首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feeding behavior of adult Atlantic menhaden (Brevoortia tyrannus) upon 5 species of phytoplankton and 2 species of zooplankton has been studied. Four recognizable feeding stages which were a function of the concentration and size of the food particles were observed. During rapid feeding the fish swam at a constant speed for a prolonged period over a wide range of particle concentrations. Particle and food carbon-concentrations at the threshold for initiation and termination of feeding were inversely related to particle size. Carteria chuii (13.2 μ) was not grazed at a significant rate, while two-cell chains of Skeletonema costatum (16. 5 μ) were filtered from the water, indicating a minimum-size threshold for filtration of between 13 and 16 μ. The most rapid filtering rates were observed for the copepod Acartia tonsa ( \(\bar x\) volume swept clear = 24.8 l/fish/min). The maximum food-particle size acceptable to a menhaden appears to be between Acartia tonsa (1200 μ) and adult Artemia salina (10 mm). These results suggest that the large schools of menhaden found in Atlantic coastal waters could have a significant effect on the plankton, selectively grazing zooplankton, larger phytoplankton, and the longer chains of chain-forming diatoms.  相似文献   

2.
Ingestion and egg production by Acartia hudsonica (5°C) and A. tonsa (10°C) from Narragansett Bay, Rhode Island, USA, was measured in the laboratory over a range of concentrations of the prymnesiophyte Phaeocystis pouchetii and the diatom Skeletonema costatum. Both Acartia species reproduced well when fed unialgal diets of S. costatum. Egg production by females fed P. pouchetii, either as gelatioous colonies (primarily >200 m in diameter) or solitary cells (3 to 5 m), was not significantly different than that of starved females. Acartia spp. fed selectively on S. costatum in multialgal treatments. The presence of P. pouchetii did not reduce ingestion of S. costatum; the availability of S. costatum did not increase ingestion of P. pouchetii. Nauplii of A. hudsonica grew equally well on separate diets of P. pouchetii and Isochrysis galbana, two flagellates of similar size. Adult Acartia spp. reproduced poorly when fed these phytoplankton, suggesting that particle size may be more important than food quality in describing the responses. Grazing by Acartia spp. does not directly impact the dynamics of P. pouchetii, but may indirectly contribute to blooms of this prymnesiophyte by removal of competing phytoplankton.  相似文献   

3.
Bottle incubations were conducted in March, July/August and October 1992. to measure the daily rations (R) and objectively characterize the diets of the calanoid copepodsEucalanus elongatus, Undinula vulgaris, Centropages velificatus andTemora stylifera from the west Florida continental shelf. Daily rations,R, were clustered around two, order-of-magnitude different means, 1.3 and 11.2% of body C d–1, representative of quiescent and active feeding modes, respectively. The food concentration at which the transition from quiescent to active mode occurred was influenced by food particle size. In the quiescent mode, diets were dominated by nanoplankton, whereas no food type dominated the diet in the active mode. Selective feeding, defined as a statistically significant difference between the frequency distributions of foods in the diet and environment, occurred in both quiescent and active copepods. However, what appeared to be selective feeding in quiescent copepods could be explained by processes that passively modified the distribution of the diet relative to that of the food supply. Conversely, selective feeding in active copepods apparently resulted from foraging for particles >5 m in diameter in food environments dominated by nanoplankton (<5 m).  相似文献   

4.
Grazing rates of larger (Calanus finmarchicus) and smaller (Acartia clausii Pseudocalanus elongatus etc.) copepods on naturally occurring phytoplankton populations were measured during a declining spring phytoplankton bloom. During the initial period, dominated by Chaetoceros spp. diatoms, constant ingestion rates were observed in Calanus finmarchicus at suspended particulate concentrations above 300 g carbon l-1. Average daily intake during this time amounted to 35 to 40% of body carbon and reached a maximum of 50%. The feeding response of the smaller copepods was not so well defined, although a maximum daily intake of 56% body carbon was recorded. In both groups, feeding thresholds were at particulate concentrations around 50 g C l-1. The feeding response of C. finmarchicus was correlated with both a change in their own population and in the food cell type. Linear regressions describing the concentration-dependent feeding response were: ingestion rate (IR)=1.16 total particulate volume (TPV)-36.15 during the initial part of the period compared with IR=0.41 TPV-12.18 for the latter period. C. finmarchicus filtered out slightly larger (x 1.2 diameter) particles than the small copepods and, in both groups, some filtering adjustment was made to accomodate to modal changes in the phytoplankton population from 20–30 m to 10 m diameter cells. Particle production during feeding was frequently evident in the smallest size ranges of particles and the ratio of particle production to ingestion rate was greater at low feeding rates.  相似文献   

5.
Phytoplankton pigments and species were studied at a coastal station off Sydney (New South Wales, Australia) over one annual cycle. Sudden increases in chlorophyll a (up to 280 mg m-2), due to short-lived diatom blooms, were found in May, July, September, January and February. These were superimposed upon background levels of chlorophyll a (20 to 50 mg m-2), due mostly to nanoplankton flagellates, which occurred throughout the year. The nanoplankton (<15 m) accounted for 50 to 80% of the total phytoplankton chlorophyll, except when the diatom peaks occurred (10 to 20%). The annual cycle of populations of 16 dominant species-groups was followed. Possible explanations as to alternation of diatom-dominated and nanoplankton-dominated floras are discussed. Thin-layer chromatography of phytoplankton pigments was used to determine the distribution of algal types, grazing activity, and phytoplankton senescence in the water column. Chlorophyll c and fucoxanthin (diatoms and coccolithophorids) and chlorophyll b (green flagellates) were the major accessory pigments throughout the year, with peridinin (photosynthetic dinoflagellates) being less important. Grazing activity by salps and copepods was apparent from the abundance of the chlorophyll degradation products pheophytin a (20 to 45% of the total chlorophyll a) and pheophorbide a (10 to 30%). Chlorophyllide a (20 to 45%) was associated with blooms of Skeletonema costatum and Chaetoceros spp. Small amounts of other unidentified chlorophyll a derivatives (5 to 20%) were frequently observed.  相似文献   

6.
From February 24 to April 24, weekly samples were collected at fixed depths at one station in Lindåspollene, a land-locked Norwegian fjord. Adenosine triphosphate (ATP), chlorophyll a, phaeophytin, 14C assimilation, and respiratory activity [electron transport system (ETS) activity] were measured in the net- (>30 m) and nanoplankton. Netplankton contained on the average 48% of the total chlorophyll a and 56% of the ATP, but contributed only 7% to the total carbon assimilation and 11% to the ETS activity. The assimilation numbers for net- and nanoplankton ranged from 0 to 1.2 and from 1.5 to 13.2, respectively. At the oxygen/hydrogen sulphide interface, high concentrations of ATP, but not of chlorophyll a, were found in the nanoplankton fraction. Netplankton algae grew actively only in the first phase of the bloom, and nanoplankton predominated later, apparently due to low nutrient concentrations. During the bloom, Skeletonema costatum made up the main part of the biomass. The number of cells in the chains decreased throughout the bloom, possibly reflecting the lowered silicate content. It appeared that only nanoplankton were grazed by zooplankton, while netplankton sank to the bottom and represented input to the benthos.  相似文献   

7.
Omnivorous feeding behavior of the Antarctic krill Euphausia superba   总被引:5,自引:0,他引:5  
Feeding experiments were conducted at Palmer Station from December 1985 to February 1986 to examine the potential role of copepod prey as an alternative food source for Euphausia superba. Copepod concentration, copepod size, phytoplankton concentration, the duration of krill starvation and the volume of experimental vessels were altered to determine effects on ingestion and clearance rates. Krill allowed to feed on phytoplankton and copepods in 50-litre tubs showed greatly increased feeding rates relative to animals feeding in the much smaller volumes of water traditionally used for krill-feeding studies. Clearance rates on copepods remained constant over the range of concentrations offered, but clearance rates on phytoplankton increased linearly with phytoplankton concentration. Feeding rates increased when larger copepods were offered and when krill were starved for two weeks prior to experiments. Clearance rates of krill feeding on copepods were higher than, but not correlated with, their clearance rates on phytoplankton in the same vessel. E. superba may have a distinct mechanism for capturing copepods, perhaps through mechanoreception. Although our observed clearance rate of 1055 ml krill-1 h-1 indicates that krill can feed very efficiently on copepod prey, such feeding would meet less than 10% of their minimum metabolic requirements at the typical copepod concentrations reported for Antarctic waters. However, substantial energy could be gained if krill fed on the patches of high copepod concentrations occasionally reported during the austral summer, or if krill and copepods were concentrated beneath the sea ice during the winter or spring months. Our results, indicating efficient feeding on zooplankton and higher clearance rates on phytoplankton than previously believed, represent a step towards balancing the energy budget of E. superba in Antarctic waters.  相似文献   

8.
Patterns of feeding in a population of Heliaster helianthus (Lamarck), a common and dominant species of starfish indigenous to the Pacific South American coast, were investigated in an intertidal habitat in central Peru from October 1986 to April 1987. The H. helianthus population comprised individuals of 3.5 to 30.2 cm body size (diameter) with two modal size classes. The number of rays ranged between 18 and 40, and individuals with 31 to 33 rays accounted for ca. 42% of the total population. There was a higher rate of increase in ray number with body size amongst small individuals(<13.0 cm diam). H. helianthus is capable of feeding on more than one prey item at a time (average of 5.6 to 13.2 prey items handled, with several predators observed to hold >100), and both the number of prey individuals captured and the total prey biomass were significantly correlated with predator size. Amongst a total of 1132 feeding observations, the largest number of predators (an average of 85.4% of those feeding) were preying on the mussel Semimytilus algosus whilst another mussel, Perumytilus purpuratus, ranked second with 21,9% of predators feeding. The proportion of S. algosus in the diet increased from 65.4% in the smallest predator size-group (10.9 cm diam) to 91.2% in the largest (19.0 cm). In contrast, P. purpuratus and barnacles were more highly represented in the diet of small H. helianthus. The smallest size-group (10.9 cm) had low dietary overlap with larger sizes and less specialized prey utilization. Two geographically separated populations of H. helianthus in Peru and Chile showed contrasting patterns of prey utilization. S. algosus and P. purpuratus comprised 85.5 and 6.5% by number in the diet of the Peruvian population, respectively, whilst corresponding figures for the Chilean population were 8.3 and 60.5%, with barnacles attaining a higher share (22.6%). However, the total number of prey individuals per feeding predator was almost the same in Peru and Chile, with 10.0 and 10.7 individuals, respectively. H. helianthus individuals of different sizes occupy slightly different microhabitats within the intertidal area, which, coupled with differential spatial distribution of prey species, results in the predator population being able to utilize a wide range of resources.  相似文献   

9.
Marine phytoplankton forms are frequently exposed to sudden biological changes such as rapid rise in water temperature and chlorine content of their environment, resulting from the use of sea water for cooling purposes by electric generators. The direct influence of these effluents, i.e. inhibitory effects of high temperature and residual chlorine on growth and photosynthesis of Chlamydomonas sp. and Skeletonema costatum, were investigated experimentally. Chlamydomonas sp. and S. costatum exposed to high temperatures were affected in their growth from 43° and 35°C, respectively, by immersion of the respective cultures in a warm bath for 10 min. Treatment at high temperatures of 40 °C and 30° 35°C for 10 min, influenced their photosynthetic activities, which were completely inhibited immediately after 10 min exposure at 42° and 37 °C, respectively. S. costatum was killed by chlorine at a concentration of 1.5 2.3 ppm when exposed for exactly 5 or 10 min, while Chlamydomonas sp. was not irreversibly damaged even at 20 ppm chlorine or more with the same exposure period. These results lead to the conclusion that the high temperature of, and residual chlorine in, effuents from a power plant discharging into the open sea, should not cause great damage to marine phytoplankton in that area.  相似文献   

10.
Feeding of marine planktonic copepods on mixed phytoplankton   总被引:1,自引:0,他引:1  
The feeding of juveniles and adults of the copepods Eucalanus pileatus, Temora stylifera and T. turbinata fed a mixture of the phytoplankton Skeletonema costatum, Leptocylindrus danicus and Rhizosolenia alata f. indica was studied at 20°C. E. pileatus nauplii, copepodids and adult females ingest similar percentages of the 3 algae in terms of carbon. Temora juveniles younger than CII ingest mainly S. costatum; at more advanced developmental stages, the ingestion rate on S. costatum remains constant whereas feeding on L. danicus and R. alata f. indica increases with increasing body weight. Feeding on high concentrations of large particles reduces the grazing pressure on small particles, thus favoring zooplankton which require small-sized food.  相似文献   

11.
The relative importance of 3 different sources for biological production of nitrite in seawater was studied. Decomposition of fecal pellets of the copepod Calanus helgolandicus (at a concentration of approximately 12 g-at N/l), in seawater medium, released small amounts of ammonia over a 6 week period. It nitrifying bacteria were added to the fecal pellets nitrite was barely detectable over the same period. Decomposition of phytoplankton (present at a concentration of about 8 g-at particulate plant N/l) with added heterotrophic bacteria, released moderate amounts of ammonia over a 12 week period. If the ammonia-oxidizing bacterium Nitrosocystis oceanus was added to the decomposing algae, nitrite was produced at a rate of 0.2 g-at N/l/week. Heterotrophic nitrification was not observed when 7 open-ocean bacteria were tested for their ability to oxidize ammonia. The diatom Skeletonema costatum, either non-starved or starved of nitrogen, produced nitrite when growing with 150 or 50 g-at NO 2 - -N/l at a light intensity of about 0.01 ly/min. When nitrate in the medium was exhausted, S. costatum assimilated nitrite. If starved of vitamin B12, both non-N-starved and N-starved cells of S. costatum produced nitrite in the medium with 150 g-at NO 3 - -N/l. Nitrate was not exhausted and cell densities reached 2x105/ml due to vitamin B12 deficiency. If light intensity was reduced to 0.003 ly/min under otherwise similar conditions, cells did not grow due to insufficient light, and nitrite was not produced. In the sea, it appears that, in certain micro-environments, decomposition of particulate matter releases ammonia with its subsequent oxidation to nitrite. The amounts of these nutrients and the rate at which they are produced are dependent upon the nature of the materials undergoing decomposition and the associated bacteria. In certain other areas of the sea, where phytoplankton standing stock is high and nitrate is non-limiting, excretion by these organisms is a major source of nitrite.  相似文献   

12.
The feeding behaviors of Acartia clausi and A. tonsa were measured in samples of water containing low levels of a water-accommodated fraction of No. 2 fuel oil. The copepods fed normally at a hydrocarbon concentration of 70 g l-1, but their feeding behavior was altered both quantitatively and qualitatively at a concentration of 250 g l-1. Three types of response to the higher oil level were found. The first was total suppression of feeding. Both other types involved suppression of feeding on particles between 7 and 15 m diameter, but one showed no change in the ingestion of larger particles, whereas the other displayed increased feeding on particles larger than 15 m diameter. These results suggest that the species of Acartia studied use three different modes of feeding, each on a different size range of particulate material. Low-level hydrocarbon pollution affects each feeding mode differently.Contribution No. 973, Center for Environmental and Estuarine Studies of the University of Maryland  相似文献   

13.
Prey selection shortly after the onset of feeding by laboratory-reared gilthead seabream, Sparus aurata L., larvae was studied using larvae fed on two types of microcapsule (hard- and soft-walled) having diameters ranging from 25 to 300 m. Preferences between inert food and live prey (rotifers and Artemia sp. nauplii) were also studied. Seabream larvae were able to ingest inert food from first feeding. Larvae of all size classes ingested hard microcapsules with diameters in the range 25 to 250 m. However, larvae with a total length (TL) below 4 mm preferentially selected particles 25 to 50 m in diameter, larvae of TL 4 and 5 mm preferred particles 51 to 100 m in diameter, while larvae above 5 mm TL preferred particles 101 to 150 m in diameter. With soft microcapsules, larvae always preferred particles larger than in the previous case, and above 4.5 mm TL they preferentially selected particles 201 to 250 m in diameter. In addition, the gradual increase of preferred diameters with increasing TL was more pronounced when larvae were increasing TL was more pronounced when larvae were fed on soft particles. Mean values for prey width/mouth width ratios were approximately 0.24 and 0.30 when larvae were fed on hard-walled and soft-walled microcapsules, respectively, irrespective of the absolute value of larval length. When a mixed diet of live and inert food items was offered, live prey were always preferentially selected, even if the prey width/mouth width ratio was apparently not favourable. Only a physical constraint such as excessive prey width could counter this preference for living prey vs inert microcapsules. These results contribute to our knowledge in larval feeding behaviour, especially in the presence of inert food, and represent a fundamental step in developing prepared food for marine fish larvae.  相似文献   

14.
Food selection by young larvae of the gulf menhaden (Brevoortia patronus) was studied in the laboratory at Beaufort, North Carolina (USA) in 1982 and 1983; this species is especially interesting, since the larvae began feeding on phytoplankton as well as microzooplankton. When dinoflagellates (Prorocentrum micans), tintinnids (Favella sp.), and N1 nauplii of a copepod (Acartia tonsa) were presented to laboratory-reared, larval menhaden (3.9 to 4.2 mm notochord length), the fish larvae ate dinoflagellates and tintinnids, but not copepod nauplii. Larvae showed significant (P<0.001) selection for the tintinnids. Given the same mixture of food items, larger larvae (6.4 mm notochord length) ate copepod nauplii as well as the other food organisms. These feeding responses are consistent with larval feeding in the northern Gulf of Mexico, where gulf menhaden larvae between 3 and 5 mm in notochord length frequently ate large numbers of dinoflagellates (mostly P. micans and P. compressum) and tintinnids (mostly Favella sp.), but did not eat copepod nauplii. As larvae grew, copepod nauplii and other food organisms became important, while dinoflagellates and tintinnids became relatively less important in the diet. Since the tintinnids and nauplii used in the laboratory feeding experiments were similar in size as well as carbon and nitrogen contents, the feeding selectivity and dietary ontogeny that we observed were likely due to a combination of prey capturability and larval fish maturation and learning.Contribution No. 5575 of the Woods Hole Oceanographic Institution  相似文献   

15.
The dynamics of 65Zn specific activity and total zinc in benthic fishes on the outer continental shelf off central Oregon (USA) were examined. A differential equation that relates specific activity of 65Zn in fish to that in fish food was used to estimate 's (zinc uptake-rate coefficients) for 3 different size classes of the flounder Lyopsetta exillis, a small predator of pelagic Crustacea, and for 1 size class of the flounder Microstromus pacificus, a large predator of infauna. The 's obtained for L. exilis were very close to the obtained in the laboratory for the flounder Pleuronectes platessa. The estimated for M. pacificus was very much smaller than the 's estimated for the other two species. A model that related to predicted weight-specific feeding rates suggested that the smaller of M. pacificus was caused by a low absorption efficiency of zinc from its prey. Sensitivity studies indicated that time histories of specific activity in the fishes are not sensitive to moderate changes in . The negative correlation between specific activity in the diet and in the weight of L. exilis was the major cause of the negative correlative between specific activity and weight in this species. In M. pacificus, where composition of diet does not vary with size, specific activity was independent of weight. The time history of specific activity in M. pacificus was very much lower than those in the different size classes of L. exilis, a result caused mainly by the much lower specific activity of the prey of M. pacificus. Differences in specific activity among other benthic fishes were also correlated with differences in specific activity of their prey. The food-web dynamics responsible for these patterns are discussed. Variation in total zinc concentrations among species was small. Within species of flounder, zinc concentration varied only slightly or not at all with weight.  相似文献   

16.
Nanoplankton and picoplankton primary production has been studied at two oceanic stations in the Porcupine Sea-bight and at one shelf station in the Celtic Sea. At both sites, low wind conditions in June and July 1985 resulted in greatly reduced vertical turbulent mixing and a secondary, temporary thermocline developed in what is usually a well-mixed surface layer; as a result, there was physical separation of the phytoplankton within two zones of the surface mixed layer. The photosynthetic characteristics of three size fractions (>5 m, <5 to >1 m and <1 to >0.2 m) of phytoplankton populations from the two zones have been measured. Phytoplankton was more abundant at the oceanic stations and chlorophyll a values were between 1.3 and 2.2 mg chlorophyll a m-3, compared with 0.3 to 0.6 mg chlorophyll a m-3 at the shelf station; at both stations, numbers of cyanobacteria were slightly higher in the lower zone of the surface mixed layer. There was no effect of the temporary thermocline on the vertical profiles of primary production and most phtosynthesis occurred in the surface 10 m. Photosynthetic parameters of the three size fractions of phytoplankton have been determined; there was considerable day-to-day variation in the measured photosynthetic parameters. Assimilation number (P m B ) of all >5 m phytoplankton was lower for the deeper than for the surface populations, but there was little change in initial slope (a B ). The small oceanic nanoplankton (<5 to >1 m) showed changes similar to the >5 m phytoplankton, but the same size fraction from the shelf station showed changes that were more like those shown by the picoplankton (<1 m) viz, little change in P m B but an increase in a B with depth. Values of a B were generally greater for the picoplankton fraction than for the larger phytoplankton, but values of adaptation parameter (I k )(=P m B /) were not always less. There was little evidence to support the hypothesis that these populations of picoplankton were significantly more adapted to low light conditions than the larger phytoplankton cells. When photosynthetic parameters of the picoplankton were normalised to cell number (P m C /a C ) rather than chlorophyll a, P m C was comparable to other published data for picoplankton, but a C was much lower. The maximum doubling time of the picoplankton at saturating irradiance is calculated to be ca. 8.5 h for the oceanic population and ca. 6.2 h for the shelf population.  相似文献   

17.
Grazing by adult estuarine calanoid copepods of the Chesapeake Bay   总被引:2,自引:0,他引:2  
Grazing by adult female Eurytemora affinis, Acartia tonsa and A. clausi on natural distributions of particles from the Chesapeake Bay has been investigated. During the course of a year's sampling, a wide variety of particle size-biomass distributions were observed as seasonal shifts in detritus, and over 150 algal species occurred. These distributions were grouped into 5 basic types in the analyses of feeding. All three species demonstrated similar capabilities for feeding over a broad range of particle size with selection (higher filtering rates) on larger particles and on biomass peaks. Feeding on multiple-peak distributions resulted in strong selection or tracking of each biomass peak with reduced filtering rates between peaks. Evidence is presented which suggests that the copepods first feed on large particles and then successively switch to biomass peaks of the smaller size categories. Comparisons of the feeding behavior of Eurytemora affinis and the Acartia species showing that the Acartia species have greater capabilities for taking large particles may be associated with modifications of their mouth parts for raptorial feeding. The results suggest considerable flexibility in copepod feeding behavior which cannot be explained solely by the mechanism of a fixed sieve.  相似文献   

18.
The relationships between netplankton and nanoplankton assimilation numbers, temperature, and major nutrient concentrations were studied and evaluated in the context of seasonal patterns in the biomass of these phytoplankton size fractions. Netplankton and nanoplankton blooms typically occur during late winter (2° to 8°C) and summer (18° to 24°C), respectively. Variations in nanoplankton and netplankton assimilation numbers were not statistically related to the development or collapse of specific blooms based on weekly sampling, but assimilation numbers were higher during the bloom periods than during transition periods of rapid temperature change (8° to 18°C). Differences in the assimilation numbers between size fractions could account for the dominance of the nanoplankton fraction during the summer bloom period but not for the dominance of netplankton during the winter bloom period. Nanoplankton and netplankton assimilation numbers were exponential functions of temperature between 8° and 24°C and 8° and 20°C, respectively. Below 8°C the assimilation numbers of both fractions were higher than expected on the basis of temperature. Above 20°C netplankton assimilation numbers declined with temperature. Netplankton and nanoplankton assimilation numbers were occasionally correlated with dissolved inorganic nitrogen concentrations from less than 1.0 to more than 15 g-at l-1. Under these conditions, nanoplankton growth rates (calculated from assimilation number and carbon:chlorophyll) were higher and increased more rapidly with dissolved inorganic nitrogen than netplankton growth rates.  相似文献   

19.
Photoadaption in marine phytoplankton: Response of the photosynthetic unit   总被引:3,自引:0,他引:3  
Some species of phytoplankton adapt to low light intensities by increasing the size of the photosynthetic unit (PSU), which is the ratio of light-harvesting pigments to P700 (reaction-center chlorophyll of Photosystem I). PSU size was determined for 7 species of marine phytoplankton grown at 2 light intensities: high (300 E m-2 s-1) and low (4 E m-2 s-1); PSU size was also determined for 3 species grown at only high light intensity. PSU size varied among species grown at high light from 380 for Dunaliella euchlora to 915 for Chaetoceros danicus. For most species grown at low light intensity, PSU size increased, while the percentage increase varied among species from 13 to 130%. No change in PSU size was observed for D. euchlora. Photosynthetic efficiency per chlorophyll a (determined from the initial slope of a curve relating photosynthetic rate to light intensity) varied inversely with PSU size. In contrast, photosynthetic efficiency per P700 was enhanced at larger PSU sizes. Therefore, phytoplankton species with intrinsically large PSU sizes probably respond more readily to the rapid fluctuations in light intensity that such organisms experience in the mixed layer.Contribution No. 1180 from the Department of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   

20.
C. Hudon 《Marine Biology》1983,78(1):59-67
The effect of microalgal strength of adhesion to surfaces was examined with regard to their susceptibility to grazing by Gammarus oceanicus Segerstråle and Calliopius laeviusculus (Krøyer). Observations of the feeding behaviour and two feeding experiments were carried out under laboratory conditions. Naturally attached periphyton (strongly attached cells), homogenized periphyton (loosely attached cells), filtered phytoplankton (unattached cells) and bare surfaces (controls) were randomly located in a grid and offered for grazing to a fixed number of amphipods of each species separately. The number of individuals visiting each type of food presented in the grid was recorded for 24-h periods. The feeding habit of each species, their effect on food distribution and their efficiency at collecting small particles were also recorded. G. oceanicus has a low efficiency at collecting particles and does not select a particular type of food, owing to its feeding habit of indiscriminately resuspending loosely attached particles. C. laeviusculus is a highly efficient and selective grazer, preferring homogenized periphyton and phytoplankton to naturally attached periphyton. For epibenthic diatoms, strong adhesion to surfaces is advantageous to avoid grazers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号