首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Heavy metal pollution is a severe environmental problem. Remediation of contaminated soils can be accomplished using environmental materials that are low cost and environmentally friendly. We evaluated the individual and combination effects of humic acid (HA), super absorbent polymer (SAP), zeolite (ZE), and fly ash composites (FC) on immobilization of lead (Pb) and cadmium (Cd) in contaminated soils. We also investigated long-term practical approaches for remediation of heavy metal pollution in soil. The biochemical and morphological properties of maize (Zea mays L.) were selected as biomarkers to assess the effects of environmental materials on heavy metal immobilization. The results showed that addition of test materials to soil effectively reduced heavy metal accumulation in maize foliage, improving chlorophyll levels, plant growth, and antioxidant enzyme activity. The test materials reduced heavy metal injury to maize throughout the growth period. A synergistic effect from combinations of different materials on immobilization of Pb and Cd was determined based on the reduction of morphological and biochemical injuries to maize. The combination of zeolite and humic acid was especially effective. Treatment with a combination of HA?+?SAP?+?ZE?+?FC was superior for remediation of soils contaminated with high levels of Pb and Cd.  相似文献   

2.
Halim M  Conte P  Piccolo A 《Chemosphere》2003,52(1):265-275
Effective phytoremediation of soils contaminated by heavy metals depends on their availability to plant uptake that, in turn, may be influenced by either the existing soil humus or an exogenous humic matter. We amended an organic and a mineral soil with an exogenous humic acid (HA) in order to enhance the soil organic carbon (SOC) content by 1% and 2%. The treated soils were further enriched with heavy metals (Cu, Pb, Cd, Zn, Ni) to a concentration of 0, 10, 20, and 40 microg/g for each metal and allowed to age at room temperature for 1 and 2 months. After each period, they were extracted for readily soluble and exchangeable (2.5% acetic acid), plant-available (DTPA, Diethylentriaminepentaacetic acid), and occluded (1 N HNO(3)) metal species. Addition of HA generally reduced the extractability of the soluble and exchangeable forms of metals. This effect was directly related to the amount of added HA and increased with ageing time. Conversely, the potentially plant-available metals extracted with DTPA were generally larger with increasing additions of exogenous HA solutions. This was attributed to the formation of metal-humic complexes, which ensured a temporary bioavailability of metals and prevented their rapid transformation into insoluble species. Extractions with 1 N HNO(3) further indicated that the added metals were present in complexes with HA. The observed effects appeared to also depend on the amount of native SOC and its structural changes with ageing. The results suggest that soil amendments with exogenous humic matter may accelerate the phytoremediation of heavy metals from contaminated soil, while concomitantly prevent their environmental mobility.  相似文献   

3.
Migration of heavy metals in soil as influenced by compost amendments   总被引:3,自引:0,他引:3  
Soils contaminated with heavy metals can pose a major risk to freshwaters and food chains. In this study, the success of organic and inorganic intervention strategies to alleviate toxicity in a highly acidic soil heavily contaminated with As, Cu, Pb, and Zn was evaluated over 112 d in a mesocosm trial. Amelioration of metal toxicity was assessed by measuring changes in soil solution chemistry, metal leaching, plant growth, and foliar metal accumulation. Either green waste- or MSW-derived composts increased plant yield and rooting depth, reduced plant metal uptake, and raised the pH and nutrient status of the soil. We conclude that composts are well suited for promoting the re-vegetation of contaminated sites; however, care must be taken to ensure that very short-term leaching pulses of heavy metals induced by compost amendment are not of sufficient magnitude to cause contamination of the wider environment.  相似文献   

4.
The effect of arbuscular mycorrhiza on heavy metal uptake and translocation was investigated in Cannabis sativa. Hemp was grown in the presence and absence of 100 microg g-1 Cd and Ni and 300 microg g-1 Cr(VI), and inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. In our experimental condition, hemp growth was reduced in inoculated plants and the reduction was related to the degree of mycorrhization. The percentage of mycorrhizal colonisation was 42% and 9% in plants grown in non-contaminated and contaminated soil, suggesting a significant negative effect of high metal concentrations on plant infection by G. mosseae. Soil pH, metal bioavailability and plant metal uptake were not influenced by mycorrhization. The organ metal concentrations were not statistically different between inoculated and non-inoculated plants, apart from Ni which concentration was significantly higher in stem and leaf of inoculated plants grown in contaminated soil. The distribution of absorbed metals inside plant was related to the soil heavy metal concentrations: in plant grown in non-contaminated soil the greater part of absorbed Cr and Ni was found in shoots and no significant difference was determined between inoculated and non-inoculated plants. On the contrary, plants grown in artificially contaminated soil accumulated most metal in root organ. In this soil, mycorrhization significantly enhanced the translocation of all the three metals from root to shoot. The possibility to increase metal accumulation in shoot is very interesting for phytoextraction purpose, since most high producing biomass plants, such as non-mycorrhized hemp, retain most heavy metals in roots, limiting their application.  相似文献   

5.
The objectives of this investigation were to examine the long-term residual effects of metal loading through sewage sludge applications on the total vs. diethylene triamine pentacetic acid (DTPA) extractable metal concentrations in soil and leaf accumulations in tobacco. Maryland tobacco (Nicotiana tabacum L.), cv. 'MD 609', was grown in 1983 and 1984 at two sites in Maryland that had been amended in 1972 with dewatered, digested sewage sludge from washington, DC, at rates equal to 0, 56, 112 and 224 mg ha(-1). The metal concentrations in the sludge, in mg kg(-1) dry weight, were: 1300 Zn, 570 Cu, 280 Pb, 45 Ni and 13 Cd. Soil samples collected from the surface horizon and composite leaf samples of cured tobacco were analyzed for total Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations. The soil samples were also examined for soil pH and DTPA extractable metals. Equations were generated using polynomic and stepwise regression analyses which described the relationships between total vs. DTPA extractable soil metals, and between DTPA soil and soil pH vs. plant metal concentrations, respectively. Significant increases were observed for both total and DTPA extractable metal concentrations for all metals, with all but total Mn and Ni being significant for linear and quadratic effects regarding sludge rates. However, linear relationships were found between DTPA extractable vs. total soil concentrations for all elements except Pb and Ni which were quadratic. Significant increases in plant Zn, Cu, Mn, Ni and Cd and decreases in Fe were observed with increased sludge rates. Plant Pb levels were unaffected by sludge applied Pb. Linear relationships were observed between plant Zn and Cd and DTPA soil metal levels: however, Mn and Cu levels were described by quadratic and cubic relationship, respectively. Relationships between plant Fe and Pb and DTPA extractable concentrations were nonsignificant. Additional safeguards to protect crop contamination from heavy metals such as Cd were discussed.  相似文献   

6.
The objective of this study was to assess the effects of heavy metals on microbial decomposition of cellulose in heavy metal-contaminated soils using a cotton strip assay. The assay is a measure of the potential of soil microorganisms to decompose the plant polymer, cellulose. Cellulolytic activity in soil was assessed by determining the reduction in tensile strength of the buried cotton strips over a 25- and 45-day period. Soils were obtained from a rifle range that contain high levels of lead, copper and zinc. The site has been used for approximately 50 years, resulting in metal levels of up to 30,000 mg/kg of lead, 4000 mg/kg of copper and 600 mg/kg of zinc in the most contaminated soils. All the metal-contaminated soils had lower degradation rates than the uncontaminated soils tested. Among the contaminated soils, however, the heavy metal concentration was not the major factor in determining the loss in tensile strength of the cotton strips, where cellulose decomposition was governed by other soil physicochemical properties. Soil with a higher cation exchange capacity, readily oxidisable material and volatile solids content had the greatest loss in tensile strength of cotton strips. Microbial adaptation to the presence of high concentrations of soil heavy metals and reduced bioavailability of metals is the likely explanation for this phenomenon.  相似文献   

7.
Remediation of soil pollution is one of the many current environmental challenges. Anthropogenic activity has resulted in the contamination of extended areas of land, the remediation of which is both invasive and expensive by conventional means. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. In addition, phytoextraction targets ecotoxicologically the most relevant soil fraction of these metals, i.e. the bioavailable fraction. Greenhouse experiments were carried out to evaluate the potential of four high biomass crop species in their potential for phytoextraction of heavy metals, with or without with the use of soil amendments (EDTA or EDDS). A calcareous dredged sediment derived surface soil, with high organic matter and clay content and moderate levels of heavy metal pollution, was used in the experiments. No growth depression was observed in EDTA or EDDS treated pots in comparison to untreated controls. Metal accumulation was considered to be low for phytoextraction purposes, despite the use of chelating agents. The low observed shoot concentrations of heavy metals were attributed to the low phytoavailability of heavy metals in this particular soil substrate. The mobilising effects induced by EDTA in the soil were found to be too long-lived for application as a soil amendment in phytoextraction. Although EDDS was found to be more biodegradable, higher effect half lives were observed than reported in literature or observed in previous experiments. These findings caution against the use of any amendment, biodegradable or otherwise, without proper investigation of its effects and the longevity thereof.  相似文献   

8.
Metals are associated to various constituents in polluted soils, and their availability is closely related to their chemical speciation. Studies on relations between metal extraction efficiency by hyperaccumulators and location of metals with respect to soil constituents are scarce. In this study. we investigate the relationship between metal extraction by Arabidopsis halleri and the exchangeable metals from substrates amended with various metal-bearing solids collected in the vicinity of a Zn smelter complex. These consisted of fresh and decomposing organic matter, the soil clay fraction, and two types of waste slags. ZnSO4 was also used as metal-bearing solid. Each was mixed with an unpolluted soil to produce two types of substrate, one moderately polluted and the other highly polluted. Total Zinc, Cd, Cu, and Pb were measured in substrates and in roots and shoots of A. halleri. Analysis of 0.01 M CaCl2 exchangeable metals in each substrate was performed before and after plant growth. The results showed different concentrations of exchangeable metals after plant growth, depending on the nature of the metal-bearing solids. In the ZnSO4 soil substrate, the proportion of exchangeable Zn decreased after plant growth, whilst it increased significantly on substrates amended with the two waste slags. For the other substrates, exchangeable Zn was not significantly different before and after plant growth. The same trend was observed for Cd. In the case of Cu, exchangeable rates increased in all substrates. The results were discussed according to the characteristics of the metal-bearing solids and to the metal-uptake strategy of A. halleri.  相似文献   

9.
灯心草部分生理生化指标对土壤复合重金属胁迫的响应   总被引:1,自引:0,他引:1  
通过盆栽试验,以叶绿素含量和POD、SOD、CAT3种抗氧化酶活性作为观测指标,研究了Cu、Cd、Pb、Zn和As复合重金属胁迫下灯心草部分生理生化指标的变化趋势和机理.结果表明,灯心草的生理毒害效应呈明显的剂量-效应关系.表现为与对照相比,叶绿素含量减少,叶绿素a/b值降低,叶片失绿现象明显.随着复合重金属胁迫浓度的增加,灯心草3种酶活性均呈先升后降的变化趋势,但出现抗性酶活性高峰所对应的重金属浓度不同,表现出不同的特征变化趋势.总体来说,在接近土壤环境质量标准低浓度设计范围内,酶活性有逐渐被激活的趋势.但在高浓度水平下,酶活性普遍受到抑制.生长在铅锌尾矿和模拟矿毒水污染土壤中的灯心草叶绿素合成受到显著抑制(P<0.05),但POD和CAT两种酶活性均高于对照.  相似文献   

10.
Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.  相似文献   

11.
In industrialized countries river floodplains can be strongly polluted with heavy metals. Published studies on effects of heavy metal pollution on soil invertebrates in floodplains, however, are inconclusive. This is unexpected since studies in other less dynamic environments reported clear effects at even lower levels of pollution. Flooding induces extra variation in invertebrate biomass and abundance which may reduce the probability to detect heavy metal effects. In this paper we combine reported data from studies on river floodplains in The Netherlands and Belgium and statistically analyze the effect of heavy metals on species composition, biomass, density and individual weight of earthworms. Interaction effects of heavy metal stress and flooding are also considered. The results suggest clear effects of zinc and copper on all variables and interaction of heavy metals and flooding for individual weight.  相似文献   

12.
Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg(-1)) and Zn (2602 mg kg(-1)), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg(-1)) and Pb (190 mg kg(-1)). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl2 or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg(-1) soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.  相似文献   

13.
14.
The effect of heavy metals on the activities of earthworm species Eudrillus eugineae was studied during vermicomposting of municipal solid waste (MSW) spiked with heavy metals. The activities of earthworms, in terms of growth and biomass production and number of cocoons produced, were monitored periodically, and the concentration of heavy metals in earthworms and substrates was determined at definite intervals. Laboratory-scale experiments were performed by mixing individual heavy metals in MSW. Copper, cadmium, chromium, lead, and zinc were selected for the study. The study concludes that heavy metals tend to accumulate in the body of earthworms; hence, the inherent concentration of heavy metals in the substrate before vermicomposting must be considered in view of composting of MSW and its application to soil. It was observed that copper and cadmium were toxic for the worms at 1.5 and 0.1 g/kg of the waste, respectively. The studies also suggest that earthworms are susceptible to the free form of heavy metals. Cadmium is the most toxic metal, followed by copper. Based on the investigation and observation, it was also found that earthworms should be separated from castings before the use of castings in soil amendments.  相似文献   

15.
Sewage sludge addition to agricultural lands requires judicious management to avoid environmental risks arising from heavy metal and nitrate contamination of surface water and accumulation in edible plants. A field study was conducted on a silty-loam soil of 10% slope at Kentucky State University Research Farm. Eighteen plots of 22 x 3.7 m each were separated using metal borders and the soil in six plots was mixed with sewage sludge and yard waste compost mix (SS-YW) at 15 t acre(-1), six plots were mixed with sewage sludge (SS) at 15 t acre(-1), and six unamended plots that never received sludge were used for comparison purposes. Plots were planted with eggplant, Solanum melongena L. as the test plant. The objectives of this investigation were to: 1) assess the effect of soil amendments on the transport of NO3, NH4, and heavy metals (Cd, Cr, Ni, Pb, Zn, Cu, and Mo) into surface water; 2) investigate the effect of soil amendments on heavy metal bioavailability in eggplant fruits at harvest; and 3) assess chemical and physical properties of soil following addition of soil amendments and their impact on the yield and quality of eggplant fruit. SS-YW treatments reduced runoff water by 63% while plots incorporated with sewage sludge alone reduced runoff water by 37% compared to control treatment. The SS-YW treatments transported more mineral nitrogen (NO3-N and NH4-N) in runoff water than SS treatments. Total marketable yield (lbs acre(-1)) and number of eggplant fruits were greatest in SS-YW treatments. This response may be due to improved soil porosity, water, and nutrient retention of the soil amended with SS-YW mixture. Concentrations of heavy metals in soil amended with sludge were below the U.S. Environmental Protection Agency (USEPA) limits. Chromium, Ni, Zn, and Cu were taken up by eggplant fruits but their concentrations were below the Codex Commission allowable levels.  相似文献   

16.
GOAL, SCOPE AND BACKGROUND: As one of the consequences of heavy metal pollution in soil, water and air, plants are contaminated by heavy metals in some parts of China. To understand the effects of heavy metals upon plants and the resistance mechanisms, would make it possible to use plants for cleaning and remediating heavy metal-polluted sites. METHODS: The research results on the effects of heavy metals on plants and resistant mechanisms are compiled from Chinese publications from scientific journals and university journals, mostly published during the last decade. RESULTS AND DISCUSSION: Effects of heavy metals on plants result in growth inhibition, structure damage, a decline of physiological and biochemical activities as well as of the function of plants. The effects and bioavailability of heavy metals depend on many factors, such as environmental conditions, pH, species of element, organic substances of the media and fertilization, plant species. But, there are also studies on plant resistance mechanisms to protect plants against the toxic effects of heavy metals such as combining heavy metals by proteins and expressing of detoxifying enzyme and nucleic acid, these mechanisms are integrated to protect the plants against injury by heavy metals. CONCLUSIONS: There are two aspects on the interaction of plants and heavy metals. On one hand, heavy metals show negative effects on plants. On the other hand, plants have their own resistance mechanisms against toxic effects and for detoxifying heavy metal pollution. RECOMMENDATIONS AND OUTLOOK: To study the effects of heavy metals on plants and mechanisms of resistance, one must select crop cultivars and/or plants for removing heavy metals from soil and water. More highly resistant plants can be selected especially for a remediation of the pollution site. The molecular mechanisms of resistance of plants to heavy metals should be studied further to develop the actual resistance of these plants to heavy metals. Understanding the bioavailability of heavy metals is advantageous for plant cultivation and phytoremediation. Decrease in the bioavailability to farmlands would reduce the accumulation of heavy metals in food. Alternatively, one could increase the bioavailability of plants to extract more heavy metals.  相似文献   

17.
Heavy metal fates in laboratory bioretention systems   总被引:5,自引:0,他引:5  
Sun X  Davis AP 《Chemosphere》2007,66(9):1601-1609
Key to managing heavy metals in bioretention is to understand their fates in bioretention facilities. In this study, pot prototypes filled with bioretention media were built to simulate the conditions of natural growth of plants. Synthetic runoff with different heavy metal loadings (copper, cadmium, lead, and zinc) was periodically applied. Metal accumulations in tissues of grasses -Panicum virgatum, Kentucky-31, and Bromus ciliatus, were investigated after 230d of growth and multiple runoff treatment events. After 183d of periodic runoff application, the concentrations of Zn, Cu, Pb and Cd with low and high loadings had the same trends in the plant tissues, Zn>Cu>Pb>Cd, following the trend of the input metal concentrations. The fates of input metals were 88-97% captured in soil media, 2.0-11.6% not captured by bioretention media, and 0.5-3.3% accumulated in plants. Compared to the metals retained by the soil, the percentages of input metals taken up by plants were relatively low due to the low plant biomass produced in this study. Greater biomass density would be required for the vegetation to have a valuable impact in prolonging the lifetime of a bioretention cell.  相似文献   

18.
蚯蚓直接处理城市剩余污泥的研究   总被引:1,自引:0,他引:1  
以城市剩余污泥为饲料,根据蚯蚓的繁殖、生长时间,定时引出成蚓换料连续饲养,并改变留在原泥中蚓卵的生存环境来控制卵的发育之蚯蚓养殖方法,并对城市剩余污泥直接饲养蚯蚓的可行性及其重金属转移规律进行研究。结果表明,城市剩余污泥直接饲养蚯蚓是可行的;饲养过程中蚯蚓体内的重金属浓度随着饲养时间而上升,至4个月左右,蚯蚓体内重金属浓度达到极限,且该养殖法具有蚯蚓产量低,对蚯蚓具有易于处理和处置的优点。  相似文献   

19.
A toxicity test was developed to examine the effects of heavy metal contaminants on the early life stages of the marine polychaete. We have studied the effects of metals on fertilization and early development of marine polychaete Hydroides elegans. These heavy metals have often been found in polluted ground and water near industrial discharges, and have therefore been detected from time to time in the food chain. They have been reported to alter various reproduction functions in various animals including marine populations. The toxic effect of mercury, cadmium, lead, nickel and zinc on sperm viability, fertilization, embryogenesis and larvae of H. elegans was examined. We observed that the rate of fertilization decreased when the sperm was incubated with heavy metals. Treatment of eggs with each metal did not prevent fertilization, but delayed or blocked the first mitotic divisions, and altered early embryonic development. All these effects were observed at relatively high concentrations. However, bio-accumulation in sediments and aquatic organisms have been reported. Polychaete eggs may then be in contact with very high concentrations of these heavy metals in areas where these metals are not handled or stocked properly, and then develop into abnormal embryos. In addition to bivalves and sea-urchins, polychaete embryos can provide biological criteria for seawater quality standards taking into account the sensitivity of the invertebrates and their contribution in detection of harmful chemicals with no marked effect on the species. Our results indicate that the early development of H. elegans is highly sensitive to heavy metals and this polychaete can be routinely employed as a test organism for ecotoxicity bioassays in tropical and subtropical regions.  相似文献   

20.
The effects of mycorrhizal fungi and other soil microorganisms on growth of two grasses, Andropogon gerardii Vitm. and Festuca arundinacea Schreb., in heavy metal-contaminated soil and mine tailings were investigated. A. gerardii is highly dependent on mycorrhizal fungi in native prairie, while F. arundinacea is a facultative mycotroph and relies on mycorrhizal symbiosis only in extremely infertile soils. Regardless of microbial amendments, neither plant species was able to establish and grow in the mine tailings. Both plant species grew in the moderately contaminated or non-contaminated soils, although A. gerardii grew in these soils only when mycorrhizal. Other soil microbes significantly improved growth of A. gerardii only in uncontaminated soil, but to a lesser extent than mycorrhizae. Although F. arundinacea was more highly colonized by mycorrhizal fungi than A. gerardii, neither microbial amendment affected growth of fescue in any soil. In several treatments mycorrhizal fungi adapted to uncontaminated soil stimulated plant growth more than mycorrhizae adapted to the moderately contaminated soil. However, mycorrhizal fungi adapted to contaminated soil did not increase the productivity of plant growth in contaminated soil more than fungi adapted to uncontaminated soil. A. gerardii plants inoculated with mycorrhizal fungi retained more Zn in roots than in shoots, confirming earlier reports that mycorrhizal fungi alter the translocation pattern of heavy metals in host plants. In contrast, mycorrhizae did not affect translocation patterns in F. arundinaceae, suggesting that the mycorrhizal dependence of a plant species is correlated with the retention of metals in roots. The correlation between mycorrhizal dependence of a plant species and mycorrhizal alteration of translocation pattern may also explain the inconsistent reports of mycorrhizal effects on translocation of heavy metals in plants. Plant response to mycorrhizal symbiosis may therefore provide a useful criterion for the selection of the plant species to be used in revegetation of contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号