首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 924 毫秒
1.
- DOI: http:/dx.doi.org/10.1065/espr2005.06.262 Goal, Scope and Background The anthropogenic environmental emissions of chloroacetic acids and volatile organochlorines have been under scrutiny in recent years because the two compound groups are suspected to contribute to forest dieback and stratospheric ozone destruction, respectively. The two organochlorine groups are linked because the atmospheric photochemical oxidation of some volatile organochlorine compounds is one source of phytotoxic chloroacetic acids in the environment. Moreover, both groups are produced in higher amounts by natural chlorination of organic matter, e.g. by soil microorganisms, marine macroalgae and salt lake bacteria, and show similar metabolism pathways. Elucidating the origin and fate of these organohalogens is necessary to implement actions to counteract environmental problems caused by these compounds. Main Features While the anthropogenic sources of chloroacetic acids and volatile organochlorines are relatively well-known and within human control, knowledge of relevant natural processes is scarce and fragmented. This article reviews current knowledge on natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soils, with particular emphasis on processes in the rhizosphere, and discusses future studies necessary to understand the role of forest soils in the formation and degradation of these compounds. Results and Discussion Reviewing the present knowledge of the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil has revealed gaps in knowledge regarding the actual mechanisms behind these processes. In particular, there remains insufficient quantification of reliable budgets and rates of formation and degradation of chloroacetic acids and volatile organochlorines in forest soil (both biotic and abiotic processes) to evaluate the strength of forest ecosystems regarding the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale. Conclusion It is concluded that the overall role of forest soil as a source and/or sink for chloroacetic acids and volatile organochlorines is still unclear; the available laboratory and field data reveal only bits of the puzzle. Detailed knowledge of the natural degradation and formation processes in forest soil is important to evaluate the strength of forest ecosystems for the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale. Recommendation and Perspective As the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil can be influenced by human activities, evaluation of the extent of this influence will help to identify what future actions are needed to reduce human influences and thus prevent further damage to the environment and to human health caused by these compounds.  相似文献   

2.
The aim of this study was to explore how atmospherically derived soil pollution is affected by environmental processes at two typical boreal catchment landscape type settings: wetlands and forested areas. Measurements of hydrophobic organic compounds (HOCs) in forest soil and peat from an oligotrophic mire at various depths were performed at a remote boreal catchment in northern Sweden. HOCs in peat were evenly distributed throughout the body of the mire while levels of HOCs in the forest soil increased with increased amount of organic matter. Evaluation of HOC composition by principal component analysis (PCA) showed distinct differences between surface soils and deeper soil and peat samples. This was attributed to vertical transport, degradation and/or shifting sources over time. The calculated net vertical transport differed between surface layers (0.3%) and deeper soils (8.0%), suggesting that vertical transport conditions and processes differ in the deeper layers compared to the surface layers.  相似文献   

3.

Background, aim and scope  

Soil organic matter (SOM) is known to increase with time as landscapes recover after a major disturbance; however, little is known about the evolution of the chemistry of SOM in reconstructed ecosystems. In this study, we assessed the development of SOM chemistry in a chronosequence (space for time substitution) of restored Jarrah forest sites in Western Australia.  相似文献   

4.
Spatial patterns of organic chlorine and chloride in Swedish forest soil   总被引:7,自引:0,他引:7  
The concentration of organic carbon, organic chlorine and chloride was determined in Swedish forest soil in the southern part of Sweden and the spatial distribution of the variables were studied. The concentration of organically bound chlorine was positively correlated to the organic carbon content, which is in line with previous studies. However, the spatial distribution patterns strongly indicate that some other variable adds structure to the spatial distribution of organic chlorine. The distribution patterns for chloride strongly resembled the distribution of organic chlorine. The spatial distribution of chloride in soil depends on the deposition pattern which in turn depends on prevailing wind-direction, amount of precipitation and the distance from the sea. This suggests that the occurrence of organic chlorine in soil is influenced by the deposition of chloride or some variable that co-varies with chloride. Two clearly confined strata were found in the area: the concentrations of organic chlorine and chloride in the western area were significantly higher than in the eastern area. No such difference among the two areas was seen regarding the carbon content.  相似文献   

5.
In forest soils along vertical profiles located in different parts of the Alps, concentrations of persistent organic pollutants (POPs), namely organochlorine pesticides (OCPs) like dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCH), heptachlor, aldrin, dieldrin and mirex, were measured. Though local characteristics of the sites are influenced by numerous factors like orographic and meteorological parameters, forest stand characteristics and humus parameters, we ascertained a marked vertical increase of concentrations of some organochlorine compounds in the soil. On the basis of climatological values of each site, we found that the contamination increase with altitude can be ascribed to a certain ‘cold condensation effect’. In addition, the perennial atmospheric deposition of POPs is controlled by precipitation. Other key parameters explaining the accumulation of POPs are the soil organic carbon stocks, the turnover times, the re-volatilisation and degradation processes, which vary with altitude.  相似文献   

6.
Studies of forest nitrogen (N) budgets generally measure inputs from the atmosphere in wet and dry deposition and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of N oxides from forest soils is an important, and often overlooked, component of an ecosystem N budget. During 1 year (2002–03), emissions of nitric oxide (NO) and nitrous oxide (N2O) were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 μg N m−2 h−1, and for N2O were 15 and 20 μg N m−2 h−1, for spruce and oak soils, respectively. Due to the relatively high soil water content, and low C/N ratio in soil, denitrification processes dominate, resulting in an order of magnitude greater N2O emission rate compared to NO. The previously determined N balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry+wet) atmospheric N-deposition to the soil was 1.42 and 1.59 g N m−2 yr−1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 g N m−2 yr−1. Thus, about 10–13% of N compounds deposited to the soil, mostly as and , were transformed in the soil and emitted back to the atmosphere, mostly as greenhouse gas (N2O).  相似文献   

7.
Trichloroacetic acid (TCA) as a phytotoxic substance affects health status of coniferous trees. It is known as a secondary air pollutant (formed by photooxidation of tetrachloroethene and 1,1,1-trichloroethane) and as a product of chlorination of humic substances in soil. Its break-down in soil, however, influences considerably the TCA level, i.e. the extent of TCA uptake by spruce roots. In connection with our investigations of TCA effects on Norway spruce, microbial processes in soil were studied using 14C-labeling. It was shown that TCA degradation in soil is a fast process depending on TCA concentration, soil properties, humidity and temperature. As a result, the TCA level in soil is determined by a steady state between uptake from the atmosphere, formation in soil, leaching and degradation. The process of TCA degradation in soil thus participates significantly in the chlorine cycle in forest ecosystems.  相似文献   

8.
Aliphatic liquid as a basic fuel was incinerated in a laboratory scale pilot plant. Inorganic chlorine and organic chlorine mixed with basic fuel were used as additive chemicals. Sodium chloride (NaCl) and tetrachloroethylene (C2Cl4) were used as the sources of inorganic and organic chlorine. Combustion parameters were adjusted for optimum combustion and, consequently, the amount of particles in flue gases was low. The concentrations of chlorine in flue gases were high enough for possible formation reactions of organic chlorinated compounds in all of the chlorine input tests. An increase in chlorine input did not significantly increase the amounts of highly chlorinated organic compounds, like PCDD/Fs. The main result was that chlorophenol concentrations increased in parallel with organic chlorine input. Comparing organic chlorine to inorganic chlorine tests showed that more highly substituted PCDD/F congeners were formed when organic chlorine was the additive chlorine source. The formation of highly chlorinated organic compounds such as PCDD/Fs requires not only chlorine and aliphatic fuel to be formed, but some catalysts are also needed.  相似文献   

9.
Chloride imbalances in soil lysimeters   总被引:4,自引:0,他引:4  
The assumption that soil neither acts as a source or a sink of chloride is evaluated by incubating soil cores in lysimeters in a climate chamber under controlled conditions. Some of the lysimeters acted as a sink while others acted as a source of chloride. Considerable amounts of organic chlorine were lost by leaching. The loss by leaching of organic chlorine could only explain part of the discrepancy in the lysimeters where the soil acted as a sink and it could certainly not explain the cases where the soil acted as a source.The storage of organic chlorine was four times larger than the storage of chloride and comparably small changes in the organic chlorine storage will thus have a considerable influence on the chloride budget. However, the soil was too heterogeneous to determine whether a change in the storage had taken place or not. It is concluded that the observed chloride surplus and also, at least to some extent, the observed chloride deficit, most likely was caused by net-changes in the storage of organic chlorine in soil. An inverse correlation was found between the initial chloride content of the soil and the imbalance in the chloride budget.Dry deposition of chloride is generally assumed to equal the run-off minus the wet deposition. Extrapolation to the field situation suggests that the output of organic chlorine by soil leachate is at risk to cause an underestimation of the dry deposition by about 25%.  相似文献   

10.
The components of soil organic matter (SOM) and their degradation dynamics in forest soils are difficult to study and thus poorly understood, due to time-consuming sample collection, preparation, and difficulty of analyzing and identifying major components. As a result, changes in soil organic matter chemical composition as a function of age, forest type, or disturbance have not been examined. We applied pyrolysis molecular beam mass spectrometry (py-MBMS), which provides rapid characterization of SOM of whole soil samples. to the Tionesta soil samples described by Hoover, C.M., Magrini, K.A., Evans, R.J., 2002. Soil carbon content and character in an old growth forest in northwestern Pennsylvania: a case study introducing molecular beam mass spectrometry (PY-MBMS). Environmental Pollution 116 (Supp. 1), S269-S278. Our goals in this work were to: (1) develop and demonstrate an advanced, rapid analytical method for characterizing SOM components in whole soils, and (2) provide data-based models to predict soil carbon content and residence time from py-MBMS analysis. Using py-MBMS and pattern recognition techniques we were able to statistically distinguish among four Tionesta sites and show an increase in pyrolysis products of more highly decomposed plant materials at increasing sample depth. For example, all four sites showed increasing amounts of older carbon (phenolic and aromatic species) at deeper depths and higher amounts of more recent carbon (carbohydrates and lignin products) at shallower depths. These results indicate that this type of analysis could be used to rapidly characterize SOM for the purpose of developing a model, which could be used in monitoring the effect of forest management practices on carbon uptake and storage.  相似文献   

11.
E.V. Kalmaz  G.D. Kalmaz 《Chemosphere》1981,10(10):1163-1175
During the past several years, chlorine residuals and chlorinated organic compounds in drinking waters and aquatic environments have become a significant topic of study for scientists concerned about the quality of life in aquatic ecosystems as well as general public health. The effects of direct toxicity and/or carcinogenicity to human and aquatic life are the focal points for this concern.The effects of chloramines and chlorinated organic compounds present in the water distribution system after chlorination treatments are reviewed. Also discussed are the effects of chlorinated discharges from municipal secondary treatment plants and power plants on human health and aquatic life. The toxic significance of environmental chemicals are described.  相似文献   

12.
Diurnal and seasonal variations in methane (CH4) and nitrous oxide (N2O) mixing ratios were measured above a boreal aspen stand at the southern boundary of the Canadian boreal forest, about 5 km north of agricultural land. The research was conducted between 16 April and 16 September 1994, in the Prince Albert National Park, Saskatchewan, to better understand patterns of CH4 and N2O cycling in boreal ecosystems. The research also presents a method for detecting the long-range transport of trace gases using a micrometeorological, laser-based gas monitoring system. Both CH4 and N2O featured diurnal cycles consistent with a pattern of net emission for each trace gas. The CH4 mixing ratio displayed a seasonal variation that was strongly related to soil temperature, with measured values roughly 30 ppb higher in the late summer than in spring. During the latter half of the experiment, the CH4 mixing ratios varied with wind direction and suggested areas of higher emission to the northeast and east of the measurement tower. The N2O fluxes also showed favoured directions, although in this case the highest mixing ratios were measured during the springtime in air masses originating south and southwest of the tower. The high springtime values coincided with spring thaw emissions of N2O from agricultural fields to the south, and the results suggest that the trace gas analysis system detected the long-range transport of N2O from the agricultural land. Ammonia and ammonium likewise may be transported to the southern boreal forest from agricultural land, and a future investigation at this site could seek to determine the effect of their long-range transport on the southern boreal forest.  相似文献   

13.
Abstract

Fluazinam, a widely used pesticide in conventional potato cultivation, is effective against epidemics of the fungal disease late blight. To assess fluazinam persistence in soil, laboratory experiments were conducted with fluazinam added to soil as a pure chemical or contained in the commercial product Shirlan®. In a follow-up experiment, the persistence was monitored under constant temperature and water content conditions during a maximum period of 1?year. In an annual climatic rotation experiment, fluazinam added to soil was exposed to the year-round temperature and water content conditions occurring in the boreal zone. A third experiment was undertaken to clarify the effect of soil organic matter (SOM) on the recovery of fluazinam. In the follow-up and annual climatic rotation experiments, more than half of the added fluazinam was recovered after 1?year of incubation. The estimated half-life of fluazinam ranged between 355 and 833?days. The degradation of fluazinam was enhanced by an abundance of SOM, a warm temperature, and wetness. Additionally, in over half of soil samples collected from fields where potato had been intensively cultivated for many years, varying concentrations of fluazinam were detected. Fluazinam can carry over to the next growing season in professional potato production.  相似文献   

14.
Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree–mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.  相似文献   

15.
Chloride concentration affects soil microbial community   总被引:2,自引:0,他引:2  
We studied the effect of increased inorganic chloride concentration on forest soil microflora in a laboratory experiment. Microbial DNA extracted from experimental soil samples was amplified with PCR using primer pairs specifically amplifying bacterial, eukaryotic and fungal DNA fragments. The resulting amplified DNA was further used for terminal restriction fragment length polymorphism (TRFLP) analysis. Our work revealed that chloride concentration affects the indigenous microbial community in experimental soil. This was documented on an unidentified microorganism whose DNA was detectable in soil high in chloride but was not found in soil with low chloride concentration. The presence of the organism responsive to increased chloride concentration was associated with the highest observed value of chlorination of humic acid, suggesting possible role of this organism in soil chlorine turnover. High chloride concentration in the soil tended to decrease the rate of degradation of trichloroacetic acid. The problems connected with measurement of chlorination rates in soil are discussed.  相似文献   

16.
Adams JM  Piovesan G 《Chemosphere》2005,59(11):1595-1612
Interannual variability in global CO2 increment (averaged from the Mauna Loa and South Pole Stations) shows certain strong spatial relationships to both tropical and temperate temperatures. There is a fairly strong positive year-round correlation between tropical mean annual temperatures (leading by 4 months) and annual CO2 throughout the time series since 1960, agreeing with the generally held view that the tropics play a major role in determining inter-annual variability in CO2 increment, with a major CO2 pulse following a warm year in the tropics. This ‘almost no lag’ climatic response is very strong during winter and relatively stable in time. However, the correlation with tropical temperature appears to have weakened in the first years of the 1990s in correspondence of the Pinatubo eruption and the positive phase of the AO/NAO. A secondary concurrent temperature signal is linked to summer variations of north temperate belt. Northern summer temperatures in the region 30–60 °N—and especially in the land area corresponding to the central east USA—have become relatively more closely correlated with CO2 increment. This trend has become increasingly stronger in recent years, suggesting an increasing role for growing season processes in the northern midlatitudes in affecting global CO2 increment. Once non-lagged annual tropical temperature variations are accounted for, terrestrial ecosystems, especially the temperate-boreal biomes, also show a coherent large scale lagged response. This involves an inverse response to annual temperature of preceding years centered at around 2 years before. This lagged response is most likely linked to internal biogeochemical cycles, in particular N cycling. During the study period north boreal ecosystems show a strengthening of the lagged correlation with temperature in recent years, while the lagged correlation with areas of tropical ecosystems has weakened. Residuals from a multiple correlations based on these climatic signals are directly correlated with SO, confirming an additional important role of upwelling in interannual variability of CO2 increment. Cooler summers following the Pinatubo eruption and the possible influence of the North Atlantic Oscillation (NAO/AO) are discussed as factors responsible for the shift in the relative importance of different regions over time during the series of data.  相似文献   

17.
The natural range of variation of ecosystems provides reference conditions for sustainable management and biodiversity conservation. We review how the understanding of natural reference conditions of boreal forests in northern Europe has changed from earlier perceptions of even-aged dynamics driven by stand-replacing disturbances towards current understanding highlighting the role of non-stand-replacing disturbances and the resultant complex forest dynamics and structures. We show how earlier views and conceptual models of forest disturbance dynamics, including the influential ASIO model, provide estimates of reference conditions that are outside the natural range of variation. Based on a research synthesis, we present a revised forest reference model incorporating the observed complexity of ecosystem dynamics and the prevalence of old forests. Finally, we outline a management model and demonstrate its use in forest ecosystem management and show how regional conservation area needs can be estimated. We conclude that attaining favourable conservation status in northern Europe’s boreal forests requires increasing emphasis on ecosystem management and conservation for old forest characteristics.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01444-3) contains supplementary material, which is available to authorized users.  相似文献   

18.
Biodegradation of trace gases in simulated landfill soil cover systems   总被引:1,自引:0,他引:1  
The attenuation of methane and seven volatile organic compounds (VOCs) was investigated in a dynamic methane and oxygen counter gradient system simulating a landfill soil cover. The VOCs investigated were: Tetrachloromethane (TeCM), trichloromethane (TCM), dichloromethane (DCM), trichloroethylene (TCE), vinyl chloride (VC), benzene, and toluene. Soil was sampled at Skellingsted landfill, Denmark. The soil columns showed a high capacity for methane oxidation, with oxidation rates up to 184 g/m2/d corresponding to a 77% reduction of inlet methane. Maximal methane oxidation occurred at 15-20 cm depth, in the upper part of the column where there were overlapping gradients of methane and oxygen. All the chlorinated hydrocarbons were degraded in the active soil columns with removal efficiencies higher than 57%. Soil gas concentration profiles indicated that the removal of the fully chlorinated compound TeCM was because of anaerobic degradation, whereas the degradation of lower chlorinated compounds like VC and DCM was located in the upper oxic part of the column. Benzene and toluene were also removed in the active column. This study demonstrates the complexity of landfill soil cover systems and shows that both anaerobic and aerobic bacteria may play an important role in reducing the emission of trace components into the atmosphere.  相似文献   

19.
Combustion experiments in a laboratory-scale fluidized-bed reactor have been performed to clarify the effects of copper chloride as a catalyst on polychlorinated dibenzofurans (PCDFs) formation in municipal waste incineration. We used model wastes with and without copper chloride (CuCl2 x 2H2O) as a catalyst, both of which contained polyvinyl chloride (PVC) as a chlorine source. Combustion temperature was set to 900 degrees C, and the amount of air supplied was twice as much as the theoretical amount. The experimental setup had been carefully planned to ensure avoidance of the influences of previous experiments. Results of these present experiments revealed that copper chloride in the waste increased the amount of PCDFs formed and made the homologue profile shifted towards the highly chlorinated species. Copper chloride contributes to PCDFs formation by promoting chlorination via catalytic reactions, whereby the reaction could be important in that organic matters are chlorinated directly by chlorinated compounds related to Deacon reaction such as copper chloride. It was elucidated that characteristic isomer distribution patterns appeared in case the waste contained copper chloride. It is probable in our experiment with copper chloride that PCDFs are mainly formed via catalytic reactions of copper compounds and carbon.  相似文献   

20.
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g?1, or moderate, ca. 20 μg g?1) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号