首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectral reflectance of recently formed salt marshes at the mouth of the Yangtze River, which are undergoing invasion by Spartina alterniflora, were assessed to determine the potential utility of remotely sensed data in assessing future invasion and changes in species composition. Following a review of published research on remote sensing of salt marshes, 53 locations along three transects were sampled for paired data on plant species composition and spectral reflectance using a FieldSpec? Pro JR Field Portable Spectroradiometer. Spectral data were processed concerning reflectance, and the averaged reflectance values for each sample were reanalysed to correspond to a 12-waveband bandset of the Compact Airborne Spectral Imager. The spectral data were summarised using principal components analysis (PCA) and the relationships between the vegetation composition, and the PCA axes of spectral data were examined. The first PCA axis of the reflectance data showed a strong correlation with variability in near infrared reflectance and ‘brightness’, while the second axis was correlated with visible reflectance and ‘greenness’. Total vegetation cover, vegetation height, and mudflat cover were all significantly related to the first axis. The implications of this in terms of the ability of remote sensing to distinguish the various salt marsh species and in particular the invasive species S. alterniflora were discussed. Major differences in species with various physiognomies could be recognised but problems occurred in separating early colonising S. alterniflora from other species at that stage. Further work using multi-seasonal hyperspectral data might assist in solving these problems.  相似文献   

2.
To meet the growing demand for chocolate, cocoa (Theobroma cacao) agriculture is expanding and intensifying. Although this threatens tropical forests, cocoa sustainability initiatives largely overlook biodiversity conservation. To inform these initiatives, we analyzed how cocoa agriculture affects bird diversity at farm and landscape scales with a meta-analysis of 23 studies. We extracted 214 Hedges' g* comparisons of bird diversity and 14 comparisons of community similarity between a forest baseline and 4 farming systems that cover an intensification gradient in landscapes with high and low forest cover, and we summarized 119 correlations between cocoa farm features and bird diversity. Bird diversity declined sharply in low shade cocoa. Cocoa with >30% canopy cover from diverse trees retained bird diversity similar to nearby primary or mature secondary forest but held a different community of birds. Diversity of endemic species, frugivores, and insectivores (agriculture avoiders) declined, whereas diversity of habitat generalists, migrants, nectarivores, and granivores (agriculture associates) increased. As forest decreased on the landscape, the difference in bird community composition between forest and cocoa also decreased, indicating agriculture associates replaced agriculture avoiders in forest patches. Our results emphasize the need to conserve forested landscapes (land sparing) and invest in mixed-shade agroforestry (land sharing) because each strategy benefits a diverse and distinct biological community.  相似文献   

3.
The temporal-spatial interaction of land cover and non-point source (NPS) nutrient pollution were analyzed with the Soil and Water Assessment Tool (SWAT) to simulate the temporal-spatial features of NPS nutrient loading in the upper stream of the Yellow River catchment. The corresponding land cover data variance was expressed by the normalized difference vegetation index (NDVI) that was calculated from MODIS images. It was noted that the temporal variation of land cover NDVI was significantly correlated with NPS nutrient loading. The regression analysis indicated that vegetation not only detained NPS nutrient pollution transportation, but also contributed to sustainable loading. The temporal analysis also confirmed that regional NDVI was an effective index for monthly assessment of NPS nitrogen and phosphorus loading. The spatial variations of NPS nutrient loading can be classified with land cover status. The high loadings of NPS nitrogen in high NDVI subbasins indicated that forestry and farmland are the main critical loss areas. Farmland contributed sustainable soluble N, but the loading of soluble and organic N from grassland subbasins was much lower. Most P loading came from the areas covered with dense grassland and forestry, which cannot directly discharge to local water bodies. However, some NPS phosphorus from suburban farmland can directly discharge into adjacent water bodies. The interactions among nutrient loading, NDVI, and slope were also analyzed. This study confirmed that the integration of NPS modeling, geographic information systems, and remote sensing is needed to understand the interactive dynamics of NPS nutrient loading. Understanding the temporal-spatial variation of NPS nutrients and their correlations with land cover will help NPS pollution prevention and water quality management efforts. Therefore, the proposed method for evaluating NPS nutrient loading by land cover NDVI can be an effective tool for pollution evaluation and watersheds planning.  相似文献   

4.
Measurements of primary productivity and its heterogeneity based on satellite images can provide useful estimates of species richness and distribution patterns. However, species richness at a given site may depend not only on local habitat quality and productivity but also on the characteristics of the surrounding landscape. In this study we investigated whether the predictions of species richness of plant families in northern boreal landscape in Finland can be improved by incorporating greenness information from the surrounding landscape, as derived from remotely sensed data (mean, maximum, standard deviation and range values of NDVI derived from Landsat ETM), into local greenness models. Using plant species richness data of 28 plant families from 440 grid cells of 25 ha in size, generalized additive models (GAMs) were fitted into three different sets of explanatory variables: (1) local greenness only, (2) landscape greenness only, and (3) combined local and landscape greenness. The derived richness–greenness relationships were mainly unimodal or positively increasing but varied between different plant families, and depended also on whether greenness was measured as mean or maximum greenness. Incorporation of landscape level greenness variables improved significantly both the explanatory power and cross-validation statistics of the models including only local greenness variables. Landscape greenness information derived from remote sensing data integrated with local information has thus the potentiality to improve predictive assessments of species richness over extensive and inaccessible areas, especially in high-latitude landscapes. Overall, the significant relationship between plants and surrounding landscape quality detected here suggests that landscape factors should be considered in preserving species richness of boreal environments, as well as in conservation planning for biodiversity in other environments.  相似文献   

5.
Abstract: Individual species may be useful as indicators of biodiversity if an association exists between the presence of a species and another component of biodiversity. We evaluated 40 species of birds and small mammals, including 11 species of conservation concern, as potential indicators of species richness and species composition in southern California coastal sage scrub habitats. This habitat, which is the target of large-scale conservation planning, has been greatly reduced by human development and supports many plants and animals of conservation concern. We asked whether there is an association between the presence of a potential indicator species and the species richness and composition of the bird or small-mammal community in which it is found. We used point counts and live-trapping to quantify the distribution of birds and small mammals, respectively, at 155 points in 16 sites located in three counties. Of the few species we found associated with species richness, some were associated with higher species richness and others with lower richness, and species of conservation concern were not more frequently associated with species richness than were common species. Ordination analysis revealed a geographic gradient in coastal sage scrub bird and small-mammal species composition across southern California, and 18 of the species we evaluated were associated with the composition of the bird and small-mammal community in which they were found. Our results suggest that efforts to conserve bird and small-mammal biodiversity in coastal sage scrub should not focus exclusively on rare species or on locations with the highest species richness, but instead should focus on a diverse suite of species that are representative of the range of variation in communities found in coastal sage scrub habitats.  相似文献   

6.
Coastal barrier environments are heavily influenced by human activities yet there are few examples of landscape ecological work investigating human dimensions of settlement disturbance patterns and processes. We investigated the impacts of residential development on vegetation cover for a remote roadless coastal barrier in Carova, North Carolina that is subject to policies from the federal to local levels and addressed three research questions: How has the region’s the policy history influenced patterns of residential parcel development? What are the spatial and temporal patterns of parcel development? How has development impacted patterns of barrier vegetation cover? We traced the influences of the federal 1982 Coastal Barrier Resources Act (CBRA) designed to discourage development in risky coastal areas as well as state/local coastal policies and employed remote sensing change detection, NDVI analysis and spatial analysis and regression techniques. Results showed an acceleration of new housing structures since 1990, contrary to the intended effects of CBRA. An estimated vegetation cover loss of 437 m2 was associated with each newly developed parcel. NDVI varied along spatial and temporal gradients with more recent development having lower NDVI than older development. Recently developed parcels were larger in area, closer to the beach, and contained houses with larger footprints compared to older developed parcels. Our approach represents a place-based analytical framework for coastal barrier landscapes. Beyond the Carova case study, adopting such an approach coupling natural and human systems for the entire eastern US barrier system requires defining a comprehensive set of coastal barrier spatial units to enable typological classification and subsequent systematic investigation to inform debates regarding coastal ecosystem services and sustainability.  相似文献   

7.
This study aimed to develop a practical approach to identify the priority areas with ecological significance along highly human disturbed coastal areas. Field surveys were used to assess and complement to the results of the remote sensing (RS)-based analysis. The RS-based biodiversity hotspot (BH) identification process was accomplished in three steps. The lands with native vegetation cover, including the national natural reserve lands, were first selected as the baseline BHs (BBHs). Then, after assigning resistance coefficients to each land use, the least accumulative cost (LAC) of the BBHs was calculated by distance analysis, while the normalized differential vegetation index (NDVI) from the Landsat Thematic Mapper was reclassified into 20 grades based on the Euclidean distance to the main anthropogenic sources. Finally, the RS-based BH identification was realized through the logistic calculation of LAC less than a series of thresholds and NDVI more than 10. While the field survey-based BH identification was through the logistic calculation between HM potential ecological risks of low to moderate and BHs acquired by NDVI-based integrated assessments. The results proved that RS-based analysis could be an important surrogate for necessary field surveys to manage BHs along coasts.  相似文献   

8.
In the United States, housing density has substantially increased in and adjacent to forests. Our goal in this study was to identify how housing density and human populations are associated with avian diversity. We compared these associations to those between landscape pattern and avian diversity, and we examined how these associations vary across the conterminous forested United States. Using data from the North American Breeding Bird Survey, the U.S. Census, and the National Land Cover Database, we focused on forest and woodland bird communities and conducted our analysis at multiple levels of model specificity, first using a coarse-thematic resolution (basic models), then using a larger number of fine-thematic resolution variables (refined models). We found that housing development was associated with forest bird species richness in all forested ecoregions of the conterminous United States. However, there were important differences among ecoregions. In the basic models, housing density accounted for < 5% of variance in avian species richness. In refined models, 85% of models included housing density and/or residential land cover as significant variables. The strongest guild response was demonstrated in the Adirondack-New England ecoregion, where 29% of variation in richness of the permanent resident guild was associated with housing density. Model improvements due to regional stratification were most pronounced for cavity nesters and short-distance migrants, suggesting that these guilds may be especially sensitive to regional processes. The varying patterns of association between avian richness and attributes associated with landscape structure suggested that landscape context was an important mediating factor affecting how biodiversity responds to landscape changes. Our analysis suggested that simple, broadly applicable, land use recommendations cannot be derived from our results. Rather, anticipating future avian response to land use intensification (or reversion to native vegetation) has to be conditioned on the current landscape context and the species group of interest. Our results show that housing density and residential land cover were significant predictors of forest bird species richness, and their prediction strengths are likely to increase as development continues.  相似文献   

9.
Long-term studies to understand biodiversity changes remain scarce—especially so for tropical mountains. We examined changes from 1911 to 2016 in the bird community of the cloud forest of San Antonio, a mountain ridge in the Colombian Andes. We evaluated the effects of past land-use change and assessed species vulnerability to climate disruption. Forest cover decreased from 95% to 50% by 1959, and 33 forest species were extirpated. From 1959 to 1990, forest cover remained stable, and an additional 15 species were lost—a total of 29% of the forest bird community. Thereafter, forest cover increased by 26% and 17 species recolonized the area. The main cause of extirpations was the loss of connections to adjacent forests. Of the 31 (19%) extirpated birds, 25 have ranges peripheral to San Antonio, mostly in the lowlands. Most still occurred regionally, but broken forest connections limited their recolonization. Other causes of extirpation were hunting, wildlife trade, and water diversion. Bird community changes included a shift from predominantly common species to rare species; forest generalists replaced forest specialists that require old growth, and functional groups, such as large-body frugivores and nectarivores, declined disproportionally. All water-dependent birds were extirpated. Of the remaining 122 forest species, 19 are vulnerable to climate disruption, 10 have declined in abundance, and 4 are threatened. Our results show unequivocal species losses and changes in community structure and abundance at the local scale. We found species were extirpated after habitat loss and fragmentation, but forest recovery stopped extirpations and helped species repopulate. Land-use changes increased species vulnerability to climate change, and we suggest reversing landscape transformation may restore biodiversity and improve resistance to future threats.  相似文献   

10.
Abstract: Protected areas cover over 12% of the terrestrial surface of Earth, and yet many fail to protect species and ecological processes as originally envisioned. Results of recent studies suggest that a critical reason for this failure is an increasing contrast between the protected lands and the surrounding matrix of often highly altered land cover. We measured the isolation of 114 protected areas distributed worldwide by comparing vegetation‐cover heterogeneity inside protected areas with heterogeneity outside the protected areas. We quantified heterogeneity as the contagion of greenness on the basis of NDVI (normalized difference vegetation index) values, for which a higher value of contagion indicates less heterogeneous land cover. We then measured isolation as the difference between mean contagion inside the protected area and mean contagion in 3 buffer areas of increasing distance from the protected‐area border. The isolation of protected areas was significantly positive in 110 of the 114 areas, indicating that vegetation cover was consistently more heterogeneous 10–20 km outside protected areas than inside their borders. Unlike previous researchers, we found that protected areas in which low levels of human activity are allowed were more isolated than areas in which high levels are allowed. Our method is a novel way to assess the isolation of protected areas in different environmental contexts and regions.  相似文献   

11.
Successful control of tsetse (Glossina spp.)-transmitted trypanosomiasis in the Ghibe Valley, Ethiopia, appears to have accelerated conversion of wooded grassland into cropland. Land conversion, in turn, may have fragmented wildlife habitat. Our objective was to assess the influence of the expansion of agricultural land-use, brought about by tsetse control, on ecological properties by using bird species richness and composition as indicators of environmental impacts. We sampled bird species richness and composition (using Timed-Species counts) and habitat structure (using field sampling and remote sensing) in four land cover/land-use types in areas subjected to tsetse fly control and adjacent areas without control. At the height of the growing season bird species numbers and vegetative complexity were greater in the small-holder, oxen-plowed fields and riparian woodlands than in wooded grasslands or in large-holder, tractor-plowed fields. Species composition was highly dissimilar (40–70% dissimilarity) comparing among land-use types, with many species found only in a single type. This implies that trypanosomiasis control that results in land conversion from wooded grasslands to small-holder farming in this region may have no adverse impacts on bird species numbers but will alter composition. These results also suggest that moderate land-use by humans (e.g., small-holder field mosaics) increases habitat heterogeneity and bird species richness relative to high levels of use (e.g., tractor-plowed fields). Tsetse control may be indirectly maintaining species richness in the valley by encouraging the differential spread of these small-scale, heterogeneous farms in place of large-scale, homogeneous farms. Nevertheless, if the extent of small-holder farms significantly exceeds that of present levels, negative impacts on bird species richness and large shifts in species composition may occur.  相似文献   

12.
Refining Biodiversity Conservation Priorities   总被引:3,自引:1,他引:3  
Abstract:  Although there is widespread agreement about conservation priorities at large scales (i.e., biodiversity hotspots), their boundaries remain too coarse for setting practical conservation goals. Refining hotspot conservation means identifying specific locations (individual habitat patches) of realistic size and scale for managers to protect and politicians to support. Because hotspots have lost most of their original habitat, species endemic to them rely on what remains. The issue now becomes identifying where this habitat is and these species are. We accomplished this by using straightforward remote sensing and GIS techniques, identifying specific locations in Brazil's Atlantic Forest hotspot important for bird conservation. Our method requires a regional map of current forest cover, so we explored six popular products for mapping and quantifying forest: MODIS continuous fields and a MODIS land cover (preclassified products), AVHRR, SPOT VGT, MODIS (satellite images), and a GeoCover Landsat thematic mapper mosaic (jpg). We compared subsets of these forest covers against a forest map based on a Landsat enhanced thematic mapper. The SPOT VGT forest cover predicted forest area and location well, so we combined it with elevation data to refine coarse distribution maps for forest endemic birds. Stacking these species distribution maps enabled identification of the subregion richest in threatened birds—the lowland forests of Rio de Janeiro State. We highlighted eight priority fragments, focusing on one with finer resolved imagery for detailed study. This method allows prioritization of areas for conservation from a region >1 million km2 to forest fragments of tens of square kilometers. To set priorities for biodiversity conservation, coarse biological information is sufficient. Hence, our method is attractive for tropical and biologically rich locations, where species location information is sparse.  相似文献   

13.
Abstract: Changes in land use and land cover have affected and will continue to affect biological diversity worldwide. Yet, understanding the spatially extensive effects of land‐cover change has been challenging because data that are consistent over space and time are lacking. We used the U.S. National Land Cover Dataset Land Cover Change Retrofit Product and North American Breeding Bird Survey data to examine land‐cover change and its associations with diversity of birds with principally terrestrial life cycles (landbirds) in the conterminous United States. We used mixed‐effects models and model selection to rank associations by ecoregion. Land cover in 3.22% of the area considered in our analyses changed from 1992 to 2001, and changes in species richness and abundance of birds were strongly associated with land‐cover changes. Changes in species richness and abundance were primarily associated with changes in nondominant types of land cover, yet in many ecoregions different types of land cover were associated with species richness than were associated with abundance. Conversion of natural land cover to anthropogenic land cover was more strongly associated with changes in bird species richness and abundance than persistence of natural land cover in nearly all ecoregions and different covariates were most strongly associated with species richness than with abundance in 11 of 17 ecoregions. Loss of grassland and shrubland affected bird species richness and abundance in forested ecoregions. Loss of wetland was associated with bird abundance in forested ecoregions. Our findings highlight the value of understanding changes in nondominant land cover types and their association with bird diversity in the United States.  相似文献   

14.
Riparian habitats are important for the maintenance of regional biodiversity. Many studies have compared bird distributions between riparian and non-riparian habitats but have not established how wide riparian habitats used by birds are, as measured by distance from the nearest stream. We investigated the distribution of understory birds along gradients of distance from streams, soil clay content, and slope in a central Amazonian forest, by mist-netting birds three times in 45 plots. We used nonmetric multidimensional scaling (NMDS) to reduce the dimensionality of species quantitative (abundance) and qualitative (presence-absence) composition to one multivariate axis. Estimates of the width of riparian habitats as indicated by understory birds depended on the community attribute considered, measuring 90 m for species quantitative composition and 140 m for species qualitative composition. Species distributions were correlated with clay content but were independent of slope, while distance from streams was positively correlated with clay content but independent of slope. Clay content affects plant species composition, which in turn, may influence bird species composition. However, distribution patterns of birds in relation to distance from streams are consistent among studies carried out in many different temperate and tropical regions, indicating an effect of distance from streams itself. Protection of riparian habitats is one of the most widely used conservation strategies, and Brazilian environmental legislation mandates the protection of a 30 m wide strip of riparian vegetation on either side of small streams. We show that the protected strip should be much wider and recommend strategies to place other forms of land protection contiguous with riparian areas so that Brazilian environmental legislation better fulfills its role of protecting biodiversity associated with riparian habitats.  相似文献   

15.
Persistence of Forest Birds in the Costa Rican Agricultural Countryside   总被引:8,自引:1,他引:8  
Abstract:  Understanding the persistence mechanisms of tropical forest species in human-dominated landscapes is a fundamental challenge of tropical ecology and conservation. Many species, including more than half of Costa Rica's native land birds, use mostly deforested agricultural countryside, but how they do so is poorly known. Do they commute regularly to forest or can some species survive in this human-dominated landscape year-round? Using radiotelemetry, we detailed the habitat use, movement, foraging, and nesting patterns of three bird species, Catharus aurantiirostris , Tangara icterocephala , and Turdus assimilis , by obtaining 8101 locations from 156 individuals. We chose forest birds that varied in their vulnerability to deforestation and were representative of the species found both in forest and human-dominated landscapes. Our study species did not commute from extensive forest; rather, they fed and bred in the agricultural countryside. Nevertheless, T. icterocephala and T. assimilis , which are more habitat sensitive, were highly dependent on the remaining trees. Although trees constituted only 11% of land cover, these birds spent 69% to 85% of their time in them. Breeding success of C. aurantiirostris and T. icterocephala in deforested habitats was not different than in forest remnants, where T. assimilis experienced reduced breeding success. Although this suggests an ecological trap for T. assimilis , higher fledgling survival in forest remnants may make up for lower productivity. Tropical countryside has high potential conservation value, which can be enhanced with even modest increases in tree cover. Our findings have applicability to many human-dominated tropical areas that have the potential to conserve substantial biodiversity if appropriate restoration measures are taken.  相似文献   

16.
不同植被类型对风沙灾害的响应研究有助于风沙灾害的遥感监测评估和防灾减灾工作。采用传统统计学和空间自相关方法,利用MODIS的每日反射率和土地类型产品,分析了风沙灾害后南疆西部不同植被类型NDVI的变化规律及其空间分布特征。结果表明:风沙灾害后,研究区不同植被类型NDVI的差异在增大,NDVI变化值在一0.3865~0.4148之间,NDVI减小的面积占整个研究区面积的54.98%,变异系数增大值在2.44%~36.75%之间;受到风沙灾害的影响,研究区植被NDVI全局Moran’SI系数从0.7982减小到0.6786,但在空间上仍存在显著的正相关性,具有显著的空间集聚特征;由NDVI差值的局部空间自相关指标集聚图以及不同植被类型NDVI差值的空间关联区域面积百分比,可以发现落叶针叶林和裸地或低植被覆盖地受风沙灾害的影响较小,郁闭灌丛和作物受风沙灾害的影响较大。上述关于风沙灾害后南疆西部不同植被类型的变化及其空间格局的研究结果,不仅证明了防护林的风沙阻挡作用,也可以为风沙灾害的防治工作提供参考依据。  相似文献   

17.
There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote‐sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land‐use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land‐use zones of 3 communities. Land‐use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land‐use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses.  相似文献   

18.
Globally, agriculture is the greatest source of threat to biodiversity, through both ongoing conversion of natural habitat and intensification of existing farmland. Land sparing and land sharing have been suggested as alternative approaches to reconcile this threat with the need for land to produce food. To examine which approach holds most promise for grassland species, we examined how bird population densities changed with farm yield (production per unit area) in the Campos of Brazil and Uruguay. We obtained information on biodiversity and crop yields from 24 sites that differed in agricultural yield. Density–yield functions were fitted for 121 bird species to describe the response of population densities to increasing farm yield, measured in terms of both food energy and profit. We categorized individual species according to how their population changed across the yield gradient as being positively or negatively affected by farming and according to whether the species’ total population size was greater under land‐sparing, land‐sharing, or an intermediate strategy. Irrespective of the yield, most species were negatively affected by farming. Increasing yields reduced densities of approximately 80% of bird species. We estimated land sparing would result in larger populations than other sorts of strategies for 67% to 70% of negatively affected species, given current production levels, including three threatened species. This suggests that increasing yields in some areas while reducing grazing to low levels elsewhere may be the best option for bird conservation in these grasslands. Implementing such an approach would require conservation and production policies to be explicitly linked to support yield increases in farmed areas and concurrently guarantee that larger areas of lightly grazed natural grasslands are set aside for conservation.  相似文献   

19.
Deforestation and Plant Diversity of Madagascar's Littoral Forests   总被引:2,自引:0,他引:2  
Abstract:  Few studies have attempted to quantify the reduction or document the floristic composition of forests in Madagascar. Thus, we focused specifically on deforestation and plant diversity in Madagascar's eastern littoral community. We used a data set of approximately 13,500 specimen records compiled from both historical and contemporary collections resulting from recent intensive inventory efforts to enumerate total plant species richness and to analyze the degree of endemism within littoral forests. Change in littoral forest cover from original to current extent was estimated using geographical information systems tools, remote sensing data (satellite imagery and low-elevation digital photography), and environmental data layers. Of the original littoral forest only 10.3% remains in the form of small forest parcels, and only 1.5% of these remaining fragments are included within the existing protected-areas network. Additionally, approximately 13% of Madagascar's total native flora has been recorded from these forests that originally occupied <1% of its total land surface, and over 25% of the 1535 plant species known from littoral forests are endemic to this community. Given the ongoing pressure from human settlement along Madagascar's eastern coast, protection of the remaining forest fragments is critical for their survival. Fifteen of the largest intact littoral forest fragments we identified, collectively representing 41.5% of remaining littoral forest, are among priority sites recommended to the government of Madagascar for plant conservation and incorporation into the protected-areas network.  相似文献   

20.
Conversion of agricultural land to forest plantations is a major driver of global change. Studies on the impact of forest plantations on biodiversity in plantations and in the surrounding native vegetation have been inconclusive. Consequently, it is not known how to best manage the extensive areas of the planet currently covered by plantations. We used a novel, long‐term (16 years) and large‐scale (30,000 ha) landscape transformation natural experiment (the Nanangroe experiment, Australia) to test the effects of land conversion on population dynamics of 64 bird species associated with woodland and forest. A unique aspect of our study is that we focused on the effects of plantations on birds in habitat patches within plantations. Our study design included 56 treatment sites (Eucalyptus patches where the surrounding matrix was converted from grazed land to pine plantations), 55 control sites (Eucalyptus patches surrounded by grazed land), and 20 matrix sites (sites within the pine plantations and grazed land). Bird populations were studied through point counts, and colonization and extinction patterns were inferred through multiple season occupancy models. Large‐scale pine plantation establishment affected the colonization or extinction patterns of 89% of studied species and thus led to a comprehensive turnover in bird communities inhabiting Eucalyptus patches embedded within the maturing plantations. Smaller bodied species appeared to respond positively to plantations (i.e., colonization increased and extirpation of these species decreased in patches surrounded by plantations) because they were able to use the newly created surrounding matrix. We found that the effects of forest plantations affected the majority of the bird community, and we believe these effects could lead to the artificial selection of one group of species at the expense of another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号