首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Ammonium excretion of a dense population (~1 500 individuals m–2) of the ophiuridOphiothrix fragilis (Abildgaard) was measured in the Dover Straits (French coast) between May 1989 and March 1990: the excretion rate varied from 4.8 µg N g–1 dry wt h–1 in November to 12.8 µg N g–1 dry wt h–1 in June. Mean individual ammonium excretion,E, wasE=0.019t +1.26 (whereE=µg N individual–1 andt=time in min;r=0.80;N=81). Variations in the ammonium excretion rate during a tidal cycle appeared to arise from variations in the duration of the suspension-feeding activity ofO. fragilis, which was governed by the strength of the tidal current. During short-term starvation, excretion was low (E=0.009t+1.47;r=0.91;N=17), increasing with increasing length of starvation [E=4.62lnt–2.5;r=0.95;N=17], as observed for other echinoderms; this could be due to catabolism of tissue. The daily ammonia flux from thisO. fragilis population to the water column was estimated at 41 mg N m–2 d–1.  相似文献   

2.
The large bathypelagic mysid Gnathophausia ingens was collected in January 1980 at 400 to 700 m depth from the San Clemente Basin off southern California. Instars 7-8 and Instars 10-12 were starved in the laboratory for up to 19 wk. Oxygen consumption and ammonia excretion rates, and water, protein, lipid, and ash contents were determined periodically during starvation. Protein and lipid were metabolized in approximately equal amounts by starved individuals after the initial weeks of food deprivation. Unidentified components (probably non-protein nitrogenous compounds) apparently were oxidized within the first 7 wk of starvation. Oxygen consumption and ammonia excretion by Instars 7-8 decreased steadily during 19 wk of starvation. In contrast, stable or increasing respiration and excretion rates were observed for fed mysids. The mean respiration rate of Instars 10-12 did not change significantly during 13 wk of starvation, although ammonia excretion rates decreased. Low metabolic rates and large lipid reserves probably help G. ingens to withstand long periods of starvation in the mesopelagic environment. Calculations based on the laboratory data demonstrate that small, infrequent meals could account for the rates of metabolism and growth observed for G. ingens in the field.  相似文献   

3.
G. Schneider 《Marine Biology》1989,100(4):507-514
The population dynamics, ammonia and inorganic phosphate excretion, and nutrient regeneration of the common jellyfish Aurelia aurita was investigated from 1982 to 1984 in the Kiel Bight, western Baltic Sea. During summer 1982, medusae abundance ranged between 14 and 23 individuals 100 m-3, biomass was estimated at about 5 g C 100 m-3 and the mean final diameter of individuals was 22 cm. Abundance, based on numbers, in 1983 and 1984 was an order of magnitude lower; biomass was less than 2 g C 100 m-3 and jellyfish grew to 30 cm. During the summers of 1983 and 1984, A. aurita biomass constituted roughly 40% of that of the total zooplankton>200 m. In 1982, for which zooplankton data were lacking, it was assumed that medusae biomass was greater than that of all other zooplankton groups. Total ammonia excretion ranged between 6.5 and 36 mol h-1 individual-1, whereas inorganic phosphate release was 1.4 to 5.7 mol h-1 individual-1. Allometric equations were calculated and exponents of 0.93 for NH4–N release and 0.87 for PO4–P excretion were determined. Nitrogen and phosphorus turnover rates were 5.4 and 14.6% d-1, respectively. In 1982, the medusae population released 1 100 mol NH4–N m-2 d-1, about 11% of the nitrogen requirements of the phytoplankton. The inorganic phosphate excretion (150 mol m-2 d-1) sustained 23% of the nutrient demands of the primary producers. In the other two years the nutrient cycling of the medusae was much less important, and satisfied only 3 to 6% of the nutrient demands. It is suggested that in some years A. aurita is the second most important source of regenerated nutrients in Kiel Bight, next to sediment.  相似文献   

4.
Acute toxicity of ammonia was determined for cultured larval, postlarval, and wild adult lobsters (Homarus americanus) in 1988. Ammonia tolerance was found to increase with ontogenetic development. Based on 96-h LC50 values of 58 mg l–1 NH4 + + NH3 l–1 seawater (0.72 mg NH3 l–1) for Stage I larvae, 87 mg NH4 + + NH3 l–1 (1.7 mg NH3 l–1) for Stage II larvae, 125 mg NH4 + + NH3 l–1 (2.13 mg NH3) for Stage III larvae, 144 mg NH4 + + NH3 l–1 (2.36 mg NH3 l–1) for Stage IV postlarvae, 377 mg NH4 + + NH3 l–1 (5.12 mg NH3 l–1) for adult lobsters at 5°C and 219 mg NH4 + + NH3 l–1 (3.25 mg NH3 l–1) for adult lobsters at 20°C, recommendations for safe levels of total ammonia and un-ionized ammonia were calculated using an application factor of 0.1. Effects of ammonia on osmoregulatory capacity were studied on postlarvae and adults. Ability of postlarvae and adults to hyper-regulate in low-salinity media decreased after exposure to ammonia. In postlarval lobsters, osmoregulatory capacity was significantly affected in ammonia concentrations exceeding 32 mg l–1. Osmoregulatory capacity in adult lobsters (5 and 20°C) was affected at 150 mg l–1. In postlarval lobsters, a minimum exposure time of 12 h was required to impair osmoregulatory capacity. The decrease in hemolymph osmotic pressure was caused by lower hemolymph sodium concentrations. The presence of ammonia in the external medium could markedly affect the Na+/NH4 + transport mechanism by permanently, temporarily, or partially impairing the transport sites for sodium.  相似文献   

5.
In Penaeus japonicus, the tolerance to ammonia increased with the development from nauplius to late juvenile. The 48-h LC50 of ammonia in nauplii (III–V), 96-h LC50 in zoeae (I–III), mysis (I–III), post-larvae (PL1) and late juveniles (10.4±1.1 g) were respectively 5.0, 6.1 to 8.1, 9.4 to 10.9, 15.5 and 52.7 mg Nl-1 (0.5, 0.6 to 0.7, 0.9, 1.3 and 3.1 mg NH3–Nl-1). In a chronic experiment (20 d), the LC50 in post-larvae (PL1) was 19.1 (1.4) at 96 h and 16.2 mg Nl-1 (1.3 mg NH3–Nl-1) at 480 h. Osmoregulatory capacity (OC) was calculated as the osmotic gradient between the hemolymph and the external medium at given salinities. The effects of ammonia on OC, Na+ and Cl- regulation and gill Na+–K+ ATPase activity in late juveniles were examined in fullstrength seawater, SW (1050 mosm kg-1, 36 S) and in dilute SW (450 mosm kg-1, 15%.), after 48 or 96 h exposure to various concentrations of ammonia. Ambient ammonia disrupted both hypo- and hyper-osmoregulation; decreased OC resulted from impaired Na+ and Cl- regulation. Gill Na+–K+ ATPase activity increased in SW and was not affected in dilute SW. The decrease of OC was ammonia-dose-dependent. The threshold ammonia concentrations affecting hypo-OC and hyper-OC were, respectively, 16 (1.3) and 32 mg Nl-1 (2.3 NH3–Nl-1) for a 48 h exposure; these concentrations were lower than the 48-h LC50 value, 65.3 mg Nl-1 (3.5 NH3–Nl-1). The time course of exposure to sublethal ammonia (48 mg Nl-1) demonstrated that the effect on osmoregulation was time-dependent. This effect was also temporary, and the exposed shrimps recovered control OC values after removal of excessive ambient ammonia. The possibility of using OC as an indicator of physiological condition in osmoregulating crustaceans and the acting mode of ammonia on osmotic and ionic regulation are discussed.  相似文献   

6.
Egg production ofCalanus finmarchicus at low temperature   总被引:2,自引:0,他引:2  
Reproduction ofCalanus finmarchicus Gunnerus collected in June 1988 in Polar water and in April 1989 in Atlantic water was studied. Single females were kept at 0°C in the laboratory for 22 d (Polar) and 77 d (Atlantic) with superabundant food concentration (> 400µg Cl–1) of the diatomThalassiosira antarctica. There was no significant difference between the two populations, although more spent females were found in Polar water, probably due to the different dates of collection. The hypothesis of low temperature determining the geographic range ofC. finmarchicus via reproductive failure is not supported. Mean daily egg production rate of all females from Atlantic water over a 60 d period was 24.4, corresponding to 5.5% body C female–1 d–1, when an egg carbon content of 0.23µg is assumed. Coefficient of variation was 25%. Maximum values were 53.2 eggs female–1 d–1, corresponding to 12.1% body C d–1. The highest number of eggs spawned by a single female was 3101, corresponding to a seven-fold turnover of body C during the investigation period; >20% of females produced > 2000 eggs. Body carbon content did not change significantly during the experiment; the C:N ratio increased slightly, indicating lipid accumulation. Delay of response to starvation periods of 2, 4 and 7 d duration was always 2 d: egg production ceased 2 d after the onset of starvation and continued 2 d after onset of feeding.  相似文献   

7.
The life-history of the crown-of thorns starfish (Acanthaster planci) includes a planktotrophic larva that is capable of feeding on particulate food. It has been proposed, however, that particulate food (e.g. microalgae) is scarce in tropical water columns relative to the nutritional requirements of the larvae of A. planci, and that periodic shortages of food play an important role in the biology of this species. It has also been proposed that non-particulate sources of nutrition (e.g. dissolved organic matter, DOM) may fuel part of the nutritional requirements of the larval development of A. planci as well. The present study addresses the ability of A. planci larvae to take up several DOM species and compares rates of DOM uptake to the energy requirements of the larvae. Substrates transported in this study have been previously reported to be transported by larval asteroids from temperate and antarctic waters. Transport rates (per larval A. planci) increased steadily during larval development and some substrates had among the highest mass-specific transport rates ever reported for invertebrate larvae. Maximum transport rates (J max in) for alanine increased from 15.5 pmol larva–1 h–1 (13.2 pmol g–1 h–1) for gastrulas (J max in=38.7 pmol larva–1 h–1 or 47.4 pmol g–1 h–1) to 35.0 pmol larva–1 h–1 (13.1 pmol g–1 h–1) for early brachiolaria (J max in just prior to settlement=350.0 pmol larva–1 h–1 or 161.1 pmol g–1 h–1) at 1 M substrate concentrations. The instantaneous metabolic demand for substrates by gastrula, bipinnaria and brachiolaria stage larvae could be completely satisfied by alanine concentrations of 11, 1.6 and 0.8 M, respectively. Similar rates were measured in this study for the essential amino acid leucine, with rates increasing from 11.0 pmol larva–1 h–1 (or 9.4 pmol g–1 h–1) for gastrulas (J max in=110.5 pmol larva–1 h–1 or 94.4 pmol g–1 h–1) to 34.0 pmol larva–1 h–1 (or 13.0 pmol g–1 h–1) for late brachiolaria (J max in=288.9 pmol larva–1 h–1 or 110.3 pmol g–1 h–1) at 1 M substrate concentrations. The essential amino acid histidine was transported at lower rates (1.6 pmol g–1 h–1 at 1 M for late brachiolaria). Calculation of the energy contribution of the transported species revealed that larvae of A. planci can potentially satisfy 0.6, 18.7, 29.9 and 3.3% of their total energy requirements (instantaneous energy demand plus energy added to larvae as biomass) during embryonic and larval development from external concentrations of 1 M of glucose, alanine, leucine and histidine, respectively. These data demonstrate that a relatively minor component of the DOM pool in seawater (dissolved free amino acids, DFAA) can potentially provide significant amounts of energy for the growth and development of A. planci during larval development.  相似文献   

8.
Nitrogen regeneration by the surf zone penaeid prawn Macropetasma africanus   总被引:1,自引:0,他引:1  
Nitrogen excretion of individual Macropetasma africanus (Balss) from an exposed beach/surf zone in Algoa Bay, South Africa was monitored under laboratory and field conditions in relation to body mass, temperature and feeding during 1985. Excretion rate experiments were performed on starved prawns at 15°, 18°, 20° and 25°C, as well as on individuals fed on four different diets (mussel, fish, shrimp and natural diet) at 15° and 20°C. The ratios of the excreted compounds to total nitrogen excreted were similar for the four diets despite differences in their nitrogen content and in the amount of food consumed. At 15° and 20°C, ammonia excretion rates of fed individuals were four to seven times higher than in starved prawns. the excretion rates were not correlated with nitrogen content of diets. M. africanus recycles 1 557 g NH4–N per metre strip per year or 1 832 g total nitrogen m-1 yr-1, which constitute 12 and 14%, respectively, of total phytoplankton requirements of the surf zone. This study indicates that large motile crustaceans, when abundant, can play an important role in nutrient recycling in turbulent marine environments.  相似文献   

9.
Juveniles of the prawnPenaeus chinensis (3.96 ±0.18 cm, 0.36±0.06 g) reared in Taiwan in 1989 were exposed to different concentrations of ammonia and nitrite, by a static renewal method in 33 seawater at pH 7.94 and at 26 °C. The 24, 48, 96 and 120 h LC50 (median lethal concentration) of ammonia were 3.29, 2.10, 1.53 and 1.44 mg l–1 for NH3-N (un-ionized ammonia as nitrogen) and 79.97, 51.14, 37.00 and 35.09 mg l–1 for ammonia-N (un-ionized plus ionized ammonia as nitrogen). The 24, 96, 120, 144 and 192 h LC50 of nitrite-N were 339, 37.71, 29.18, 26.98 and 22.95 mg l–1. The LC50 decreased with increasing exposure time. During the first 96 h,P. chinesis juveniles were more susceptible to ammonia than nitrite. However, prawns were less tolerant to nitrite than ammonia when exposed for more than 96 h. The threshold was found at 120 and 192 h for ammonia and nitrite, respectively, on the toxicity curves. Incipient LC50 was 1.44 mg l–1 for NH3-N, 35.09 mg l–1 for ammonia-N and 22.95 mg l–1 for nitrite-N. The safe value forP. chinensis juveniles was 0.14, 3.51 and 2.30 mg l–1, respectively.  相似文献   

10.
U. Hoeger  I. Kunz 《Marine Biology》1993,115(4):653-660
The activities of some enzymes of the intermediary metabolism and the content of soluble protein and carbohydrate (glycogen plus free glucose) were measured in one type of coelomic cells (eleocytes) of the polychaete Nereis virens. Specimens used in this study were collected between 1989 and 1991 in Oosterscheldt Bay, The Netherlands, and divided into six different stages of sexual maturation as determined by the mean oocyte volume. In both sexes, the soluble protein content in eleocytes of immature individuals (11 mg ml–1 cell vol) increased three-fold. In prespawning N. virens the soluble protein content decreased to less than 2 mg protein ml–1 cell vol in females but not in males. In both sexes, the carbohydrate content decreased continuously from immature [300 mol glucose equivalent (equiv) ml–1 cell vol] to prespawning individuals (< 40 mol glucose equiv ml–1 cell vol). During the time course of maturation, the specific activities (expressed as units mg–1 protein) of pyruvate kinase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, alanine aminotransferase and glutamate dehydrogenase decreased in both sexes. A transient increase in the specific activities was found for glycogen phosphorylase and aspartate aminotransferase. No major changes were found for hexokinase, lactase dehydrogenase, glucose-6-phosphate dehydrogenase and malic enzyme. Sex specific differences were found for the activities of citrate synthase and isocitrate dehydrogenase, which were higher in males. the specific activities of the latter enzyme increased more than ten-fold in males, but only four-fold in female eleocytes during maturation. In eleocytes of prespawning females, the activities of most enzymes showed extremely high variations not found in prespawning males. For two enzymes of fatty acid catabolism, -hydroxyacyl-CoA dehydrogenase and -hydroxybutyrate dehydrogenase, only traces of activities were detected, suggesting the absence of significant fatty acid catabolism in the eleocytes. Compared to the eleocytes, the body wall tissue showed ten-fold higher activities of phosphofructokinase, whereas the eleocytes displayed higher activities of the amino acid interconverting enzymes glutamate dehydrogenase and alanine aminotransferase and the glyconeogenic enzyme phosphoenolpyruvate carboxykinase. Citrate synthase activities were similar for both tissues. In the coelomic fluid of N. virens, glucose (< 0.1 to 3.5 mM) and d-lactate (0.1 to 4 mM) were present and represent exogenous substrates for the eleocyte metabolism.  相似文献   

11.
The kinetic response of ammonium- or silicate-limited and ammonium- or silicatestarved populations of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida was determined by a single addition of the limiting nutrient to a steady-state culture and subsequent monitoring of the nutrient disappearance of the limiting and non-limiting nutrients at frequent time intervals. The kinetic response of nonlimited (nutrient) populations of these three species was also determined. Three distinct modes of the uptake of the limiting nutrient were observed for ammonium-or silicate-limited populations of these three species, surge uptake (V s ), internally (cellular) controlled uptake (V i ), and externally (ambient limiting nutrient concentration) controlled uptake (V e ). Non-limited populations did not exhibit the three distinct segments of uptake, V s , V i and V e . Estimates of the maximal uptake rate (V max) and the Michaelis constant (K s ) were obtained from nutrient-limited populations during the V e segment of the uptake curve. Pooled values of V e for the three ammonium-limited populations yielded V max and K s estimates of 0.16 h-1 and 0.5 g-at NH4–N l-1. Kinetic data derived from the V e segment of the uptake curve for silicate-limited populations yielded different values of V max and K s for each of the three species. In a number of parameters that were measured, T. gravida was clearly different from C. debilis and S. costatum and its recovery from nutrient starvation was the slowest. Recovery of all species from silicate limitation or starvation was slower than from ammonium limitation or starvation. Ammonium-starved populations maintained a maximal uptake rate at a substrate concentration an order of magnitude lower (0.1 g-at NH4–N l-1) than that observed for NH4-limited populations (1.0 g-at NH4–N l-1). Adaptation to the severity of the nutrient limitation occurred as changes in the magnitude of cellular characteristics, such as short-term uptake potential (V s ) and affinity for the substrate (K s ). The consequence of these results are discussed in terms of another possible mechanism to explain changes in species composition and succession in nutrient-depleted environments.Contribution No. 944 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

12.
The pattern of growth (biomass accumulation) in Ecklonia radiata throughout the year and across a depth profile was investigated using the traditional hole-punch method, and the information presented in context with concurrently measured in situ net productivity rates. The rate of net daily productivity showed a lack of consistent seasonal variability, remaining constant throughout the year at two of the four depths measured (3 m and 12 m), and becoming higher during winter at another (5 m). Throughout the year, rates of net daily productivity differed significantly across the depth profile. Net daily productivity rates averaged 0.017 g C g–1 dwt day–1 and 0.005 g C g–1 dwt day–1 at a depth of 3 m (1,394 mol O2 g–1 dwt day–1) and 10 m (382 mol O2 g–1 dwt day–1) respectively. In contrast, the biomass accumulation rate of E. radiata was highly seasonal, with low rates of growth occurring in autumn (0.002 g dwt g–1 dwt day–1 at both 3 and 10 m) and summer (0.007 and 0.004 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and higher rates in spring (0.016 and 0.007 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and winter (0.015 and 0.008 g dwt g–1 dwt day–1 at 3 and 10 m respectively). The proportion of assimilated carbon used for biomass accumulation varied throughout the year, between 5% and 41% at 3 m and between 28% and 128% at 10 m. The rates of biomass accumulation at all depths represented only a small proportion of the amount of carbon assimilated annually.Communicated by P.W. Sammarco, Chauvin  相似文献   

13.
Nitrogen regeneration by two surf zone mysids,Mesopodopsis slabberi andGastrosaccus psammodytes, was determined under laboratory conditions. The mysids were collected from the lower Sundays River estuary, South Africa, from early spring 1984 to late summer 1985. The forms of nitrogen excreted and the effects of mass, temperature and feeding on excretion rate were determined for each species at three experimental temperatures. Comparison of the forms of nitrogen excreted revealed only slight differences between species, with ammonia the major form and urea and amino acids the secondary excretory products in both cases. Mass significantly influenced the rate of ammonia excretion at all experimental temperatures, with no significant difference in slope (common b=0.602) detected between species. During the day sediment deprivation resulted in a 15% and 20% increase in mean ammonia excretion rates of juvenile and adultG. psammodytes respectively, whereas no significant differences were found at night. The mean ammonia excretion rates of fedM. slabberi andG. psammodytes were 2 and 2.5 times higher than starved excretion rates, respectively.G. psammodytes andM. slabberi recycle 139 to 150 g N per running meter of surf zone per year and 1 007 to 1 208 g N m-1 yr-1, respectively. Togehter this constitutes 10% of total phytoplankton nitrogen requirements in the surf zone.  相似文献   

14.
In order to determine whether phytoplankton growth rates were normal or depressed, total plant carbon (g l–1) and in situ production rates (g C l–1 d–1) were measured for phytoplankton assemblages at Weathership Station P (50°N; 145°W) and at 53°N; 145°W in the subarctic Pacific in May and August 1984. Plant carbon, estimated from cell volumes determined using epifluorescence microscopy, was distributed as follow: 28% in the <2 m fraction, 38% in the 2 to 5 m size fraction, and the remainder in size classes >5 m. Carbon-specific growth rates (k), as doublings d–1, were calculated for the phytoplankton assemblages as a whole at each sampling depth down to 100 m for three days in May and for four days in August. The populations in the upper part of the euphotic zone showed average doubling rates of 1 d–1 and thus appeared to be growing at rates normally expected for the prevailing conditions of light and temperature. The low chlorophyll concentrations (0.3 to 0.4 mg chl a m–3) characteristically found in this oceanic region do not seem to be due to very slow growth of algal populations.Contribution No. 1695 of the School of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

15.
Eggs and larvae of the winter flounder Pseudopleuronectes americanus Walbaum were hatched and raised in the laboratory under controlled conditions. Biochemical composition was measured during development and found to be similar to that of other species: 65 to 80 percent protein, 15 to 30 percent fat, and 0 to 5 percent carbohydrate. Ash content was 7 to 10 percent of dry weight. The chorion comprised more than half of the weight of an egg and the data suggested that it was possibly a source of nutrition to the developing embryo. The sequence of utilization appeared to be carbohydrate and then protein to hatching, lipid, mixed lipid and protein, the predominantly protein until feeding began. Carbohydrate was accumulated at first feeding and depleted when growth began. Protein and lipid were deposited in approximately constant proportions. Respiration rates of eggs were low, 0.002–0.015 l O2 egg-1 h-1, but rose gradually from fertilization to hatching. Respiration rates of early larvae were from two to eight times that of eggs (0.033–0.131 l O2 larva-1 h-1). Variation in larval respiration rates indicated a three-fold difference in rate according to level of activity. Eggs excreted ammonia at an increasing rate from fertilization to hatching. Larvae excreted ammonia, primary amines, and other unidentified organic nitrogenous substances. Rates of excretion and proportions of excretory products varied with stage of development. Primary amine excretion was variable and a major component in early stages. Ammonia-N excreted was two to 20 times primary amine N excreted. Unidentified substances were the predominant form of N excretion during early feeding. Ammonia accounted for most of the N excreted in older larvae. Early specific growth rates were 2.1 and 5.5%. Net caloric conversion and net and gross nitrogen efficiencies were low in first feeding larvae compared to adult fishes (32.2, 27.7, and 10.7% respectively).Contribution no. 5071 from the Woods Hole Oceanographic Institution  相似文献   

16.
Sodium- and potassium-activated ATPase (Na+–K+-ATPase) has been demonstrated in excretory organs of Sepia officinalis, using a cytochemical procedure. In the renal appendages, both epithelia of the pancreatic appendages, the folded epithelium of the branchial heart appendage and the transport-active epithelium of the gill, the enzyme is localized exclusively in the basolateral cell membranes, i.e., the membranes of the basal labyrinth and the lateral plasma membranes. In addition, Na+–K+-ATPase is also located in the sarcolemma of the muscle fibres of the branchial heart. Distribution and localization of the enzyme is further substantiated by [3H]-ouabain autoradiography. The possible involvement of Na+–K+-ATPase in the excretion of ammonia and in ionic regulation in dibranchiate cephalopods is discussed.This study was supported by the Deutsche Forschungsgemeinschaft and is part of a doctoral dissertation  相似文献   

17.
Measurements of respiration and excretion at 25°C were made for five species of ctenophores collected during five cruises to the Bahamas (1982–1984). The mean element-specific respiration and ammonium excretion rates of freshly collected specimens of all species ranged from 4 to 16% d-1, the mean atomic O:N ratios were 10 to 16, and ammonium averaged 60 to 90% of the total dissolved nitrogen excreted. For adult ctenophores, the carbon content ranged from 0.6% carbon (as percent of dry weight) for Bolinopsis vitrea to 3.7% carbon for Beroë ovata. There was a marked increase in the organic content (% carbon of dry weight) of small Bolinopsis vitrea with tentacles compared to fully lobate adults. B. vitrea had increasingly higher metabolic rates when held at food concentrations up to 100 copepods 1-1 (about 250 g C 1-1). The overall range between starved and well-fed B. vitrea was about two times for respiration and a factor of three for ammonium excretion. B. vitrea decreased from well-fed to a starved metabolic rate in about a day after removal from food. The metabolic rate of Eurhamphaea vexilligera was not measurably affected by short-term starvation or feeding (maximum 25 copepods 1-1). In feeding experiments, E. vexilligera of 20 to 56 mm length fed at rates equivalent to clearance rates of 250 to 1 800 ml h-1.  相似文献   

18.
Vertical distribution, chlorophylla (chla) and phaeopigment concentrations in the gut, and natural nitrogen isotope ratio ( 15N) were investigated for pelagic amphipodsThemisto japonica (Bovallius) collected from the Sea of Japan in July 1987. Differences in diel vertical migration behavior were clearly observed between small and largeT. japonica. Many small (<5 mm body length) amphipods appeared in the phytoplankton-rich shallow layers. Their gut pigment concentrations were higher (mean 0.52 ± 0.15µg chla g–1 amphipod) than those of large amphipods (mean 0.33±0.14µg g–1); this implies that the amphipods fed on a large amount of phytoplankton during the early stage of life. The 15N values of small amphipods were lower (5.7 to 6.3) than those of large amphipods (6.8 to 11.7), reflecting the lower trophic level of small amphipods compared to large ones. The 15N values for small amphipods were similar to those of herbivorous zooplankton. The amphipods' feeding behavior thus changes from herbivorous to carnivorous as they grow.  相似文献   

19.
The 30-d survival limit of Eupentacta quinquesemita and Strongylocentrotus droebachiensis is 12–13 S. The activity coefficient (1 000/righting time in seconds) of stepwise acclimated sea urchins declined from 16.3 at 30 S to 3.5 at 15 S. Oxygen consumption rates (QO2) of both species held at 30 S and 13°C were highest in June and lowest in December. During the summer, when environmental salinity is most variable in southeastern Alaska, the QO2 of both species held at 30, 20 and 15 S varied directly with salinity. Perivisceral fluid PO2 varied directly with acclimation salinity in sea urchins, but not in sea cucumbers. Perivisceral fluid oxygen content of acclimated sea urchins was significantly lower at 15 and 20 S than at 30 S due to reduced PO2 and extracellular fluid volume at the lower salinities. The QO2 of both species varied directly with ambient salinity during a 30-10-30. semidiurnal pattern of fluctuating salinity. No change occurred in the average QO2 of either species over a 15-30-15. semidiurnal pattern of fluctuating salinity. Sea urchin perivisceral fluid PO2 declined as ambient salinity fluctuated away from the acclimation salinity in both cycles and increased as ambient salinity returned to the acclimation salinity. Total nitrogen excretion of stepwise acclimated sea cucumbers declined significantly from 30 to 15 S, but there was no salinity effect on total nitrogen excretion in sea urchins. Ammonia excretion varied directly with salinity in stepwise acclimated sea cucumbers (67–96% of total nitrogen excreted), but there was no salinity effect on ammonia excretion (89–95% of total nitrogen excreted) of sea urchins. Urea excretion did not vary with salinity in sea cucumbers (2–4% of total nitrogen excreted) or sea urchins (2–9% of total nitrogen excreted). Primary amines varied inversely with salinity in sea cucumbers (2–30% of total nitrogen excreted), but did not vary with salinity in sea urchins (2–4% of total nitrogen excreted). The oxygen: nitrogen ratio of both species indicated that carbohydrate and/or lipid form the primary catabolic substrate. The O:N ratio did not vary as a function of salinity. Both species are more tolerant to reduced salinity than previously reported, however, rates of oxygen consumption and/or nitrogen excretion are modified by salinity as well as season.  相似文献   

20.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号