首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence of an animal’s personality is the result of interactions between genetics, environment and experience. It is known that individuals are able to modulate their behaviour according to the context or the social environment. Many studies have shown for example, that familiarity among conspecifics diminishes aggressiveness, although little is known about the underlying processes. Nevertheless, personality traits have long been determined while ignoring the social context, especially in lower vertebrates such as fish. In the present experiment, we hypothesize that group connections (network density) may be positively correlated to consistency of aggressiveness by avoiding over-aggressive acts in further encounters. To test this hypothesis, we used eels (Anguilla anguilla) as a model species and monitored both aggressiveness and sociability in 64 individuals over their first 7 months of growth from the glass eel stage. As expected, social fish were less aggressive than their non-social counterparts at all times, highlighting the existence of a behavioural syndrome in eels. Additionally, rank-order consistency of aggressiveness was higher in groups of fish with high social connectivity, compared to those in less-connected fish groups. While aggressiveness must be consistent to be considered a personality trait, our results suggest that both aggressiveness and its consistency are influenced by initial social context.  相似文献   

2.
3.
In many group-living animals, leadership by only a fraction of the group members can be important for group navigation. It has been shown that subgroups of informed individuals can steer the remainder of the group without direct communication, resolving conflicts of interest through individual-to-individual interactions. We present a model for the navigation of collectively moving groups that includes preferential interactions between individuals as a way of imposing social network structures, known to be present in many species. We show that effective leadership can occur when leaders do not occupy frontal spatial positions and when navigation tendency is appropriately balanced with social position. Our model also shows that small minorities can dominate movement decisions if they have navigational knowledge combined with influential social network positions. Our findings highlight the mechanistic importance of social networks for the movement decisions of animal groups. We discuss the implications of our research for interpreting empirical observations.  相似文献   

4.
Most studies of animal personality attribute personality to genetic traits. But a recent study by Magnhagen and Staffan (Behav Ecol Sociobiol 57:295–303, 2005) on young perch in small groups showed that boldness, a central personality trait, is also shaped by social interactions and by previous experience. The authors measured boldness by recording the duration that an individual spent near a predator and the speed with which it fed there. They found that duration near the predator increased over time and was higher the higher the average boldness of other group members. In addition, the feeding rate of shy individuals was reduced if other members of the same group were bold. The authors supposed that these behavioral dynamics were caused by genetic differences, social interactions, and habituation to the predator. However, they did not quantify exactly how this could happen. In the present study, we therefore use an agent-based model to investigate whether these three factors may explain the empirical findings. We choose an agent-based model because this type of model is especially suited to study the relation between behavior at an individual level and behavioral dynamics at a group level. In our model, individuals were either hiding in vegetation or feeding near a predator, whereby their behavior was affected by habituation and by two social mechanisms: social facilitation to approach the predator and competition over food. We show that even if we start the model with identical individuals, these three mechanisms were sufficient to reproduce the behavioral dynamics of the empirical study, including the consistent differences among individuals. Moreover, if we start the model with individuals that already differ in boldness, the behavioral dynamics produced remained the same. Our results indicate the importance of previous experience and social interactions when studying animal personality empirically.  相似文献   

5.
Interest in animal personalities has generated a burgeoning literature on repeatability in individual traits such as boldness or exploration through time or across different contexts. Yet, repeatability can be influenced by the interactive social strategies of individuals, for example, consistent inter-individual variation in aggression is well documented. Previous work has largely focused on the social aspects of repeatability in animal behaviour by testing individuals in dyadic pairings. Under natural conditions, individuals interact in a heterogeneous polyadic network. However, the extent to which there is repeatability of social traits at this higher order network level remains unknown. Here, we provide the first empirical evidence of consistent and repeatable animal social networks. Using a model species of shark, a taxonomic group in which repeatability in behaviour has yet to be described, we repeatedly quantified the social networks of ten independent shark groups across different habitats, testing repeatability in individual network position under changing environments. To understand better the mechanisms behind repeatable social behaviour, we also explored the coupling between individual preferences for specific group sizes and social network position. We quantify repeatability in sharks by demonstrating that despite changes in aggregation measured at the group level, the social network position of individuals is consistent across treatments. Group size preferences were found to influence the social network position of individuals in small groups but less so for larger groups suggesting network structure, and thus, repeatability was driven by social preference over aggregation tendency.  相似文献   

6.
Knowledge of the structure of networks of social interactions is important for understanding the evolution of cooperation, transmission of disease, and patterns of social learning, yet little is known of how environmental, ecological, or behavioural factors relate to such structures within groups. We observed grooming, dominance, and foraging competition interactions in eight groups of wild meerkats (Suricata suricatta) and constructed interaction networks for each behaviour. We investigated relationships between networks for different social interactions and explored how group attributes (size and sex ratio), individual attributes (tenure of dominants), and ecological factors (ectoparasite load) are related to variation in network structure. Network structures varied within a group according to interaction type. Further, network structure varied predictably with group attributes, individual attributes, and ecological factors. Networks became less dense as group size increased suggesting that individuals were limited in their number of partners. Groups with more established dominant females were more egalitarian in their grooming and foraging competition interactions, but more despotic in their dominance interactions. The distribution of individuals receiving grooming became more skewed at higher parasite loads, but more equitable at low parasite loads. We conclude that the pattern of interactions between members of meerkat groups is not consistent between groups but instead depends on general attributes of the group, the influence of specific individuals within the group, and ecological factors acting on group members. We suggest that the variation observed in interaction patterns between members of meerkat groups may have fitness consequences both for individual group members and the group itself.  相似文献   

7.
Animal social networks: an introduction   总被引:1,自引:1,他引:0  
Network analysis has a long history in the mathematical and social sciences and the aim of this introduction is to provide a brief overview of the potential that it holds for the study of animal behaviour. One of the most attractive features of the network paradigm is that it provides a single conceptual framework with which we can study the social organisation of animals at all levels (individual, dyad, group, population) and for all types of interaction (aggressive, cooperative, sexual etc.). Graphical tools allow a visual inspection of networks which often helps inspire ideas for testable hypotheses. Network analysis itself provides a multitude of novel statistical tools that can be used to characterise social patterns in animal populations. Among the important insights that networks have facilitated is that indirect social connections matter. Interactions between individuals generate a social environment at the population level which in turn selects for behavioural strategies at the individual level. A social network is often a perfect means by which to represent heterogeneous relationships in a population. Probing the biological drivers for these heterogeneities, often as a function of time, forms the basis of many of the current uses of network analysis in the behavioural sciences. This special issue on social networks brings together a diverse group of practitioners whose study systems range from social insects over reptiles to birds, cetaceans, ungulates and primates in order to illustrate the wide-ranging applications of network analysis. This contribution is part of the special issue “Social Networks: new perspectives” (Guest Editors: J. Krause, D. Lusseau and R. James).  相似文献   

8.
Consistent individual differences in behavior, commonly termed animal personality, are a widespread phenomenon across taxa that have important consequences for fitness, natural selection, and trophic interactions. Animal personality research may prove useful in several conservation contexts, but which contexts remains to be determined. We conducted a structured literature review of 654 studies identified by combining search terms for animal personality and various conservation subfields. We scored the relevance of personality and conservation issues for each study to identify which studies meaningfully integrated the 2 fields as opposed to surface-level connections or vague allusions. We found a taxonomic bias toward mammals (29% of all studies). Very few amphibian or reptile studies applied personality research to conservation issues (6% each). Climate change (21%), invasive species (15%), and captive breeding and reintroduction (13%) were the most abundant conservation subfields that occurred in our search, though a substantial proportion of these papers weakly integrated conservation and animal personality (climate change 54%, invasive species 51%, captive breeding and reintroduction 40%). Based on our results, we recommend that researchers strive for consistent and broadly applicable terminology when describing consistent behavioral differences to minimize confusion and improve the searchability of research. We identify several gaps in the literature that appear to be promising and fruitful avenues for future research, such as disease transmission as a function of sociability or exploration as a driver of space use in protected areas. Practitioners can begin informing future conservation efforts with knowledge gained from animal personality research.  相似文献   

9.
Mixed-species associations are a widespread phenomenon, comprising interacting heterospecific individuals which gain predator, foraging or social benefits. Avian flocks have traditionally been classified as monolithic species units, with species-wide functional roles, such as nuclear, active, passive, or follower. It has also been suggested that flocks are mutualistic interactions, where niches of participating species converge. However the species-level perspective has limited previous studies, because both interactions and benefits occur at the level of the individual. Social network analysis provides a set of tools for quantitative assessment of individual participation. We used mark-resighting methods to develop networks of nodes (colour-marked individuals) and edges (their interactions within flocks). We found that variation in flock participation across individuals within species, especially in the buff-rumped thornbill, encompassed virtually the entire range of variation across all individuals in the entire set of species. For example, female, but not male, buff-rumped thornbills had high network betweenness, indicating that they interact with multiple flocks, likely as part of a female-specific dispersal strategy. Finally, we provide new evidence that mixed-species flocking is mutualistic, by quantifying an active shift in individual foraging niches towards those of their individual associates, with implications for trade-off between costs and benefits to individuals derived from participating in mixed-species flocks. This study is, to our knowledge, the first instance of a heterospecific social network built on pairwise interactions.  相似文献   

10.
11.
Studies increasingly explore whether there is variation between individuals in how they adjust their behavior to different environmental contexts using random regression analysis (RR). RR estimates the between-individual variance in elevation (expected behavior in the mean environment) and variance in plasticity (individual-specific adjustment of behavior to the environment) and the covariance between these properties. These (co)variances allow deriving both environment-specific repeatability estimates and the individual-level correlation in behavior between environmental conditions, both of which are of key interest for understanding consistency in behavior over space and time, a core issue in animal personality research. However, very few studies use the RR estimates to produce this information. In this paper, I outline how to extract this information (including example code in R) and apply the approach to 16 estimates based on nine published RR studies. Despite the fact that the behaviors have a decent repeatability under different environmental conditions, I find that in half the cases, the cross-environmental correlation is low (<0.4). This implies that individuals differ in their behavioral trait values but that the ranking of these individual values tends to change between environmental conditions. This level of inconsistency in animal personality traits appears not to have been fully appreciated, and future studies on plasticity using RR should explicitly include it.  相似文献   

12.
Social network theory has made major contributions to our understanding of human social organisation but has found relatively little application in the field of animal behaviour. In this review, we identify several broad research areas where the networks approach could greatly enhance our understanding of social patterns and processes in animals. The network theory provides a quantitative framework that can be used to characterise social structure both at the level of the individual and the population. These novel quantitative variables may provide a new tool in addressing key questions in behavioural ecology particularly in relation to the evolution of social organisation and the impact of social structure on evolutionary processes. For example, network measures could be used to compare social networks of different species or populations making full use of the comparative approach. However, the networks approach can in principle go beyond identifying structural patterns and also can help with the understanding of processes within animal populations such as disease transmission and information transfer. Finally, understanding the pattern of interactions in the network (i.e. who is connected to whom) can also shed some light on the evolution of behavioural strategies.  相似文献   

13.
Social structure emerges from the patterning of interactions between individuals and plays a critical role in shaping some of the main characteristics of animal populations. The topological features of social structure, such as the extent to which individuals interact in clusters, can influence many biologically important factors, including the persistence of cooperation, and the rate of spread of disease. Yet, the extent to which social structure topology fluctuates over relatively short periods of time in relation to social, demographic, or environmental events remains unclear. Here, we use social network analysis to examine seasonal changes in the topology of social structures that emerge from socio-positive associations in adult female rhesus macaques (Macaca mulatta). Behavioral data for two different association types (grooming and spatial proximity) were collected for females in two free-ranging groups during two seasons: the mating and birth seasons. Stronger dyadic bonds resulted in social structures that were more tightly connected (i.e., of greater density) in the mating season compared to the birth season. Social structures were also more centralized around a subset of individuals and more clustered in the mating season than those in the birth season, although the latter differences were mostly driven by differences in density alone. Our results suggest a degree of temporal variation in the topological features of social structure in this population. Such variation may feed back on interactions, hence affecting the behaviors of individuals, and may therefore be important to take into account in studies of animal behavior.  相似文献   

14.
Studying the structure of social interactions is fundamental in behavioral ecology as social behavior often influences fitness and thus natural selection. However, social structure is often complex, and determining the most appropriate measures of variation in social behavior among individuals can be difficult. Social network analysis generates numerous, but often correlated, measures of individual connectedness derived from a network of interactions. We used measures of individual connectedness in networks of affiliative and agonistic interactions in yellow-bellied marmots, Marmota flaviventris, to first determine how variance was structured among network measures. Principal component analysis reduced our set of network measures to four “social attributes” (unweighted connectedness, affiliation strength, victimization, and bullying), which revealed differences between patterns of affiliative and agonistic interactions. We then used these extracted social attributes to examine the relationship between an individual’s social attributes and several performance measures: annual reproductive success, parasite infection, and basal stress. In male marmots, bullying was positively associated with annual reproductive success, while in females, affiliation strength was negatively associated with annual reproductive success. No other social attributes were significantly associated with any performance measures. Our study highlights the utility of considering multiple dimensions when measuring the structure and functional consequences of social behavior.  相似文献   

15.
Animals of many species show consistency in behaviour across time and contexts that differs from other individuals' behaviour in the same population. Such ‘personality’ affects fitness and has therefore become an increasingly relevant research topic in biology. However, consistent variation in social behaviour is understudied. In socially living species, behaviour occurs in a social environment and social interactions have a significant influence on individual fitness. This study addressed personality in social behaviour of 75 captive chimpanzees in three zoos by coding observed behaviour. Fifteen behavioural variables were significantly repeatable (range 0.21–0.93) in at least two of the three zoos. The behaviours showed considerable long-term stability across 3 years, which did not differ from the short-term repeatability. The repeatable behaviours were then analysed with factor analyses. They formed five independent factors, three of which consisted of social traits and were labelled ‘sociability’, ‘positive affect’ and ‘equitability’. The two non-social behaviour factors were labelled ‘anxiety’ and ‘activity’. The factor scores were analysed for sex and population differences. Males had higher factor scores in all traits except ‘sociability’. The factor scores differed also between the zoos, implying considerable external effects in trait expression. The results show that chimpanzees show personality in a broad range of social and non-social behaviours. The study highlights the importance of assessing personality in the social behaviour, especially in cohesive social species, as only then can we understand the consequences of personality in socially living species.  相似文献   

16.
In semi-colonial species, some individuals choose to breed in isolation while others aggregate in breeding colonies. The origin and the maintenance of this pattern have been questioned, and inherited phenotype dependency of group breeding benefits has been invoked as one of the possible mechanisms for the evolution of semi-coloniality. Using field observations and behavioural tests in the semi-colonial barn swallow (Hirundo rustica), we tested the hypothesis that breeding group size is related to personality. We measured neophobia (the fear and avoidance of new things) and social tolerance of adults and showed that these two independent traits of personality are strongly related to breeding group size. The biggest colonies hosted birds with higher neophobia, and larger groups also hosted females with higher social tolerance. This parallel between group size and group composition in terms of individual personality offers a better understanding of the observed diversity in breeding group size in this species. Further studies are, however, needed to better understand the origin of the link between individual personality and group breeding strategies.  相似文献   

17.
Recently, integration of personality traits into a ‘pace-of-life syndrome’ (POLS) context has been advocated. To be able to understand how an individual’s behavioural, physiological and life history traits may coevolve, we need to jointly quantify these traits in order to study their covariance. Few studies have established links between personality and immunity properties of an individual. We here examined covariation of a measure of skeletal size (tarsus length), three behavioural traits (activity, handling aggression and breath rate) and two immunological traits (IgG level and haematocrit), in 592 wild caught blue tits. Many individuals (201) were tested more than once, allowing quantification of individual consistency of all traits and partition of the covariances between the traits, using a multivariate mixed model, into between individual and residual covariances. We find individual consistency of all behavioural traits, indicating that these capture aspects of blue tit adult personality and also the physiological measures are repeatable. Contrary to the POLS expectation, we find no overall significant individual level correlation structure between these traits and a factor analytical approach confirmed that between individual correlations across traits were not due to a common (POLS) factor or driven by size (tarsus length). Based on a published power study, we conclude that there is no common syndrome of individual level covariance between personality and physiological traits in wild blue tits or that the effect sizes, such a syndrome generates, are too low (r?<?0.3) to detect. Future field-based work should be designed to explore low effect sizes and strive to measure specific traits whose involvement is implicated to have large effect sizes as based on, e.g. laboratory findings.  相似文献   

18.
The theory of collective motion and the study of animal social networks have, each individually, received much attention. Currently, most models of collective motion do not consider social network structure. The implications for considering collective motion and social networks together are likely to be important. Social networks could determine how populations move in, split up into and form separate groups (social networks affecting collective motion). Conversely, collective movement could change the structure of social networks by creating social ties that did not exist previously and maintaining existing ties (collective motion affecting social networks). Thus, there is a need to combine the two areas of research and examine the relationship between network structure and collective motion. Here, we review different modelling approaches that combine social network structures and collective motion. Although many of these models have not been developed with ecology in mind, they present a current context in which a biologically relevant theory can be developed. We argue that future models in ecology should take inspiration from empirical observations and consider different mechanisms of how social preferences could be expressed in collectively moving animal groups.  相似文献   

19.
Groups of individuals frequently interact with each other, but typically analysis of such interactions is restricted to isolated dyads. Social network analysis (SNA) provides a method of analysing polyadic interactions and is used to analyse interactions between individuals. We use a population of 12 groups (ca. 250 animals) of wild meerkats (Suricata suricatta) to test whether SNA can also be used to describe and elucidate patterns of inter-group interactions. Using data collected over 24 months, we constructed two sets of networks, based on direct encounters between groups and instances of roving males visiting other groups. We analysed replicated networks of each type of interaction to investigate similarities between networks of different social interactions as well as testing their stability over time. The two network types were similar to each other when derived from long-term data, but showed significant differences in structure over shorter timescales where they varied according to seasonal and ecological conditions. Networks for both types of inter-group interaction constructed from data collected over 3 months reliably described long-term (12- and 24-month) patterns of interactions between groups, indicating a stable social structure despite variation in group sizes and sex ratios over time. The centrality of each meerkat group in roving interactions networks was unaffected by the sex ratio of its members, indicating that male meerkats preferentially visit geographically close groups rather than those containing most females. Indeed, the strongest predictors of network structure were spatial factors, suggesting that, in contrast to analyses of intra-group interactions, analyses of inter-group interactions using SNA must take spatial factors into account.  相似文献   

20.
Social animals are extraordinarily diverse and ecologically abundant. In understanding the success of complex animal societies, task differentiation has been identified as a central mechanism underlying the emergence and performance of adaptive collective behaviors. In this study, we explore how individual differences in behavior and body size determine task allocation in the social spider Stegodyphus dumicola. We found that individuals with high body condition indices were less likely to participate in prey capture, and individuals’ tendency to engage in prey capture was not associated with either their behavioral traits or body size. No traits were associated with individuals’ propensity to participation in web repair, but small individuals were more likely to engage in standard web-building. We also discovered consistent, differences among colonies in their collective behavior (i.e., colony-level personality). At the colony level, within-colony variation in behavior (aggressiveness) and body size were positively associated with aggressive foraging behavior. Together, our findings reveal a subtly complex relationship between individual variation and collective behavior in this species. We close by comparing the relationship between individual variation and social organization in nine species of social spider. We conclude that intraspecific variation is a major force behind the social organization of multiple independently derived lineages of social spider.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号