首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhou J  Wu Y  Zhang J  Kang Q  Liu Z 《Chemosphere》2006,65(2):310-317
Elemental (TOC, TN, C/N) and stable carbon and nitrogen isotopic (delta(13)C, delta(15)N) compositions were measured for surface sediments, three sediment vibrocores, plants, and suspended particulate matter (SPM) collected from salt marsh of the Changjiang Estuary. The purpose of this study is to characterize the sources of organic matter in sediments and to further elucidate the factors influencing the isotope signature in the salt marsh. Our results indicate that organic matter preserved in the sediments is predominantly controlled by the particulate organic matter in the Changjiang Estuary. The in situ contribution of marsh plants carbon to sediment organic matter is clearest in the high marsh, where the low delta(13)C of the plants (-28.1 per thousand) is reflected by a sediment delta(13)C (-24.7 per thousand) lower than values found for the low marsh and bare flat sediments (-23.4 per thousand and -23.0 per thousand, respectively). The effect of grain size on the spatial difference of isotope composition in the marsh sediments is insignificant, based on the observation that similar isotope values are found in different size particles, both for delta(13)C and delta(15)N. Nutrient utilization by plant assimilation, however, shows great impact on the surface sediment delta(15)N composition, due to the isotope fractionation. With extensive plant coverage and the consequent low surface water nitrate concentration, delta(15)N values of the high marsh surface sediments show (15)N enrichment.  相似文献   

2.
Stable isotope analyses (delta(15)N) were used to examine invertebrate tissue enrichment in two North Carolina estuaries with differing amounts of nutrient loading. Bivalves collected from a nutrient sensitive estuary yielded a significant difference in mean nitrogen isotopic composition of tissue (10.4 per thousand+/-0.82; N=66) compared to bivalves collected from a less nutrient sensitive estuary (6.4 per thousand+/-0.63; N=45). Similarly, blue crabs from nutrient sensitive sites had a nitrogen isotopic composition of 11.4 per thousand (+/-1.3, N=77), which was significantly different (P<0.001) than the tissue of less nutrient sensitive blue crabs (9.6 per thousand+/-0.6; N=77). The results showed that an inverse relationship exists between invertebrate tissue enrichment and indicators of water quality across estuarine sites. This study suggests that a relationship may exist between nutrient sources and subsequent energy transfer to estuarine consumers in two North Carolina estuaries.  相似文献   

3.
Serrano R  Blanes MA  Orero L 《Chemosphere》2007,69(7):1075-1080
Stable isotopes of carbon and nitrogen (delta(13)C and delta(15)N) have been determined in wild and farmed gilthead sea bream (Sparus aurata) samples of white and red muscle, liver, gills and gonads. First, delta(13)C and delta(15)N values were determined in samples with and without lipid removal to check the possible effect of lipid content on the stable isotope values of the different tissues studied. Differences were found for delta(13)C in all tissues studied apart from white muscle of wild fish, the tissue with the lowest lipid content. For delta(15)N values no differences were found in wild fish tissues. Liver from farmed fish showed lower delta(15)N value after lipid removing. Further conclusions were based on results obtained from lipid-free samples. delta(13)C of cultured fish tissues showed a mean depletion of 2.9+/-0.4 per thousand compared to wild specimens, suggesting different sources of carbon in the diet, probably due to the feed used during sea-cage culture. Cultured gilthead sea bream tissues were significantly more enriched in nitrogen than wild specimens by an average of 1.5+/-0.2 per thousand in white muscle, indicating a slight increase in the trophic level. Determination of stable isotope signatures of gilthead sea bream tissues allows clear discrimination between wild and cultured sea bream, and characterisation of differences in diet and feeding conditions in any tissue studied.  相似文献   

4.
Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has occurred in the sulphate reduction zone. Benzene degradation may be associated with denitrification since increased benzene delta13C is associated with increased delta15N in residual nitrate. Re-supply of electron acceptors by diffusion from the matrix into fractures and dispersive mixing is an important constraint on degradation rates and natural attenuation capacity in this dual-porosity aquifer.  相似文献   

5.
Chiang PN  Wang MK  Chiu CY  King HB  Hwong JL 《Chemosphere》2004,54(2):217-224
The carbon isotope analysis [delta13C values] of organic samples can be a useful research in ecological studies because delta13C values are indicative of the plant source. This study investigated the changes in plant communities along the grassland-forest boundary in the alpine forest at Ta-Ta-Chia long term ecological research (LTER) site in central Taiwan using carbon isotope data. The aim of this study was focused on the forest fire affected the change of vegetation community. Four pedons from grassland dominated by Miscanthus transmorrisonensis (pedons 1 and 2), transition zone by Tsuga and Yushania nittakeyamensis (pedon 3), and forest zone by Tsuga and nittakeyamensis (pedon 4) were examined. Soil organic matter (SOM) delta13C values in the upper soil horizon were similar to delta13C values of the overlaying vegetation types. This indicates that the boundary between these plant communities remained the same in the past decades. The delta13C values of the grassland SOM ranged from -19.4 per thousand to -24.1 per thousand, showing decrease with soil depth. This suggests that C4 plants (transmorrisonensis) have replaced C3 plants of Tsuga and nittakeyamensis. The delta13C values of the Tsuga forest area (pedon 4) range from -27.0 per thousand to -23.5 per thousand and showed only slight change with soil depth, implying that C3 plants have remained the major species in the forest.  相似文献   

6.
Natural variations of the nitrogen isotopes 15N/14N (delta15N values) and the N concentrations of one-year-old needles from 7-12-year-old pine trees (Pinus sylvestris L.) were determined on 27 sites in the heavily polluted Leipzig-Halle region (former GDR). At three selected sites measurements were repeated over a period of 2 years. N concentrations and delta15N values in different needle age classes were compared at the three sites. The delta15N values of the N in the humus layer and the potential plant available N in the A(h) horizon of the local soil were determined. The 15N/14N isotope ratios (delta15N values) of one-year-old pine needles in the region of Leipzig-Halle were found to vary depending on their specific location by a factor of up to one order of magnitude (-9.6 per thousand to + 0.4 per thousand ). N concentrations in one-year-old pine needles varied between 0.71 and 1.38 mmol eq N g dw(-1). Pine stands with positive or slightly negative delta15N values and high N concentrations in one-year-old needles were concentrated around the cities of Leipzig and Halle and in the industrial areas. More negative delta15N values and lower N concentrations in one-year-old pine needles were found on sites at greater distances from the industrial agglomerations, mainly in the NE forested part. Site specific differences in the delta15N values of the N in the humus layer from three selected sites were similar to those found for the needles. No site specific differences, however, were found for the delta15N values of the water soluble nitrogen fraction from the mineral soil horizons of the same sites.  相似文献   

7.
Tagami K  Uchida S 《Chemosphere》2005,60(5):714-717
Technetium (Tc) is a non-essential element for which accumulation mechanisms in plants have recently been discussed, but only from the viewpoint of existence of anion transport proteins in plant cells. In this study, using three kinds of plants (Cucumis sativus L., Raphanus sativus L., and Brassica chinensis L.), uptake of Tc and Re (a chemical analogue of Tc) were observed. The results showed that Tc and Re uptake occurred not only with water mass flow or active nutrient uptake, but also with uptake of nutrient cations such as K+. It is suggested here that most stable chemical form under aerobic conditions, TcO4-, is used in cation transport as a substitute ions, such as Cl-. After TcO4- passes through a root surface, it moves through the xylem together with cations. Due to these uptake mechanisms, Tc is highly accumulated in plants.  相似文献   

8.
Six plant species in the family Gramineae were used to investigate the relationship between Cs uptake, nutrient regime and plant growth strategy sensu Grime (1979: Plant Growth Strategies and Vegetation Processes, John Wiley). The roots of 66 day old Elymus repens (L.) Gould., Bromus sterilis L., Agrostis stolonifera L., Anthoxanthum odoratum L., Festuca ovina L. and Nardus stricta L. plants grown in acid-washed sand at high and low nutrient levels were exposed to a 96 h pulse of stable Cs at 0.05 mM, 0.15 mM, 0.3 mM, 1.0 mM and 3.0 mM concentrations. Different nutrient regimes induced large differences in dry wt in E. repens, B. sterilis and A. stolonifera plants but only small differences in N. stricta and F. ovina plants. At high nutrient concentrations, A. stolonifera, A. odoratum, F. ovina and N. stricta shoots showed significantly greater increases in internal Cs concentration with rising external Cs concentrations than did E. repens and B. sterilis shoots. The relationship between increases in shoot and external Cs concentrations was statistically indistinguishable between species in plants grown at the low nutrient concentration. These patterns of Cs uptake ensured that with long-term high K concentrations the more competitive plants (E. repens and B. sterilis) accumulated higher concentrations of Cs from low external concentrations than did non-competitive plants or competitive plants grown at low nutrient levels. It is suggested that the relationship between plant growth strategy sensu Grime (1979) and Cs accumulation patterns may help to explain the different concentrations to which species accumulate radiocaesium from the soil.  相似文献   

9.
To determine the source of dissolved inorganic nitrogen (N) in runoff, approx. 35kg N enriched with the stable isotope (15)N (2110 per thousand delta(15)N) was added to a mature coniferous forested catchment for one whole year. The total N input was approx. 50kg ha(-1) year(-1). The enrichment study was part of a long-term whole-catchment ammonium nitrate addition experiment at G?rdsj?n, Sweden. The (15)N concentrations in precipitation, throughfall, runoff and upper forest floor were measured prior to, during, and 3-9years following the (15)N addition. During the year of the (15)N addition the delta(15)N level in runoff largely reflected the level in incoming N, indicating that the leached NO(3)(-) came predominantly from precipitation. Only 1.1% of the incoming N was lost during the year of the tracer addition. The cumulative loss of tracer N over a 10-year period was only 3.9% as DIN and 1.1% as DON.  相似文献   

10.
Savage C 《Ambio》2005,34(2):145-150
This paper reviews the use of stable nitrogen isotopes (delta15N) to delineate the influence of sewage nitrogen (N) in coastal ecosystems, drawing extensively on the case of Himmerfj?rden, a Baltic Sea bay that receives 15N-enriched tertiary treated sewage that is discharged mainly as dissolved inorganic N (DIN). Gradients of delta15N in macroalgae (Fucus vesiculosus) and surface sediments traced sewage-derived N to 24 km from the outfall but elevated delta15N values (> 7 per thousand) indicated that the sewage influence was most pronounced within 10 km. Comparison of macroalgal delta15N values before and after enhanced tertiary treatment showed a decrease in the spatial impact of sewage N from about 24 km to 12 km from the outfall and a decrease to more marine delta15N values in more recent growth tissues. Sedimentary delta15N records showed that sewage has had a dominant influence on organic matter production in the bay with dramatic increases in sedimentary delta15N during the years of maximum sewage N loads. In cases where sewage N introduces a distinct isotopic signature into a system and where it has had a dominant influence on organic matter production, delta15N values in biota and sediments can be used to trace the spatial and temporal influence of sewage N in aquatic ecosystems.  相似文献   

11.
Chloromethane (CH(3)Cl) is the most abundant halocarbon in the atmosphere. Although largely of natural origin it is responsible for around 17% of chlorine-catalysed ozone destruction. Sources identified to date include biomass burning, oceanic emissions, wood-rotting fungi, higher plants and most recently tropical ferns. Current estimates reveal a shortfall of around 2 million ty(-1) in sources versus sinks for the halocarbon. It is possible that emissions from green plants have been substantially underestimated. A potentially valuable tool for validating emission flux estimates is comparison of the delta13C value of atmospheric CH(3)Cl with those of CH(3)Cl from the various sources. Here we report delta13C values for CH(3)Cl released by two species of tropical ferns and show that the isotopic signature of CH(3)Cl from pteridophytes like that of CH(3)Cl from higher plants is quite different from that of CH(3)Cl produced by biomass burning, fungi and industry. delta13C values for CH(3)Cl produced by Cyathea smithii and Angiopteris evecta were respectively -72.7 per thousand and -69.3 per thousand representing depletions relative to plant biomass of 42.3 per thousand and 43.4 per thousand. The characteristic isotopic signature of CH(3)Cl released by green plants should help constrain their contribution to the atmospheric burden when reliable delta13C values for all other major sources of CH(3)Cl are obtained and a globally averaged delta13C value for atmospheric CH(3)Cl is available.  相似文献   

12.
In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 microm nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed.  相似文献   

13.
A glasshouse experiment was conducted in which 15N was used as a tracer applied as (15NH4)2SO4 to donor plants of white clover and perennial ryegrass. Nitrogen transfer via hyphae of arbuscular mycorrhizal fungi (AMF) or by other routes was studied by separating the root systems of the two plant species, as donors and receivers, when growing in the same pot, with selective mesh barriers of varying pore sizes in the presence and absence of AMF. Inoculation with AMF increased DM production and nitrogen (N) yield of clover plants. Transfer of 15N occurred between white clover and grass plants but was independent of AMF. Pore size of the mesh barriers controlled the degree of 15N enrichment in the grass, suggesting that transfer was mediated by mass flow and/or diffusion. Additional experiments showed that grass roots could pass through pores of 60-microm diameter, and hyphal links could not be detected by autoradiography, thus supporting the conclusions of the tracer experiment.  相似文献   

14.
Recent studies have demonstrated that natural abundance (15)N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, delta(15)N of foliage and soil also increases. We measured foliar delta(15)N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar delta(15)N increased from -5.2 to -0.7 per thousand with increasing N deposition from Maine to NY. Foliar delta(15)N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar delta(15)N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988.  相似文献   

15.
Stable hydrogen isotopes of two chlorinated solvents, trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA), provided by five different manufacturers, were determined and compared to their carbon and chlorine isotopic signatures. The isotope ratio for delta2H of different TCEs ranged between +466.9 per thousand and +681.9 per thousand, for delta13C between -31.57 per thousand and -27.37 per thousand, and for delta37Cl between -3.19 per thousand and +3.90 per thousand. In the case of the TCAs, the isotope ratio for delta2H ranged between -23.1 per thousand and +15.1 per thousand, for delta13C between -27.39 per thousand and -25.84 per thousand, and for delta37Cl between -3.54 per thousand and +1.39 per thousand. As well, a column experiment was carried out to dechlorinate tetrachloroethylene (PCE) to TCE using iron. The dechlorination products have completely different hydrogen isotope ratios than the manufactured TCEs. Compared to the positive values of delta2H in manufactured TCEs (between +466.9 per thousand and +681.9 per thousand), the dechlorinated products had a very depleted delta2H (less than -300 per thousand). This finding has strong implications for distinguishing dechlorination products (PCE to TCE) from manufactured TCE. In addition, the results of this study show the potential of combining 2H/1H analyses with 13C/12C and 37Cl/35Cl for isotopic fingerprinting applications in organic contaminant hydrogeology.  相似文献   

16.
Responses of free amino acids to botanical assimilation of free cyanide were investigated. Young rice seedlings (Oryza sativa L. cv. XZX 45) were grown in nutrient solution amended with free cyanide (KCN). Cyanide was analyzed in solution as well as in plant materials to estimate the phyto-assimilation potential. Free amino acids in different parts of plants were also measured to determine metabolic responses to KCN exposure. Phyto-assimilation of KCN was obvious, and the rates were positively correlated to the concentration supplied. Although changes in total amino acid content in plant materials were negligible during KCN metabolism (p?>?0.05), responses of different amino acids to KCN treatments were quite different. All treatments with KCN increased the content of proline (Pro) and isoleucine (Ile) in roots significantly compared with control (p?<?0.05), while changes of aspartic acid, lysine, and histidine in roots were more evident at higher KCN treatments (p?<?0.05). Results indicate that the content of Pro, Ile, and tyrosine showed pronounced increase in shoots of rice seedlings exposed to KCN at 1.44 mg CN/L or higher (p?<?0.05). Other amino acids slightly changed in all plant materials exposed to KCN (p?>?0.05). Results indicate that specific amino acids in rice seedlings showed positive response to non-toxic concentrations of exogenous KCN. These findings could provide additional insights into the inducible mechanisms underlying the involvement of amino acids in KCN metabolism.  相似文献   

17.
Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The delta(13)C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of -31.3 +/- 0.5 per thousand (n=40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in (13)C of MTBE by 40.6 per thousand, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 microg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of delta(13)C for TBA in groundwater samples in the "With ethanol lane" was -26.0 +/- 1.0 per thousand (n=32). Uniform delta(13)C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of -9.2 per thousand to -15.6 per thousand, and values of delta(13)C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year(-1) (n=18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year(-1) calculated using contaminant mass-discharge for the "With ethanol lane".  相似文献   

18.
Zhang FQ  Wang YS  Lou ZP  Dong JD 《Chemosphere》2007,67(1):44-50
The effects of multiple heavy metal stress on the activity of antioxidative enzymes and lipid peroxidation were studied in leaves and roots of two mangrove plants, Kandelia candel and Bruguiera gymnorrhiza, grown under control (10 per thousand NaCl nutrient solution) or five levels of multiple heavy metal stress (10 per thousand NaCl nutrient solution containing different concentration of Pb2+, Cd2+, and Hg2+). Leaves and roots of control and heavy metal-stressed plants were harvested after two months. In leaves of heavy metal-stressed plants superoxide dismutase (SOD) and peroxidase (POD) activities fluctuated in different stress levels compared to the control, while catalase (CAT) activity increased with stress levels in K. candel, but remained unchanged in leaves of B. gymnorrhiza. In comparison with the control, the dynamic tendency of SOD, CAT, and POD activities in roots of heavy metal-stressed plants all ascended, and then declined. The increase in enzyme activities demonstrated that K. candel is more tolerant to heavy metals than B. gymnorrhiza. Lipid peroxidation was enhanced only in leaves of heavy metal-stressed B. gymnorrhiza. These results indicate that in heavy-metal stress antioxidative activities may play an important role in K. candel and B. gymnorrhiza and that cell membrane in leaves and roots of K. candel have greater stability than those of B. gymnorrhiza. For pollution monitoring purposes, POD activity in roots and leaves maybe serve as a biomarker of heavy metal stress in K. candel, while lipid peroxidation maybe serve as biomarker in B. gymnorrhiza.  相似文献   

19.
Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 degrees C in combination with salinities of 0, 0.5, and 5 per thousand. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants.  相似文献   

20.
The southeastern portion of North Carolina features a dense crop and animal agricultural region; previous research suggests that this agricultural presence emits a significant portion of the state's nitrogen (i.e., oxides of nitrogen and ammonia) emissions. These findings indicate that transporting air over this region can affect nitrogen concentrations in precipitation at sites as far as 50 mi away. The study combined nitrate nitrogen isotope data with back-trajectory analysis to examine the relationship between regional nitrogen emission estimates independent of pollutant concentration information. In 2004, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to determine potential sources of nitrogen in rainwater collected at an urban receptor site in Raleigh, NC. The delta 15N isotope ratio signatures of each sample were used to further differentiate between sources of the rainwater nitrate. This study examined the importance of pollution sources, including animal agricultural activity, and meteorology on rainfall chemistry as well as the implications in fine particulate matter (PM2.5) formation. Samples that transited the dense crop and animal (swine) agricultural region of east-southeastern North Carolina (i.e., the source region) had lower delta 15N isotope ratios in the nitrate ion (average = -2.1 +/- 1.7 per thousand) than those from a counterpart nonagricultural region (average = 0.1 +/- 3 per thousand.) An increase in PM2.5 concentrations in the urban receptor site (yearly average = 15.1 +/- 5.8 microg/m3) was also found to correspond to air transport over the dense agricultural region relative to air that was not subjected to such transport (yearly average = 11.7 +/- 5.8 microg/m3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号