaches for four call parameters, suggesting that M. septentrionalis may not use echolocation to locate silent prey. Therefore, song cessation by katydids in response to ultrasound is an effective defence against gleaning bats.  相似文献   

13.
Contact calls are utilized by several bird and mammal species to maintain group cohesion and coordinate group movement. From a signal design perspective, contact calls typically exhibit acoustic features that make them easily localizable and encode information about individual or group identity. Pallid bats (Antrozous pallidus) are unusual among vespertilionids in that they often emit a loud, partially audible frequency-modulated social call several times in rapid succession while in flight. This call appears to function as a contact call in that it is frequently given when bats return from foraging and perform circular flights before entering a crevice roost. However, the degree to which pallid bats respond to the calls of conspecifics and what information is provided in the call is unknown. Thus, the goal of this study was to investigate pallid bat calling behavior to determine if calls attract roostmates or elicit responses from them and provide sufficient information for individual recognition. In playback studies, we found that contact calls, elicit calls, and approaches and that free-flying bats respond more to familiar than unfamiliar calls. In addition, analysis of frequency and temporal measurements of calls collected from multiple sites and spectral cross correlation analysis of calls recorded from the same radio-tagged bats on multiple evenings revealed that the frequency pattern of contact calls is highly repeatable over time within individuals but exhibits significant differences among individuals. Thus, contact call structure appears to be unique to individuals and stable through time, which makes these calls well-suited for roostmate recognition.  相似文献   

14.
Mutual recognition is the product of species coexistence, and has direct effects on survival and reproduction of animals. Bats are able to discriminate between sympatric different heterospecifics based on their echolocation calls, which has been shown both in free-flying and captive bats. To date, however, the factors that may determine the behavioral responses of bats to echolocation calls from sympatric heterospecifics have rarely been tested, especially under well-controlled conditions in captive bats. Hence, we aimed at tackling this question by performing playback experiments (habituation–dishabituation) with three horseshoe bat species within the constant-frequency bat guild, which included big-eared horseshoe bats (Rhinolophus macrotis), Blyth’s horseshoe bats (Rhinolophus lepidus), and Chinese horseshoe bats (Rhinolophus sinicus). We studied the behavioral responses of these three species to echolocation calls of conspecifics, to other two species, and to another heterospecifics bat, Stoliczka’s trident bat (Asellisus stoliczkanus), which also belongs to this guild. We found that the three rhinolophid species displayed a series of distinct behaviors to heterospecific echolocation but few to conspecific calls after habituation, suggesting that they may have been able to discriminate sympatric heterospecific echolocation calls from those of conspecifics. Interestingly, the behavioral responses to heterospecific calls were positively correlated with the interspecific overlap index in trophic niche, whereas call design had only a minor effect. This implies that the behavioral responses of these bats to heterospecific echolocation calls may be related to the degree of interspecific food competition.  相似文献   

15.
Bats alter their echolocation in response to changes in ecological and behavioral conditions, but little is known about how they adjust call structure in response to changes in altitude. We examined altitudinal variation in the echolocation of Brazilian free-tailed bats, Tadarida brasiliensis, a species known to fly to altitudes of 3,000 m above the ground. From 50.2 h of recordings, we analyzed 113 high-quality echolocation call sequences recorded from 0 to 862 m above ground level. Bats flying near the ground used shorter, higher-frequency, broader-bandwidth calls compared to bats at higher altitudes, an effect likely due to the greater levels of echo-producing clutter (i.e., vegetation, buildings) found near the ground. When ground-level recordings are excluded, bats continue to shift towards the use of longer-duration, lower-frequency, narrower-bandwidth calls with increasing altitude. We propose that the observed high-altitude changes in call structure are a response to changing acoustic attenuation rates and/or decreasing insect densities at higher altitudes.  相似文献   

16.
Summary 1. Echolocation and foraging behavior of the horseshoe bats Rhinolophus ferrumequinum and R. hipposideros feeding under natural conditions are described. 2. The calls of both species consisted predominantly of a long CF segment, often initiated and terminated by brief FM sweeps of substantial bandwidth. 3. R. hipposideros typically flew close to vegetation, and fed by aerial hawking, gleaning and by pouncing on prey close to the ground. R. hipposideros called with a CF segment close to 112 kHz which is the second harmonic of the vocalization; its calls included low intensity primary harmonics, and had prominent initial and terminal FM sweeps of considerable bandwidth. When searching for prey on the wing it had longer interpulse intervals than R. ferrumequinum, but emitted shorter pulses at a higher repetition rate; overall it had a similar duty cycle to R. ferrumequinum. 4. R. ferrumequinum, calling with a CF segment close to 83 kHz, also used harmonics other than the dominant secondary in its calls, and modified its echolocation according to ecological conditions. This species showed certain parallels with R. rouxi of Asia. It was observed feeding by aerial hawking and by flycatching. When scanning for prey from a perch (perch hunting), calls were of shorter duration, and interpulse intervals were on average longer, than when bats were flying. Mean duty cycle was longer in flight, and the bandwidths and frequency sweep rates of the FM segments in the calls increased in comparison with perched bats. 5. FM information may facilitate determination of target range and the location and nature of obstacles; it may also be involved in the interpretation of echoes and the detection of moving targets among clutter. The rising FM sweep initiating the call in both species when flying (and to a lesser extent perch hunting) in the wild must have a significant adaptive role, and should be considered an essential component of the call; rhinolophids should be termed FM/CF/FM bats.Abbreviations CF constant frequency - FM frequency modulated - FM1 initial rising frequency sweep - FM2 terminal falling frequency sweep - PRR pulse repetition rate - SD standard deviation - SNR signal-to-noise ratio  相似文献   

17.
The Hipposideridae and Rhinolophidae are closely related families of bats that have similar echolocation (long-duration pure-tone signal, high duty cycle) and auditory systems (Doppler-shift compensation, auditory fovea). Rhinolophid bats are known to forage in highly cluttered areas where they capture fluttering insects, whereas the foraging habitat of hipposiderid bats is not well understood. Compared to rhinolophids, hipposiderid calls are shorter in duration, have lower duty cycles, and they exhibit only partial Doppler-shift compensation. These differences suggest that the foraging habitat of the two families may also differ. We tested this hypothesis by studying foraging and echolocation of Hipposideros speoris at a site with a range of vegetation types. Bats foraged only while in flight and used all available closed and edge habitats, including areas adjacent to open space. Levels of clutter were high in forest and moderate in other foraging areas. Prey capture (n=42) occurred in edge vegetation where it bordered open space. Echolocation signals of H. speoris lacked an initial upward frequency-modulated sweep and were of moderate duration (5.1-8.7 ms). Sequences had high duty cycles (23-41%) and very high pulse repetition rates (22.8-60.6 Hz). Variation in signal parameters during search phase flight across foraging habitats was low. H. speoris showed a greater flexibility in its use of foraging habitat than is known for any rhinolophid species. Our study confirmed that there are differences in habitat use between hipposiderid and rhinolophid bats and we suggest that this divergence is a consequence of differences in their echolocation and auditory systems.  相似文献   

18.
The 71 species of horseshoe bat (genus Rhinolophus) use echolocation calls with long constant-frequency (CF) components to detect and localize fluttering insects which they seize in aerial captures or glean from foliage. Here we describe ground-gleaning as an additional prey-capture strategy for horseshoe bats. This study presents the first record and experimental evidence for ground-gleaning in the little-studied Blasius horseshoe bat (Rhinolophus blasii). The gleaning bouts in a flight tent included landing, quadrupedal walking and take-off from the ground. The bats emitted echolocation calls continuously during all phases of prey capture. Both spontaneously and in a choice experiment, all six individuals attacked only fluttering insects and never motionless prey. These data suggest that R. blasii performs ground-gleaning largely by relying on the same prey-detection strategy and echolocation behaviour that it and other horseshoe bats use for aerial hawking.We also studied the Mediterranean horseshoe bat (R. euryale) in the flight tent. All four individuals never gleaned prey from the ground, though they appeared to be well able to detect fluttering moths on the ground. It is not known yet whether ground-gleaning plays a role in Mehelys horseshoe bat (R. mehelyi). In a performance test, we measured the ability of these three European species of middle-sized horseshoe bats (R. euryale, R. mehelyi and R. blasii) to take-off from the ground. All were able to take flight even in a confined space; i.e. the willingness to ground-glean in R. blasii is not related to a superior take-off performance. In contrast to ground-gleaning bats of other phylogenetic lineages, R. blasii appears not to be a specialist, but rather shows a remarkable behavioural flexibility in prey-capture strategies and abilities. We suggest that the key innovation of CF echolocation paired with behavioural flexibility in foraging strategies might explain the evolutionary success of Rhinolophus as the second largest genus of bat.Communicated by T. Czeschlik  相似文献   

19.
The fringe-lipped bat, Trachops cirrhosus, is an eavesdropping predator that hunts frogs and katydids by approaching these preys' sexual advertisement calls. In captivity, bats can rapidly learn to associate novel acoustic stimuli with food rewards. It is unknown how this learning ability is related to foraging behavior in the wild where prey and the calls that identify them vary over space and time. In two bat populations that differ in available prey species (Soberanía, Panama, and La Selva, Costa Rica), we presented wild-caught bats with frog calls, katydid calls, and control stimuli. Bats in Soberanía were significantly more responsive to complex calls and choruses of the túngara frog, Physalaemus pustulosus, than were bats in La Selva. La Selva bats were significantly more responsive to katydid calls (Steirodon sp.) than Soberanía bats. We also examined seasonal variation in bat response to prey cues. Bats were captured in Soberanía in dry and wet seasons and presented with the calls of a dry season breeding frog (Smilisca sila), a wet season breeding frog (P. pustulosus), and four katydid species. Bats captured in the dry season were significantly more responsive to the calls of S. sila than bats captured in the wet season, but there were no seasonal differences in response to the calls of P. pustulosus or the katydid calls. We demonstrate plasticity in the foraging behavior of this eavesdropping predator but also show that response to prey cues is not predicted solely by prey availability.  相似文献   

20.
Interindividual use of echolocation calls: Eavesdropping by bats   总被引:4,自引:0,他引:4  
Summary The use of other individual's echolocation calls by little brown bats, Myotis lucifugus, was tested by observing the response of free-flying bats to presentations of recorded echolocation calls and artificial sounds. Bats responded by approaching conspecific calls while searching for food, night roosts, nursery colonies and mating/hibernation sites. Response was low or non-existant to other sounds. While searching for prey, M. lucifugus also responded to the echolocation calls of Eptesicus fuscus, a sympatric species with overlapping diet but distinctly different echolocation calls. Subadults were especially responsive to conspecific calls.All four situations in which the bats responded involve patchily distributed resources at which bats accumulate. Concentrations of echolocation calls thus likely serve as cues regarding the location of resources. Individuals approaching feeding groups, for example, could increase prey detection range by up to 50 times over individuals relying solely on their own echolocation.Although the costs associated with eavesdropping may be negligible for M. lucifugus, for other species, particularly territorial ones, being conspicuous may be a disadvantage and the possibility of being over-heard by other bats may have been one factor involved in the evolution of echolocation call design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号