首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
Alkaline eluate from municipal solid waste (MSW) incineration residue deposited in landfill alkalizes waste and soil layers. From the viewpoint of accelerating stability and preventing heavy metal elution, pH of the landfill layer (waste and daily cover soil) should be controlled. On the other hand, pH of leachate from existing MSW landfill sites is usually approximately neutral. One of the reasons is that daily cover soil can neutralize alkaline solution containing Ca2+ as cation. However, in landfill layer where various types of wastes and reactions should be taken into consideration, the ability to neutralize alkaline solutions other than Ca(OH)2 by soil should be evaluated. In this study, the neutralization capacities of various types of soils were measured using Ca(OH)2 and NaOH solutions. Each soil used in this study showed approximately the same capacity to neutralize both alkaline solutions of Ca(OH)2 and NaOH. The cation exchange capacity was less than 30% of the maximum alkali neutralization capacity obtained by the titration test. The mechanism of neutralization by the pH-dependent charge can explain the same neutralization capacities of the soils. Although further investigation on the neutralization capacity of the soils for alkaline substances other than NaOH is required, daily cover soil could serve as a buffer zone for alkaline leachates containing Ca(OH)2 or other alkaline substances.  相似文献   

2.
White-rot fungi applied for soil bioremediation have to compete with indigenous soil microorganisms. The effect of competition on both indigenous soil microflora and white-rot fungi was evaluated with regard to degradation of polycyclic aromatic hydrocarbons (PAH) with different persistence in soil. Sterile and non-sterile soil was artificially contaminated with 14C-labeled PAH consisting of three (anthracene), four (pyrene, benz[a]anthracene) and five fused aromatic rings (benzo[a]pyrene, dibenz[a,h]anthracene). The two fungi tested,Dichomitus squalens and Pleurotus ostreatus, produced similar amounts of ligninolytic enzymes in soil, but PAH mineralization by P. ostreatus was significantly higher. Compared to the indigenous soil microflora, P.ostreatus mineralized 5-ring PAH to a larger extent, while the indigenous microflora was superior in mineralizing 3-ring and 4-ring PAH. In coculture the special capabilities of both soil microflora and P. ostreatus were partly restricted due to antagonistic interactions, but essentially preserved. Thus, soil inoculation with P. ostreatus significantly increased the mineralization of high-molecular-weight PAH, and at the same time reduced the mineralization of anthracene and pyrene. Regarding the mineralization of low-molecular-weight PAH, the stimulation of indigenous soil microorganisms by straw amendment was more efficient than application of white-rot fungi.  相似文献   

3.
Atrazine biodegradation by immobilized pure and mixed cultures was examined. A pure atrazine-degrading culture, Agrobacterium radiobacter J14a (J14a), and a mixed culture (MC), isolated from an atrazine-contaminated crop field, were immobilized using phosphorylated-polyvinyl alcohol (PPVA). An existing cell immobilization procedure was modified to enhance PPVA matrix stability. The results showed that the matrices remained mechanically and chemically stable after shaking with glass beads over 15 days under various salt solutions and pH values. The immobilization process had a slight effect on cell viability. With the aid of scanning electron microscopy, a suitable microstructure of PPVA matrices for cell entrapment was observed. There were two porous layers of spherical gel matrices, the outside having an encapsulation property and the inside containing numerous pores for bacteria to occupy. J14a and MC were immobilized at three cell-to-matrix ratios of 3.5, 6.7, and 20 mg dry cells/mL matrix. The atrazine biodegradation tests were conducted in an aerobic batch system, which was inoculated with cells at 2,000 mg/L. The tests were also conducted using free (non-immobilized) J14a and MC for comparative purpose. The cell-to-matrix ratio of 3.5 mg/mL provided the highest atrazine removal efficiency of 40–50% in 120 h for both J14a and MC. The free cell systems, for both cultures, presented much lower atrazine removal efficiencies compared to the immobilized cell systems at the same level of inoculation.  相似文献   

4.
Leaching experiments of rebuilt soil columns with two simulated acid rain solutions (pH 4.6–3.8) were conducted for two natural soils and two artificial contaminated soils from Hunan, south-central China, to study effects of acid rain on competitive releases of soil Cd, Cu, and Zn. Distilled water was used in comparison. The results showed that the total releases were Zn>Cu>Cd for the natural soils and Cd>Zn≫Cu for the contaminated soils, which reflected sensitivity of these metals to acid rain. Leached with different acid rain, about 26–76% of external Cd and 11–68% external Zn were released, but more than 99% of external Cu was adsorbed by the soils, and therefore Cu had a different sorption and desorption pattern from Cd and Zn. Metal releases were obviously correlated with releases of TOC in the leachates, which could be described as an exponential equation. Compared with the natural soils, acid rain not only led to changes in total metal contents, but also in metal fraction distributions in the contaminated soils. More acidified soils had a lower sorption capacity to metals, mostly related to soil properties such as pH, organic matter, soil particles, adsorbed SO4 2−, exchangeable Al3+ and H+, and contents of Fe2O3 and Al2O3.  相似文献   

5.
The effect of liming (3.45 and 8.75 t ha-1 dolomite; 16 yr after application) on the biodegradation of three low molecular weight organic acids (citrate, oxalate and propionate) in forest soils was investigated. The concentration of organic acids in the soil solution followed the series propionate > citrate > oxalate with liming having no significant impact on soil solution concentrations (mean organic acid concentration = 8.7 ± 2.3 M). Organic acid mineralization by the soil microbial community was rapid in surface organic horizons (mean half-life for citrate = 2–6 h), with biodegradation rate gradually declining with soil depth. Concentration-dependent biodegradation studies (0 to 350 M) showed that the mineralization kinetics generally conformed well to a single Michaelis–Menten equation with Vmax values following the series oxalate > citrate > propionate (mean = 9.8 ± 1.0 nmol g-1 h-1) and KM values following the series oxalate = citrate > propionate (mean 168 ± 25 M). The Vmax values declined with soil depth, which was consistent with a general reduction in microbial activity down the soil profile. Liming induced a significant increase in Vmax for citrate with no change for propionate and reduction in Vmax for oxalate. The latter was probably due to adsorption and precipitation of Ca-oxalate making it unavailable for microbial uptake. The higher adsorption/precipitation capacity for oxalate in the limed soils was confirmed by adsorption isotherms. Generally, liming increased soil microbial activity by approximately 10 to 35% with calculations based on soil solution concentrations indicating that organic acid mineralization constituted approximately 3 to 15% of the total soil respiration.  相似文献   

6.
The biodegradation of n-alkanes and branched alkanes from waste sludge were observed in landfarming soils of Motor Oil Hellas (a petroleum refinery) and changes in the bacterial communities in the soils were monitored during the remediation. Bacterial 16S rRNA gene (rDNA)-based community fingerprint patterns were obtained from soil samples by terminal restriction fragment length polymorphism (T-RFLP) analysis. Changes in T-RFLP fingerprints, as well as in the petroleum contaminant composition of the polluted soil, correlated with degradation activities in field tests.  相似文献   

7.
PHB (poly-3-hydroxybutyric acid) is a thermoplastic polyester synthesized by Ralstonia eutropha and other bacteria as a form of intracellular carbon and energy storage and accumulated as inclusions in the cytoplasm of these bacteria. The degradation of PHB by fungi from samples collected from various environments was studied. PHB depolymerization was tested in vials containing a PHB-containing medium which were inoculated with isolates from the samples. The degradation activity was detected by the formation of a clear zone below and around the fungal colony. In total, 105 fungi were isolated from 15 natural habitats and 8 lichens, among which 41 strains showed PHB degradation. Most of these were deuteromycetes (fungi imperfecti) resembling species of Penicillium and Aspergillus and were isolated mostly from soils, compost, hay, and lichens. Soil-containing environments were the habitats from which the largest number of fungal PHB degraders were found. Other organisms involved in PHB degradation were observed. A total number of 31 bacterial strains out of 67 isolates showed clear zones on assay medium. Protozoa, possible PHB degraders, were also found in several samples such as pond, soil, hay, horse dung, and lichen. Lichen, a fungi and algae symbiosis, was an unexpected sample from which fungal and bacterial PHB degraders were isolated.  相似文献   

8.
Open-cast lignite mining in the Lusatian mining district resulted in rehabilitated mine soils containing up to four organic matter types: (1) recent plant litter, (2) lignite deposited by mining activity, (3) carbonaceous ash particles deposited during amelioration of the lignite-containing parent substrate and (4) airborne carbonaceous particles deposited during contamination. The influence of lignite-derived carbon types on the organic matter development and their role in the soil carbon cycle was unknown. This paper presents the findings obtained during a six year project concerning the impact of lignite on soil organic matter composition and the biogeochemical functioning of the ecosystem. The organic matter development after rehabilitation was followed in a chronosequence of rehabilitated mine soils afforested in 1966, 1981 and 1987. A differentiation of the organic matter types and an evaluation of their role within the ecosystem was achieved by the use of 14C activity measurements, 13C CPMAS NMR spectroscopy and wet chemical analysis of plant litter compounds. The results showed that the amount and degree of decomposition of the recent organic matter derived from plant material of the 30 year old mine soil was similar to natural uncontaminated forest soil which suggests complete rehabilitation of the ecosystem. The decomposition and humification processes were not influenced by the presence of lignite. On the other hand it was shown that lignite, which was thought to be recalcitrant because of its chemical structure, was part of the carbon cycle in these soils. This demonstrates the need to elucidate further the stabilisation mechanisms of organic matter in soils.  相似文献   

9.
Two pilot tests of an aerobic in situ bioreactor (ISBR) have been conducted at field sites contaminated with petroleum hydrocarbons. The two sites differed with respect to hydrocarbon concentrations. At one site, concentrations were low but persistent, and at the other site concentrations were high enough to be inhibitory to biodegradation. The ISBR unit is designed to enhance biodegradation of hydrocarbons by stimulating indigenous microorganisms. This approach builds on existing Bio‐Sep® bead technology, which provides a matrix that can be rapidly colonized by the active members of the microbial community and serves to concentrate indigenous degraders. Oxygen and nutrients are delivered to the bioreactor to maintain conditions favorable for growth and reproduction, and contaminated groundwater is treated as it is circulated through the bed of Bio‐Sep® beads. Groundwater moving through the system also transports degraders released from Bio‐Sep® beads away from the bioreactor, potentially increasing biodegradation rates throughout the aquifer. Groundwater sampling, Bio‐Traps, and molecular biological tools were used to assess ISBR performance during the two pilot tests. Groundwater monitoring indicated that contaminant concentrations decreased at both sites, and the microbial data suggested that these decreases were due to degradation by indigenous microorganisms rather than dilution or dispersion mechanisms. Taken together, these lines of evidence showed that the ISBR system effectively increased the number and activity of indigenous microbial degraders and enhanced bioremediation at the test sites. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
The purpose of this study was to examine the relationship between the concentration of boron (B) and some other selected trace elements in soil solution as effected by hydrogen ion activity within the normal pH range for acidic soils commonly amended with agricultural limestone and, alternatively, alkaline fly ash. Sluiced alkaline fly ash was applied to an acidic, clay textured soil at rates equivalent to 0, 42, 84, 125 and 167 tonne ha-1 based on the soil lime requirement. After wheat was grown and harvested the soil-ash mixtures were maintained at field capacity moisture content for an additional 4 months before pore water samples were extracted by immiscible displacement. The total concentrations of Co, Cr, Fe, V and Zn in the ash treated soils increased by < 10% at the highest application rate of ash, the content of Cu was increased by 13% and B by 38%. Only the concentration of boron increased appreciably in the pore water extracts. Release of B from the ash was correlated with the solubility behaviour of Ca and Mg, and not with the dissolution of glass phases in the ash. Speciation and adsorption calculations for the extracts were carried out using the program MINTEQ. Common Ca, Mg and Na borate minerals were undersaturated with respect to the equilibrated solutions. Application of the constant capacitance model to the adsorption of B on mineral surfaces suggested that adsorption had little effect on total dissolved B at pH values below 6.0. Predicted concentrations of B in solutions, equilibrated with calcite in a subsurface horizon, were up to 10.6 mg dm-3; more than double the recommended maximum concentration for B (5mg dm-3) in potable water in Ontario.  相似文献   

11.
Typical soils in Greece are neutral or alkaline and frequently are lime-rich, conditions that favour the accumulation of trace elements. The traditional use of metal-based fungicides in orchards and vineyards may have led to the accumulation of trace metals. Concentrations of Fe, Cu, Mn, Zn (aqua regia digestion) and some other soil parameters were measured in organically and conventionally cultivated soils (0–30 cm) from vineyards, olive groves and citrus groves of varying ages, and in uncultivated soils. Many vineyards and olive groves are situated in hilly or mountainous areas with sloping ground or terraces in contrastto citrus, which is cultivated in lower lying areas. Due to the difficulty of access, these crops often are cultivated extensively in both systems. Trace metal concentrations were found to lie withinthe ranges expected for the predominant soil types. Cu concentrations were relatively high (>100 mg kg-1) in a few samples, but were not correlated with the age of the cultivation. A two-way ANOVA analysis showed larger differences in the mean concentrations of Cu, Mn and Zn between different crops (p≤ 0.001 for Cu, p≤ 0.05 for Zn, and p≤ 0.1 for Mn) than between different cultivation systems (no significant differences). The crop by cultivation interaction was not statistically significant for any metal (p > 0.8). Strong correlations (p≤ 0.001) were found between Fe, Mn and Zn and both clay concentration and CEC, although these relationshipswere not uniform throughout the different crop and cultivation systems. Concentrations of Cu were related to clay concentrations only for vineyards and to CEC only for citrus. Correlations were not found with organic matter or pH.  相似文献   

12.
Mesua ferrea L. seed oil (MFLSO) modified polyurethanes blends with epoxy and melamine formaldehyde (MF) resins have been studied for biodegradation with two techniques, namely microbial degradation (broth culture technique) and natural soil burial degradation. In the former technique, rate of increase in bacterial growth in polymer matrix was monitored for 12 days via a visible spectrophotometer at the wavelength of 600 nm using McFarland turbidity as the standard. The soil burial method was performed using three different soils under ambient conditions over a period of 6 months to correlate with natural degradation. Microorganism attack after the soil burial biodegradation of 180 days was realized by the measurement of loss of weight and mechanical properties. Biodegradation of the films was also evidenced by SEM, TGA and FTIR spectroscopic studies. The loss in intensity of the bands at ca. 1735 cm−1 and ca. 1050 cm−1 for ester linkages indicates biodegradation of the blends through degradation of ester group. Both microbial and soil burial studies showed polyurethane/epoxy blends to be more biodegradable than polyurethane/MF blends. Further almost one step degradation in TG analysis suggests degradation for both the blends to occur by breakage of ester links. The biodegradation of the blends were further confirmed by SEM analyses. The study reveals that the modified MFLSO based polyurethane blends deserve the potential to be applicable as “green binders” for polymer composite and surface coating applications.  相似文献   

13.
Water-soluble extracts from compost may represent an alternative nutrient and organic matter source for crop production under drip irrigation. Dissolved organic matter (DOM), extracted from composted "alperujo", the main by-product from the Spanish olive oil industry, was applied to soil alone or in combination with either Glomus intraradices Schenck and Smith or a mixture of G. intraradices, Glomus deserticola (Trappe, Bloss. and Menge) and Glomus mosseae (Nicol and Gerd.) Gerd. and Trappe. Response measurements included mycorrhizal colonisation, nutrient uptake and growth of Medicago sativa and microbiological and physical properties in the rhizosphere. Dissolved organic matter was added to soil at concentrations of 0, 50, 100 or 300mgCkg(-1) substrate. During the four months of the experiment, the plants were harvested three times. Both mycorrhizal inoculation treatments significantly increased soil aggregate stability. Only the mycorrhizal inoculations increased microbial biomass C and protease and phosphatase activities and decreased water-soluble C, particularly the mixture of arbuscular mycorrhizal fungi. At the third harvest, the greatest increase in growth of M. sativa was observed in the inoculated plants with shoot biomass being 38% greater than for plants grown in the soil amended with the highest dose of DOM and 57% greater than for control plants. The addition of DOM was not sufficient to restore soil structure and microbial activity and did not affect the mycorrhizal development of introduced populations of arbuscular mycorrhizal fungi, but, depending on the dose, its fertiliser efficiency for improving plant growth was apparent.  相似文献   

14.
Persistent organic pollutants (POPs) are a set of chemicals that are toxic, persist in the environment for long periods of time, and biomagnify as they move up through the food chain. The most widely used method of POP destruction is incineration, which is expensive and could result in undesirable by‐products. An alternative bioremediation technology, which is cheaper and environ‐mentally friendly, was tested during this experiment. Two different soil types containing high and low organic matter (OM) were spiked with 100 mg/kg each of pyrene and Aroclor 1248 and planted with three different species of grasses. The objective of the study was to determine residue recovery levels (availability) and potential effectiveness of these plant species for the remediation of POPs. The results showed that recovery levels were highly dependent on the soil organic matter content—very low in all treatments with the high OM content soil compared to recoveries in the low OM soil. This indicates that availability, and, hence, biodegradability of the contaminants is dependent on the organic matter content of the soil. Moreover, the degree of availability was also significantly different for the two classes of chemicals. The polyaromatic hydrocarbon (PAH) recovery (availability) was extremely low in the high organic matter content soil compared to that of the polychlorinated biphenyls (PCBs). In both soil types, all of the plant species treatments showed significantly greater PCB biodegradation compared to the unplanted controls. Planting did not have any significant effect on the transformation of the PAHs in both soil types; however, planting with switchgrass was the best remedial option for both soil types contaminated with PCB. © 2005 Wiley Periodicals, Inc.  相似文献   

15.
Bio‐Traps® were used to investigate biodegradation of benzene, methyl tertiary butyl ether (MTBE), and tertiary butyl alcohol (TBA) under different conditions at a fractured rock site to aid the selection of a bioremediation approach. The Bio‐Traps were amended with the 13C‐labeled constituent of interest and sampled sequentially at 15‐, 30‐, 60‐, and 90‐day intervals. The conditions tested were biodegradation during operation of an air sparge system, amendment with nitrate during the air sparge operation, anaerobic biodegradation with the system turned off, and anaerobic biodegradation with nitrate amendment. There was increased biomass with nitrate amendment whether the air sparge system was on or off for all the constituents of interest. The diversity of the microbial community, determined by phospholipid fatty acid analysis, decreased with nitrate amendment as more specialized degraders were selected. The most negative indicators of potential biodegradation performance were observed with the anaerobic control. There was less biomass overall, less incorporation of 13C into biomass, and decreased membrane permeability. As testing with additional amendments continues at the site, it is not yet certain which treatment might be selected for bioremediation, but the Bio‐Trap tests thus far have identified that the in situ, natural attenuation condition is least favorable for biodegradation. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha?1 were incubated for 90 days at two temperatures: 5 and 35 °C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 23 factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 °C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E4/E6 ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E4/E6 ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC content in the original soil, the greater are the changes observed in the SOC after amendment with co-compost. The results suggest that proper recommendations for optimum organic matter evolution after soil amendment is possible after considering a small set of characteristics of soil and the corresponding soil organic matter fractions, in particular HA.  相似文献   

17.
Effects of leachate addition on ammonia volatilization and N2O and CO2 emissions from two different soils were investigated using the 10-day laboratory incubation method at two levels of moisture content. Ammonia volatilization was dominated by soil pH and only occurred in alkaline clay soil, where 0.26–0.32% of soil ammonia could be lost. The N2O emission from the alkaline clay soil was one order of magnitude greater than that from the acidic sandy soil, when either water or leachate was irrigated. Increasing the moisture content from 46% water-filled pore space (WFPS) to 70% WFPS in the alkaline clay soil or the acidic sandy soil by either water or leachate irrigation increased the N2O emission by over twofold. The CO2 emission from each soil sample at the two WFPSs was almost the same. The CO2 emission from the alkaline clay soil with leachate addition was 72% lower than that from the acidic sandy soil with leachate addition, and 6.7 times higher than that from the alkaline clay soil with distilled water addition. Ammonia volatilization and N2O emission under leachate irrigation could be minimized by avoiding the excessively wet condition and by selecting the acidic sandy soil with low organic carbon and total nitrogen content.  相似文献   

18.
Mineralization potentials are often used to classify organic wastes. These methods involve measuring CO2 production during batch experiments, so variations in chemical compounds are not addressed. Moreover, the physicochemical conditions are not monitored during the reactions. The present study was designed to address these deficiencies. Incubations of a mixture of soil and waste (vinasse at 20% dry matter from a fermentation industry) were conducted in aerobic and anaerobic conditions, and liquid samples obtained by centrifugation were collected at 2 h, 1 d and 28 d. Dissolved organic carbon (DOC) patterns highlighted that: there was a “soil effect” which increased organic matter (OM) degradation in all conditions compared to vinasse incubated alone; and OM degradation was faster under aerobic conditions since 500 mg kg?1 of C remained after aerobic incubation, as compared to 4000 mg kg?1 at the end of the anaerobic incubation period. No changes were detected by Fourier transform infrared spectroscopy (FTIR) between 2 h and 1 d incubation. At 28 days incubation, the FTIR signal of the aerobic samples was deeply modified, thus confirming the high OM degradation. Under anaerobic conditions, the main polysaccharide contributions (ν(C–O)) disappeared at 1000 and 1200 cm?1, as also confirmed by the 13C NMR findings. Under aerobic incubation, a 50% decrease in the polysaccharide proportion was observed. Under anaerobic conditions, significant chemical modifications of the organic fraction were detected, namely formation of low molecular weight organic acids.  相似文献   

19.
Microbial communities in sewage sludge and green waste co-composting were investigated using culture-dependent methods and community level physiological profiles (CLPP) with Biolog Microplate. Different microbial groups characterized each stage of composting. Bacterial densities were high from beginning to end of composting, whereas actinomycete densities increased only after bio-oxidation phase i.e. after 40 days. Fungal populations become particularly high during the last stage of decomposition. Cluster analyses of metabolic profiles revealed a similar separation between two groups of composts at 67 days for bacteria and fungi. Principal component analysis (PCA) applied to bacterial and fungal CLPP data showed a chronological distribution of composts with two phases. The first one (before 67 days), where the composts were characterized by the rapid decomposition of non-humic biodegradable organic matter, was significantly correlated to the decrease of C, C/N, organic matter (OM), fulvic acid (FA), respiration, cellulase, protease, phenoloxidase, alkaline and acid phosphatases activities. The second phase corresponding to the formation of polycondensed humic-like substances was significantly correlated to humic acid (HA) content, pH and HA/FA. The influent substrates selected on both factorial maps showed that microbial communities could adapt their metabolic capacities to the particular environment. The first phase seems to be focused on easily degradable substrate utilization whereas the maturation phase appears as multiple metabolisms, which induce the release of metabolites and their polymerization leading to humification processes.  相似文献   

20.
Partly because of the low bioavailability of metals, the soil cleaning-up using phytoremediation is usually time-consuming. In order to enhance the amount of metals at the plant's disposal, the soil bioaugmentation coupled together with phytoextraction is an emerging technology. In this preliminary work, two agricultural soils which mainly differed in their Cr, Hg and Pb contents (LC, low-contaminated soil; HC, high-contaminated soil) were bioaugmented in laboratory conditions by either bacterial (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans) or fungal inocula (Aspergillus niger or Penicillium simplicissimum) and incubated during three weeks. The LC soil pots bioaugmented with A. niger and P. aeruginosa contained higher concentrations of Cr (0.08 and 0.25 mg.kg−1 dw soil) and Pb (0.25 and 0.3 mg.kg−1 dw soil) in the exchangeable fraction F1 (extraction with MgCl2) by comparison with the non-bioaugmented soil where neither Cr nor Pb was detected. Conversely, immobilization of Cr and Pb in the soil were observed with the other microorganisms. The soil bioaugmentation not only modified the metal speciation for the most easily extractable fractions but also modified the distribution of metals in the other fractions, to a lesser extent nevertheless. The difference in microbial concentrations between the bioaugmented or not HC soils reached up to 1.8 log units. Thus the microorganisms that we chose for the soil bioaugmentation were competitive towards the indigenous microflora. The PCA analysis showed close positive relationships between the microorganisms which potentially produced siderophores in the soil and the amount of Cr and Pb in the fraction F1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号