首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

In December 1994, the South Coast Air Quality Management District (SCAQMD) initiated a comprehensive program, the PM10 Technical Enhancement Program (PTEP), to characterize fine PM in the South Coast Air Basin (SCAB). A 1-year special particulate monitoring project was conducted from January 1995 to February 1996 as part of the PTEP. Under this enhanced monitoring, HNO3, NH3, and speciated PM10 and PM2.5 concentrations were measured at five stations (Anaheim, downtown Los Angeles, Diamond Bar, Fontana, and Rubidoux) in the SCAB and at one background station at San Nicolas Island. PM2.5 and PM10 mass and 43 individual species were analyzed for a full chemical speciation of the particle data. The PTEP data indicate that the most abundant chemical components of PM10 and PM25 in the SCAB are NH4+ (8-9% of PM10 and 14-17% of PM25), NO3 - (23-26% of PM10 and 28-41% of PM25), SO4= (6-11% of PM10 and 9-18% of PM2 5), organic carbon (OC) (15-19% of PM10 and 18-26% of PM2.5), and elemental carbon (EC) (5-8% of PM10 and 8-13% of PM25). On an annual average basis, PM25 comprises 52-59% of the SCAB PM10. Annual average PM10 and PM2.5 concentrations showed strong spatial variations, low at coastal sites and high at inland sites. Annual average PM10 concentrations varied from 40.8 ug/m3 at Anaheim to 76.8 ug/m3 at Rubidoux, while annual average PM2.5 concentrations varied from 21.7 ug/m3 at Anaheim to 39.8 ug/m3 at Rubidoux. The chemical characterizations of the PM2.5 and PM10 concentrations, as well as their spatial variations, were examined; the important findings are summarized in this paper, and the temporal variations are discussed in the companion paper.1  相似文献   

2.
ABSTRACT

In February 1993, the South Coast Air Basin (SCAB) was redesignated as a “serious” nonattainment area for PM10. To improve the understanding and characterization of fine particulate matter in the SCAB, the South Coast Air Quality Management District (SCAQMD) initiated a comprehensive PM10 Technical Enhancement Program (PTEP). Using enhanced PTEP monitors (specially designed multichannel/multifilter samplers), a one-year fine particulate matter (PM) monitoring program was initiated in January 1995. As part of the special monitoring program, nitric acid, ammonia, and speciated PM10 and PM2.5 concentrations were measured at five locations in the SCAB (downtown Los Angeles, Anaheim, Diamond Bar, Fontana, and Rubidoux) and at one background station (San Nicolas Island). The PM2.5 data are the first spatially resolved speciated data collected in the SCAB on an annual basis. Within the SCAB, where nitrate is a major component of PM2.5, nitrate losses have been documented. The spatial and temporal variations of the nitrate losses during PM2.5 sampling and the uncertainties of the nitrate losses are discussed. Significant losses occur at a low mass range, between 10 and 50 ìg/m3. Significant gains occur at an even lower mass range of less than 30 ìg/m3. On an annual average basis, nitrate losses vary between 1.25 and 2.32 ìg/m3 and the SCAB-wide average value of nitrate loss is 1.8 ìg/m3 based on five PTEP stations in the SCAB. The maximum nitrate losses for each station vary from 6.4 ìg/m3 to 22.5 ìg/m 3. Theoretical prediction of the sampling efficiency of the nitrate during PM2.5 sam - pling was compared with the PTEP data. In general, theoretical prediction was in good agreement with measured values.  相似文献   

3.
The South Coast Air Quality Management District (SCAQMD) conducted a 1-year special particulate monitoring study from January 1995 to February 1996. This monitoring data indicates that high PM10 and PM2.5 concentrations were observed in the fall (October, November, and December), with November concentrations being the highest. During the rest of the year, PM2.5 and PM10 masses gradually increased from January to September. Monthly PM10 mass varied from 20 to 120 micrograms/m3, and monthly PM2.5 mass varied from 13 to 63 micrograms/m3. The PM2.5-to-PM10 ratio varied daily and ranged between 22 and 96%. Two types of high-PM days were observed. The first type was observed under fall stagnation conditions, which lead to high secondary species concentrations. The second type was observed under high wind conditions, which lead to high primary coarse particles of crustal components. The highest 24-hr average PM10 concentration (226.3 micrograms/m3) was observed at the Fontana station, while the highest PM2.5 concentration (129.3 micrograms/m3) was observed at the Diamond Bar station.  相似文献   

4.
Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 microg/m3 and from 5 to 18 microg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 microg/m3, with observed 24-hr peaks reaching levels as high as 160 microg/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4(2-)) and nitrate (NO3-) components of PM2.5 and PM10) and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10-2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

5.
Wang G  Huang L  Gao S  Gao S  Wang L 《Chemosphere》2002,48(7):689-695
Measurement of PM10 and PM2.5 was carried out at six sites of Nanjing, China in the period of February-May 2001. The pH and conductivity of water-soluble matter of PM10 and PM2.5 were determined, and the samples were analyzed for total carbon (TC), organic carbon (OC) and inorganic carbon (IC) of the water-soluble fraction. The distribution of aerosol mass concentration in size was also measured at one site SB by a nine-stage impactor followed to assess the pulmonary deposition of particles in different tracts of the human respiratory system. Compared with National Ambient Air Quality Standard (NAAQS) of the USA, the level of PM10 and PM2.5 in Nanjing was much higher. Especially for site SY, the average particle mass concentrations (774.5 micrograms/m3 for PM10 and 481.4 micrograms/m3 for PM2.5) were more than five times the NAAQS standard. At site SB aerosol mass distribution in size had shown the similar characteristics with accumulation (Dp < 1 micron) and coarse (Dp > 1 micron) modes. More than 70% of total suspended particles is of a size that they are deposited in the respiratory tract below trachea, whereas about 22% of the mass is respirable and will reach the alveoli. Water-soluble fractions of PM10 and PM2.5 in Nanjing are acidic, and the pH of PM2.5 is lower than that of PM10. OC makes up the majority of TC and accounts for 3-14% of mass concentration of PM10 and/or PM2.5, while IC only accounts for 0.1-0.5% of PM10 and/or PM2.5 mass.  相似文献   

6.
The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM2.5, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA. Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components. For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2.5 mass always exceeded the proposed annual average standard (12-month average = 20.3 +/- 9.5 micrograms/m3). The particulate SO4(2-) fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particulate NO3- collected on a denuded nylon filter averaged 1.1 +/- 0.9 micrograms/m3. Particle-phase organic compounds (as organic carbon x 1.4) measured on a denuded quartz filter sampler averaged 6.4 +/- 3.1 micrograms/m3 (32% of FRM PM2.5 mass) with less seasonal variability than SO4(2-).  相似文献   

7.
In 1997, Maryland had no available ambient Federal Reference Method data on particulate matter less than 2.5 microm in aerodynamic diameter (PM23), but did have annual ambient data for PM smaller than 10 microm (PM10) at 24 sites. The PM10 data were analyzed in conjunction with local annual and seasonal zip-code-level emission inventories and with speciated PM2.5 data from four nearby monitors in the IMPROVE network (located in the national parks, wildlife refuges, and wilderness areas) in an effort to estimate annual average and seasonal high PM2.5 concentrations at the 24 PM10 monitor sites operating from 1992 to 1996. All seasonal high concentrations were estimated to be below the 24-hr PM2.5 National Ambient Air Quality Standards (NAAQS) at the sites operating in Maryland between 1992 and 1996. The estimates also indicated that 12 monitor sites might exceed the 3-year annual average PM2.5 NAAQS of 15 microg/m3, but Maryland's air quality shows signs that it has been improving since 1992. The estimates also were compared with actual measurements after the PM2.5 monitor network was installed. The estimates were adequate for describing the chemical composition of the PM2.5, forecasting compliance status with the 24-hr and annual standards, and determining the spatial variations in PM2.5 across central Maryland.  相似文献   

8.
Daily particle samples were collected in Santiago, Chile, at four urban locations from January 1, 1989, through December 31, 2001. Both fine PM with da < 2.5 microm (PM2.5) and coarse PM with 2.5 < da < 10 microm (PM2.5-10) were collected using dichotomous samplers. The inhalable particle fraction, PM10, was determined as the sum of fine and coarse concentrations. Wind speed, temperature and relative humidity (RH) were also measured continuously. Average concentrations of PM2.5 for the 1989-2001 period ranged from 38.5 microg/m3 to 53 microg/m3. For PM2.5-10 levels ranged from 35.8-48.2 microg/m3 and for PM10 results were 74.4-101.2 microg/m3 across the four sites. Both annual and daily PM2.5 and PM10 concentration levels exceeded the U.S. National Ambient Air Quality Standards and the European Union concentration limits. Mean PM2.5 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March); whereas coarse particle levels were similar in both seasons. PM concentration trends were investigated using regression models, controlling for site, weekday, month, wind speed, temperature, and RH. Results showed that PM2.5 concentrations decreased substantially, 52% over the 12-year period (1989-2000), whereas PM2.5-10 concentrations increased by approximately 50% in the first 5 years and then decreased by a similar percentage over the following 7 years. These decreases were evident even after controlling for significant climatic effects. These results suggest that the pollution reduction programs developed and implemented by the Comisión Nacional del Medio Ambiente (CONAMA) have been effective in reducing particle levels in the Santiago Metropolitan region. However, particle levels remain high and it is thus imperative that efforts to improve air quality continue.  相似文献   

9.
ABSTRACT

With the promulgation of a national PM2.5 ambient air quality standard, it is important that PM2.5 emissions inventories be developed as a tool for understanding the magnitude of potential PM2.5 violations. Current PM10 inventories include only emissions of primary particulate matter (1 ï PM), whereas, based on ambient measurements, both PM10 and PM2.5 emissions inventories will need to include sources of both 1ï PM and secondary particulate matter (2ï PM). Furthermore, the U. S. Environmental Protection Agency’s (EPA) current edition of AP-42 includes size distribution data for 1o PM that overestimate the PM2.5 fraction of fugitive dust sources by at least a factor of 2 based on recent studies.

This paper presents a PM2.5 emissions inventory developed for the South Coast Air Basin (SCAB) that for the first time includes both 1ï PM and 2ï PM. The former is calculated by multiplying PM10 emissions estimates by the PM2.5/PM10 ratios for different sources. The latter is calculated from estimated emission rates of gas-phase aerosol precursor and gas to aerosol conversion rates consistent with the measured chemical composition of ambient PM2.5 concentrations observed in the SCAB. The major finding of this PM2.5 emissions inventory is that the aerosol component is more than twice the aerosol component, which may result in widely different control strategies being required for fine PM and coarse PM.  相似文献   

10.
Time-resolved data is needed for public notification of unhealthful air quality and to develop an understanding of atmospheric chemistry, including insights important to control strategies. In this research, continuous fine particulate matter (PM2.5) mass concentrations were measured with tapered element oscillating microbalances (TEOMs) across New Jersey from July 1997 to June 1998. Data features indicating the influence of local sources and long-distance transport are examined, as well as differences between 1-hr maxima and 24-hr average concentrations that might be relevant to acute health effects. Continuous mass concentrations were not significantly different from filter-collected gravimetric mass concentrations with 95% confidence intervals during any season. Annual mean PM2.5 concentrations from July 1997 to June 1998 were 17.3, 16.4, 14.1, and 15.3 micrograms/m3 at Newark, Elizabeth, New Brunswick, and Camden, NJ, respectively. Monthly averaged 24- and 1-hr daily maximum PM2.5 concentrations suggest the existence of a high PM2.5 (May-October) and a low PM2.5 (November-April) season. PM2.5 magnitudes and temporal trends were very similar across the state during high PM2.5 events. In fact, the between-site coefficients of determination (R2) for daily PM2.5 measurements were 84-98% for June and July. Additionally, during the most pronounced PM2.5 episode, PM2.5 concentrations closely tracked the daily maximum 1-hr O3 concentrations. These observations suggest the importance of transport and atmospheric chemistry (i.e., secondary formation) to PM2.5 episodes in New Jersey. The influence of local sources was observed in diurnal concentration profiles and annual average between-site differences. Urban wintertime data illustrate that high 1-hr maximum PM2.5 concentrations can occur on low 24-hr PM2.5 days.  相似文献   

11.
This paper analyzes day-of-week variations in concentrations of particulate matter (PM) in California. Because volatile organic compounds (VOCs) and oxides of nitrogen (NOx) are not only precursors of ozone (O3) but also of secondary PM, it is useful to know whether the variations by day of week in these precursors are also evident in PM data. Concentrations of PM < or = 10 microm (PM10) and < or = 2.5 microm in aerodynamic diameter (PM2.5) were analyzed. PM concentrations exhibit a general weekly pattern, with the maximum occurring late in the workweek and the minimum occurring on weekends (especially Sunday); however, this pattern does not prevail at all sites and areas. PM nitrate (NO3-) data from Size Selective Inlet (SSI) samplers in the South Coast Air Basin (SoCAB) tend to be somewhat lower on weekends compared with weekdays. During 1988-1991, the weekend average was lower than the weekday average at 8 of 13 locations, with an average decrease of 1%. During 1997-2000, the weekend average was lower than the weekday average at 10 of 13 locations, with an average decrease of 6%. The weekend averages are generally lower than weekday averages for sulfates, organic carbon, and elemental carbon. Because heavy-duty trucks typically represent a major source of elemental carbon, the weekend decrease in heavy-duty truck traffic may also result in a decrease in ambient elemental carbon concentrations.  相似文献   

12.
Abstract

This paper analyzes day-of-week variations in concentrations of particulate matter (PM) in California. Because volatile organic compounds (VOCs) and oxides of nitrogen (NOx) are not only precursors of ozone (O3) but also of secondary PM, it is useful to know whether the variations by day of week in these precursors are also evident in PM data. Concentrations of PM ≤10 μm (PM10) and ≤2.5[H9262]m in aerodynamic diameter (PM2.5) were analyzed. PM concentrations exhibit a general weekly pattern, with the maximum occurring late in the workweek and the minimum occurring on weekends (especially Sunday); however, this pattern does not prevail at all sites and areas. PM nitrate (NO3 -) data from Size Selective Inlet (SSI) samplers in the South Coast Air Basin (SoCAB) tend to be somewhat lower on weekends compared with weekdays. During 1988–1991, the weekend average was lower than the weekday average at 8 of 13 locations, with an average decrease of 1%. During 1997–2000, the weekend average was lower than the weekday average at 10 of 13 locations, with an average decrease of 6%. The weekend averages are generally lower than weekday averages for sulfates, organic carbon, and elemental carbon. Because heavy-duty trucks typically represent a major source of elemental carbon, the weekend decrease in heavy-duty truck traffic may also result in a decrease in ambient elemental carbon concentrations.  相似文献   

13.
Fang GC  Chang CN  Wang NP  Wu YS  Wang V  Fu PP  Cheng CD  Chen SC  Lin DY 《Chemosphere》2000,41(11):1727-1731
Ambient particle concentration was taken on the traffic sampling site over the Chung-Chi Road over bridge (CCROB) in front of Hungkuang Institute of Technology (HKIT). The sampling time was from August 1999 to December 1999. During the sampling period, Taiwan's biggest earthquake in more than a century registered 7.3 on the Richter scale (Taiwan Chi-Chi Earthquake). Besides, there were more than 20,000 aftershocks that followed the Taiwan Chi-Chi Earthquake within three months. Thus, the PM2.5, PM(2.5-10) particle concentrations were also collected then and compared with total suspended particle (TSP) in this study. The average PM(2.5-10), PM2.5 and TSP concentrations are 24.6, 58.0 and 106 microg/m3, respectively, after the Taiwan Chi-Chi Earthquake. The average TSP concentrations before and after Taiwan Chi-Chi Earthquake were 70 and 127 microg/m3, respectively. It is clearly shown that the average concentration of TSP after Taiwan Chi-Chi Earthquake was about 1.8 times as that of TSP concentration before Taiwan Chi-Chi Earthquake in the traffic site of central Taiwan. And the ratios of PM2.5/PM(2.5-10), PM2.5/PM10 and PM2.5/TSP are 2.2%, 67.2%, 38.9%, respectively. The results also indicated about Chi-Chi fine particle concentration (PM25) and the TSP increases in the traffic site of central Taiwan after Taiwan Chi-Chi Earthquake.  相似文献   

14.
Karaca F  Alagha O  Ertürk F 《Chemosphere》2005,59(8):1183-1190
Inhalable particulate matter (PM10) has been monitored at several stations by Istanbul Municipality. On the other hand, information about fine fraction aerosols (PM2.5) in Istanbul atmosphere was not reported. In this study, 86 daily aerosol samples were collected between July 2002 and July 2003. The PM10 annual arithmetic mean value of 47.1 microg m(-3), was lower than the Turkish air quality standard of 60 microg m(-3). On the other hand, this value was found higher than the annual European Union air quality PM(10) standard of 40 microg m(-3). Furthermore, the annual mean concentration of PM2.5 20.8 microg m(-3) was found higher than The United States EPA standard of 15 microg m(-3). The statistics and relationships of fine, coarse, and inhalable particles were studied. Cyclic behavior of the monthly average concentrations of PM10 and PM2.5 data were investigated. Several frequency distribution functions were used to fit the measured data. According to Chi-squared and Kolmogorov-Smirnov tests, the frequency distributions of PM2.5 and PM10 data were found to fit Log-logistic functions.  相似文献   

15.
Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.  相似文献   

16.
An intensive sampling of aerosol particles from ground level and 100 m was conducted during a strong pollution episode during the winter in Xi'an, China. Concentrations of water-soluble inorganic ions, carbonaceous compounds, and trace elements were determined to compare the composition of particulate matter (PM) at the two heights. PM mass concentrations were high at both stations: PM10 (PM with aerodynamic diameter < or =10 microm) exceeded the China National Air Quality Standard Class II value on three occasions, and PM2.5 (PM with aerodynamic diameter < or =2.5 microm) exceeded the daily U.S. National Ambient Air Quality Standard more than 10 times. The PM10 organic carbon (OC) and elemental carbon (EC) were slightly lower at the ground than at 100 m, both in terms of concentration and percentage of total mass, but OC and EC in PM2.5 exhibited the opposite pattern. Major ionic species, such as sulfate and nitrate, showed vertical variations similar to the carbonaceous aerosols. High sulfate concentrations indicated that coal combustion dominated the PM mass both at the ground and 100 m. Correlations between K+ and OC and EC at 100 m imply a strong influence from suburban biomass burning, whereas coal combustion and motor vehicle exhaust had a greater influence on the ground PM. Stable atmospheric conditions apparently led to the accumulation of PM, especially at 100 m, and these conditions contributed to the similarities in PM at the two elevations. Low coefficient of divergence (CD) values reflect the similarities in the composition of the aerosol between sites, but higher CDs for fine particles compared with coarse ones were consistent with the differences in emission sources between the ground and 100 m.  相似文献   

17.
Systematic measurement of fine particulate matter (aerodynamic diameter less than 2.5 microm [PM2.5]) mass concentrations began nationally with implementation of the Federal Reference Method (FRM) network in 1998 and 1999. In California, additional monitoring of fine particulate matter (PM) occurred via a dichotomous sampler network and several special studies carried out between 1982 and 2002. The authors evaluate the comparability of FRM and non-FRM measurements of PM2.5 mass concentrations and establish conversion factors to standardize fine mass measurements from different methods to FRM-equivalent concentrations. The authors also identify measurements of PM2.5 mass concentrations that do not agree with FRM or other independent PM2.5 mass measurements. The authors show that PM2.5 mass can be reconstructed to a high degree of accuracy (r2 > 0.9; mean absolute error approximately 2 microg m(-3)) from PM with an aerodynamic diameter < or =10 microm (PM10) mass and species concentrations when site-specific and season-specific conversion factors are used and a statewide record of fine PM mass concentrations by combining the FRM PM2.5 measurements, non-FRM PM2.5 measurements, and reconstructions of PM2.5 mass concentrations. Trends and spatial variations are evaluated using the integrated data. The rates of change of annual fine PM mass were negative (downward trends) at all 22 urban and 6 nonurban (Interagency Monitoring of Protected Visual Environments [IMPROVE]) monitoring locations having at least 15 yr of data during the period 1980-2007. The trends at the IMPROVE sites ranged from -0.05 to -0.25 microg m(-3) yr(-1) (median -0.11 microg m(-3) yr(-1)), whereas urban-site trends ranged from -0.13 to -1.29 microg m(-3) yr(-1) (median -0.59 microg m(-3) yr(-1)). The urban concentrations declined by a factor of 2 over the period of record, and these decreases were qualitatively consistent with changes in emissions of primary PM2.5 and gas-phase precursors of secondary PM. Mean PM2.5 mass concentrations ranged from 3.3 to 7.4 microg m(-3) at IMPROVE sites and from 9.3 to 37.1 microg m(-3) at urban sites.  相似文献   

18.
Abstract

Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 [H9262]g/m3 and from 5 to 18 µg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 [H9262]g/m3, with observed 24-hr peaks reaching levels as high as 160 [H9262]g/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4 2?) and nitrate (NO3 ?) components of PM2.5 and PM10 and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10–2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

19.
During the last 10 years, high atmospheric concentrations of airborne particles recorded in the Mexico City metropolitan area have caused concern because of their potential harmful effects on human health. Four monitoring campaigns have been carried out in the Mexico City metropolitan area during 2000-2002 at three sites: (1) Xalostoc, located in an industrial region; (2) La Merced, located in a commercial area; and (3) Pedregal, located in a residential area. Results of gravimetric and chemical analyses of 330 samples of particulate matter (PM) with an aerodynamic diameter less than 2.5 microm (PM2.5) and PM with an aerodynamic diameter less than 10 microm (PM10) indicate that (1) PM2.5/PM10 average ratios were 0.42, 0.46, and 0.52 for Xalostoc, La Merced, and Pedregal, respectively; (2) the highest PM2.5 and PM10 concentrations were found at the industrial site; (3) PM2.5 and PM10 concentrations were lower at nighttime; (4) PM2.5 and PM10 spatial averages concentrations were 35 and 76 microg/m3, respectively; and (5) when the PM2.5 standard was exceeded, nitrate, sulfate, ammonium, organic carbon, and elemental carbon concentrations were high. Twenty-four hour averaged PM2.5 concentrations in Mexico City and Sao Paulo were similar to those recorded in the 1980s in Los Angeles. PM10 concentrations were comparable in Sao Paulo and Mexico City but 3-fold lower than those found in Santiago.  相似文献   

20.
Air samples of particulate matter (PM) with an aerodynamic diameter less than 10 microm (PM10) were collected from six sites in Bangkok, Thailand, using high-volume air samplers. Daily samples were taken at intervals of 12 days from November 1999 to November 2000. Size-selected sampling using a multislit Andersen size-fractionated cascade impactor was undertaken at one site in central Bangkok to identify particulate size distribution. The annual average PM10 concentration at all six sites exceeded the Thailand National Ambient Air Quality Standard (NAAQS) of 50 microg/m3. The daily PM10 concentrations at heavy traffic roadside areas ranged between 30 and 160 microg/m3. The highest PM10 level occurred during the winter period (November-February), which is the dry season. From our results, which are based on a 1-yr survey, it can be observed that the particulate concentrations are associated with traffic volumes and seasonal factors (temperature and rainfall). The relative importance of size fractions in contributing to PM load is presented and discussed. Twenty polycyclic aromatic hydrocarbons (PAHs) associated with PM have been identified and quantified. The summed PAHs based on the 20 species had an average concentration of 60 ng/m3. Benzo(e)pyrene, indeno(123cd)pyrene, and benzo(ghi)perylene were the major compounds with average concentrations of 8, 10, and 13 ng/m3, respectively. Results indicate that more than 97% of PAHs were found in the small particulate size range of <0.95 microm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号