首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five varieties of rice (Oryza sativa L.) of varying salinity resistance were grown in non-saline and in saline conditions, with and without a repeated exposure to ozone at a concentration of 83 nmol mol(-1) giving an AOT40 (cumulative exposure above 40 nmol mol(-1)) of 3600 nmol mol(-1) h. Salinity caused a substantial reduction in shoot and root dry weight in all varieties, but the effect on root growth was proportionately less than on shoot growth. Ozone reduced root dry weight but the treatment used did not significantly affect shoot dry weight. Both salinity and ozone reduced plant height. The potassium concentration in the leaves of all five varieties was reduced by salinity, and by ozone in both saline and non-saline treatments. Ozone reduced the sodium concentration in plants grown at 50 mM NaCl but had no effect upon the chloride concentration. Carbon dioxide assimilation, transpiration and stomatal conductance were all reduced by salinity and by ozone and there was close quantitative similarity between the effects of ozone and/or salinity upon assimilation, stomatal conductance and transpiration. There were some antagonistic effects but there were additive effects of salinity and of ozone on root dry weight, plant height, shoot potassium concentration, photosynthesis, transpiration and stomatal conductance. The possible basis of the additive effects of salinity and ozone on gas exchange and mineral uptake are discussed.  相似文献   

2.
A single 12 h ozone exposure peaking at 0.20 ppm proved phytotoxic to greenhouse-grown 'Cutler 71' soybeans at each growth stage tested from V5 to R6. Visible injury occurred within 40 h on the unifoliodate leaves and middle-aged and older trifoliolates while the younger leaves were free from toxicity symptoms. In some instances visible injury was accompanied by a decrease in chlorophyll and an increase in leaf diffusive resistance. Although nitrogen fixation was not significantly altered except at early pod formation (R3), and nitrate reductase activity was significantly reduced only if the ozone exposure occurred at the time of maximal enzyme activity (V5), nitrogen content of the leaves was reduced by ozone treatment. Shoot dry weight was not affected 40 h after ozone treatment, but root dry weight was significantly reduced. Plants grown with supplemental NO(3)(-) were more sensitive to ozone than those dependent on fixed nitrogen. At plant maturity, there was no evidence of an ozone effect on shoot, root, or seed dry weight, NO(3)(-) -grown plants showed a significant increase in growth and yield over N(2)(-) plants; but no ozone effect was observed, despite the increased foliar sensitivity. Multiple ozone exposures at growth stages V3, R1 and R3 exacerbated the effects noted with a single episode and also reduced nitrogenase activity (reflected in specific and total nodule activity) and shoot and root dry weight. At plant maturity, there was again no evidence of a significant effect of multiple ozone treatment on shoot dry weight or seed yield although root weight remained low. The results would tend to support the hypothesis that older leaves of soybean do not make a significant contribution to seed yield. Although they may be injured by ozone during the reproductive phases of growth, seed yield may not be affected if the younger O(3)-tolerant leaves remain functional.  相似文献   

3.
To investigate the effects of low (0.05 micromol/mol) and relatively low (0.10 micromol/mol) concentrations of ozone on photoassimilate partitioning, rice plants grown in a water culture were fed with (13)C-labelled carbon dioxide at the reproductive stage in an assimilation chamber with constant concentration of (12)CO(2) and (13)CO(2). Rice plants were exposed to ozone 4 weeks before and 3 weeks after (13)CO(2) feeding. The dry weight of whole plants decreased with increasing ozone concentration, whereas net photosynthetic rate (apparent CO(2) uptake per unit leaf area) was unaffected, compared with the control, at the time of (13)CO(2) feeding. Dry matter distribution into leaf sheaths and culms was reduced more than that into leaf blades by ozone exposure. Although panicle dry weight per plant was reduced by ozone, the percentage of panicle dry weight to the whole plant tended to increase considerably. Exposure to ozone accelerated translocation of (13)C from source leaves to other plant parts. Partitioning of (13)C to panicles and roots was higher under ozone treatment than in the control. Respiratory losses of fixed (13)C from plants tended to decrease under treatment with ozone. The increase in photoassimilate partitioning in panicles can be considered to be an acclimation response of rice plants to complete reproductive stage under the restricted biomass production caused by ozone.  相似文献   

4.
Spartina alterniflora plants were collected from salt marshes within New Jersey, South Carolina, and Georgia USA and shipped to The Pennsylvania State University. New plants were grown from rhizomes in six open-top field chambers. Three chambers received charcoal-filtered air, and three received charcoal-filtered air plus 80 ppb ozone, 8 h/day for 65 days. Flower, leaf, and shoot number per plant were recorded weekly. Photosynthetic rates were measured in week 5, and foliar injury was assessed during week 9. Final dry weight of roots, shoots, and rhizomes were determined. While ozone-treated plants from all states expressed symptoms of ozone injury, plants from South Carolina exhibited no effect of ozone on any other measured variable. Plants from the Georgia site showed ozone-induced reductions in all measured variables except leaf dry weight. Ozone-treated plants from New Jersey showed reductions in photosynthetic rate, leaf and shoot number, and root dry weights. Only plants from New Jersey produced flowers, with ozone treatment causing delay in flowering and reduction in the number of flower spikes produced.  相似文献   

5.
The elemental uptake and distribution, in various parts of the admired herbal plant, Hypoxis hemerocallidea, the 'African potato' and its ability to accumulate elements in response to the growth soil quality are investigated. The total and exchangeable concentrations of twelve elements in the growth soils and their distribution in the roots, potato bulb and leaves of the plants grown under four different settings were compared. The typical concentrations of the twelve selected elements, in the bulb and leaves of the plant grown in a nursery pot (site 2) were (in microg g(-1)dry weight) Ca (8430 and 27075), Mg (2113 and 1566), Fe (66 and 150), Al (10 and 368), Zn (105 and 6.1), Mn (42 and 51), Cu (7.2 and 20.8), Ba (0.23 and 4.44), Co (0.20 and 0.42), As (2.05 and 24.56), Hg (0.92 and 1.82) and Cr (0.13 and 0.33). Except for Ca, Mg, Zn and Mn, the exchangeable cation concentrations in all the growth soils were low. Ca, Mg, Mn, Zn and As had bioaccumulation factors >1. Fe, Al and Co concentrations were high in the roots with little in the rest of the plant. High concentration of arsenic (approximately 13 microg g(-1) dry weight) with bioaccumulation factors of 7 and 20 were observed in the roots and leaves of the plant respectively (site 2), but the concentration of mercury in bulb was very low (0.92 microg g(-1) dry weight).  相似文献   

6.
Variations occurred in the growth, assimilate partitioning, chlorophyll content, stem anatomy and leaf cuticular traits of Euphorbia hirta L. on long-term exposure to coal-smoke pollutants prevailing at two sites, one situated close to a railway loco shed (site B) and another in the vicinity of a thermal power plant (site C). The Botanical Garden of Aligarh Muslim University, Aligarh, was considered as a control site (A). Site C possessed a greater load of coal-smoke pollutants than site B. The present study had shown that coal-smoke pollutants have led to a decrease in plant height, jeopardised the production of leaves and enhanced their fall, and caused a reduction in leaf area, leading to decreases of the total photosynthetic area of the plants, with increasing pollution load. The losses incurred in chlorophyll a were relatively more than chlorophyll b and, as a result, the total chlorophyll contents of leaves were decreased in polluted plants. The dry weights of stems, roots and leaves were decreased to different degrees, whereas the shoot/root dry weight ratio was found to increase in the polluted environment. The growth of stem cortex and pith were slightly affected on site B, but showed significant decreases on site C, due to a greater load of pollutants. Decreased area of xylem tissue was found to couple with an increasing number of vessels of reduced sizes. The stomatal density, pore size and index showed decreases, while the epidermal cells were larger and trichomes longer, on both surfaces of polluted leaves.  相似文献   

7.
Gopal R  Rizvi AH 《Chemosphere》2008,70(9):1539-1544
To elucidate the deleterious effects of excess lead on radish (Raphanus sativus) cv. Jaunpuri plants were grown in refined sand in complete nutrient solution for 30 days. On the 31st day lead nitrate was superimposed at 0.1 and 0.5mM to radish for 65 days. A set of plants in complete nutrient solution was maintained as control for the same period without lead. Excess Pb at 0.5mM showed growth depression with interveinal chlorosis on young leaves at apex. Excess Pb reduced the fresh and dry weight pronouncedly at d 65. Lead accumulation reduced the concentration of chlorophyll, iron, sulphur (in tops), Hill reaction activity and catalase activity whereas increased the concentration of phosphorus, sulphur (in roots) and activity of peroxidase, acid phosphatase and ribonuclease in leaves of radish.  相似文献   

8.
The differences in growth, leaf senescence, visible ozone injuries and stomatal density between one coastal site (natural ozone) and two inland sites (natural and elevated ozone) in Finland were determined for saplings of Betula pendula clones grown under open-field conditions during two growing seasons. Responses in growth, leaf senescence, visible injuries, and stomatal density were determined in relation to cumulative ozone exposure accumulated over the thresholds of 30, 40 and 50 ppb (10(9)) during the exposure period. In addition, the effects of the different ozone exposures on ultrastructure of chloroplasts were studied. Increasing ozone exposure resulted in reduced shoot dry weight, stimulated (first year) or reduced (second year) height growth, accelerated autumn yellowing of leaves, increased stomatal density, visible symptoms and chloroplast injuries, and increased number and size of plastoglobuli. Newly expanded mature leaves in midsummer were more sensitive to ozone episodes than younger developing leaves in the early growing season. In most parameters, the best correlation was achieved with the exposure index AOT30. Ozone risk for birch is highest in the southern coastal area of Finland, where background ozone concentrations are higher than in inland sites.  相似文献   

9.
Two clones of white clover (Trifolium repens L.) differing in ozone tolerance were grown in southern Italy during 1997 and 1998 to study the effects of ambient ozone exposure on yield, leaf morphology and water use. Ambient ozone levels were high in both years with values exceeding the threshold for leaf injury reported in the literature. In both years ozone injury was observed on the sensitive clone (NC-S) but not on the resistant one (NC-R), and leaf and stolon dry matter production was significantly lower in NC-S than in NC-R. However, it cannot be excluded that other factors, such as high temperature, interacted with the effect of ozone on biomass production. The clones differed in morphological characteristics. Lower total leaf area in NC-S plants was due to a smaller number of leaves per plant, but the average area per leaf was higher in NC-S. Specific leaf weight and net assimilation rate were higher in the more productive clone (NC-R). Cumulative plant water use was higher in NC-R in each growth period because of the larger leaf area; by contrast, water use per unit leaf area was higher in NC-S, indicating higher leaf conductance to water vapour. The results suggest that ozone significantly reduces the yield of sensitive white clover plants under well-watered conditions, and that the difference in ozone tolerance between clover clones is related to differences in leaf morphology and water use.  相似文献   

10.
Five cultivars of buddleia, Buddleia davidii Franch., were exposed to sub-ambient, ambient, and twice-ambient levels of ozone in open-top chambers for 8 weeks (June-August) during 1995: Plants were evaluated for foliar injury, growth index, and inflorescence characteristics during and following exposure. Destructive harvests were conducted at the end of the exposure period to determine dry weights of both above- and below-ground plant components. All cultivars had symptoms of visible injury in the twice-ambient treatment at both three and eight weeks after exposures began. No visible symptoms were observed at ambient ozone concentrations. At three weeks of exposure, 'Pink Delight' had the highest percentage of the leaves injured (PLI), 46.2%, followed by 'Opera' with a PLI of 23.3%. The other three cultivars had similar PLIs of less than 15%. After eight weeks of exposure, visible injury was equally severe on all cultivars with a mean PLI of 50.2% and mean Horsfall-Barratt rating of 5.4, indicating 12 to 25% of the leaf area was injured. No ozone x cultivar interaction was found for any growth variable measured. Across cultivars, growth index was reduced by 6%, total dry weight by 35%, and the number of developing floral buds and inflorescences by 29% for plants in twice-ambient ozone concentrations compared to ambient ozone concentrations. Percent biomass allocated to inflorescences was significantly greater for plants exposed to sub-ambient levels compared to those exposed to ozone at either ambient or twice-ambient concentrations. Results indicate that ozone levels similar to those in large urban areas in the southeastern United States have the potential to reduce growth and flowering of this important landscape plant.  相似文献   

11.
Forty clones of Betula pendula and 6 clones of Betula pubescens, originating from southern and central Finland, were ranked in order of ozone sensitivity according to visible injuries, growth and leaf senescense under low ozone exposure. The plants were fumigated in natural climatic conditions using an open-air exposure system during two growing seasons. Control plants were grown under ambient air, and the elevated-ozone exposures were 1.6x the ambient in 1994 and 1.7x the ambient in 1995. The differences in ozone sensitivity among clones were large. Ozone tolerance was related to thicker leaves and higher stomatal density as compared to sensitive clones. Ultrastructural ozone-induced symptoms were found in chloroplasts of sensitive clones. Increased number of visibly injured leaves on fumigated plants was correlated with reduced leaf formation, foliage area, shoot dry wt and number of stomata, and increased yellowing of leaves. The results suggest that a considerable proportion of birch trees, showing high sensitivity to ozone, are at risk if ambient ozone exposures increase.  相似文献   

12.
The uptake of an element by a plant is primarily dependent on the plant species, its inherent controls, and the soil quality. Amaranthus hybridus (green herbs) and Amaranthus dubius (red herbs) were chosen to investigate their response and ability to accumulate and tolerate varying levels of elements in their roots and shoots. Red herbs and green herbs were grown in soil pots contaminated with three mixtures of Cd(II), Ni(II), Pb(II), and Hg(II). Plants in the control treatment were grown in the absence of the heavy metals mixture. The distribution of Cd, Ni, Pb, and Hg in the plants (in roots, stems, and leaves) was determined in two stages. Stage 1, after 5 weeks of plant growth and stage 2, full grown after 10 weeks of growth. In the red herbs the Cd concentration in the leaves at stage 2 was 150 ppm and was present in higher concentrations than Ni, Hg, and Pb. At the highest contamination level, in the green herbs plant, Hg was present in the highest concentration in the root, i.e., 336 ppm at stage 1, while the level in the leaves was 7.12 ppm. Both the green and red herbs species showed an affinity for Ni and Cd with moderate to high levels detected in the leaves, respectively.  相似文献   

13.
Exposure-response data from open-top chamber (OTC) experiments are often directly applied to ambient air (AA) conditions. Because microclimatic conditions are modified and pollutant uptake by plants may differ (i.e. 'chamber effect'), there is concern about the influence of OTCs on these relationships. In addition, AA concentrations are often measured at a height which differs from canopy height and correction for the concentration gradient (i.e. 'gradient effect') is necessary. To quantify the relative contribution of plant characteristics and microclimatic factors to these effects, ozone uptake by horizontal leaves at the top of the canopy was calculated for plants grown in OTCs or AA by using a resistance analogy model. Data from an OTC experiment in 1996/97 for six species typical of productive grasslands were used. Ozone concentration inside OTCs was set equal to the concentration measured at a height of 3 m above ground (C(z(ref))) or at canopy height (C(0)). The gradient effect resulted in a 16-27% lower average C(0) than C(z(ref)), depending on species. The main determinant of the chamber effect was a systematic difference in leaf-to-air vapour pressure deficit between OTCs and AA which affected stomatal resistance and ozone uptake. In case of monocultures both effects were species-specific. In species mixtures the gradient effect differed between mixing ratios, whereas the chamber effect was species-specific. Because of the inter-specific difference in the chamber effect on ozone uptake, it is concluded that ozone effects on species mixtures differ systematically between OTCs and AA. The data underline that extrapolation of ozone flux-response relationships from OTC experiments must be based on canopy-level ozone concentrations, and that these relationships should be applied only to single species under microclimatic conditions similar to those prevailing in the experiment.  相似文献   

14.
To study plant growth and yield effects of the antiozonant ethylenediurea (EDU), which is frequently used for ozone crop loss assessments, dose-response studies were carried out with potted bean plants under greenhouse conditions in winter and spring. Two cultivars of Phaseolus vulgaris L., differing in sensitivity to ozone (O(3)), were grown in unfiltered air on a sandy loam rich in organic matter and on a vermiculite-clay mixture. Four treatments of EDU at concentrations from 300 to 800 mg liter(-1) were given as a soil drench during plant development. Foliar symptoms of EDU phytoxicity were observed at all doses, and plant biomass, particularly pod dry weight, was considerably reduced to increasing doses of EDU. Primary and first trifoliate leaf weight in EDU-treated plants increased as did the number of buds, indicating an extension of vegetative growth and a delay of reproductive processes. 'BBL 290' beans, which are O(3)-sensitive, were injured by EDU more than the O(3)-tolerant 'BBL 274'. The phytotoxic effects of EDU were more pronounced in the synthetic growth substrate than in field soil. In a second experiment, EDU was applied in concentrations from 100 to 400 mg liter(-1) to 'BBL 290' plants, exposed to filtered air or simulated levels of O(3) pollution. In field soil, plant growth and biomass partitioning in filtered air was only slightly altered by EDU, although leaf injury due to EDU occurred. In the vermiculite-clay mix, the biomass of most plant organs, particularly that of roots, was linearly reduced with increasing EDU doses. O(3) did not cause any alteration in plant biomass in field soil-grown and EDU-treated plants. Ozone leaf injury, which affected 67% of primary leaf area in non-treated plants, was completely suppressed by EDU doses as low as 100 mg liter(-1). This indicates that low concentrations of EDU, which do not affect plant growth in field soil, provide sufficient protection from O(3) injury. The need for careful EDU dose-response studies prior to field assessments is emphasized.  相似文献   

15.
Spinach plants were grown in soil pots contaminated with increasing mixtures of lead, mercury, cadmium, and nickel salts. Plants in the control soil were grown in the absence of the heavy metals mixture. The elemental distribution of Cd, Ni, Pb, and Hg in the roots and leaves of Spinach (Spinacia Oleracea) was determined in two stages, Stage 1, after five weeks of plant growth and Stage 2, after 10 weeks with full growth. Under the influence of contamination of soil with the heavy metal mixtures, Hg was the most accumulated element in the root of the spinach plant with a concentration of 283 ppm recorded in the highest contaminated soil, followed by Cd at 148 ppm.  相似文献   

16.

The uptake of an element by a plant is primarily dependent on the plant species, its inherent controls, and the soil quality. Amaranthus hybridus (green herbs) and Amaranthus dubius (red herbs) were chosen to investigate their response and ability to accumulate and tolerate varying levels of elements in their roots and shoots. Red herbs and green herbs were grown in soil pots contaminated with three mixtures of Cd(II), Ni(II), Pb(II), and Hg(II). Plants in the control treatment were grown in the absence of the heavy metals mixture. The distribution of Cd, Ni, Pb, and Hg in the plants (in roots, stems, and leaves) was determined in two stages. Stage 1, after 5 weeks of plant growth and stage 2, full grown after 10 weeks of growth. In the red herbs the Cd concentration in the leaves at stage 2 was 150 ppm and was present in higher concentrations than Ni, Hg, and Pb. At the highest contamination level, in the green herbs plant, Hg was present in the highest concentration in the root, i.e., 336 ppm at stage 1, while the level in the leaves was 7.12 ppm. Both the green and red herbs species showed an affinity for Ni and Cd with moderate to high levels detected in the leaves, respectively.  相似文献   

17.
The effects of gamma-irradiated sludge on the growth and yield of chickpea (Cicer arietinum) in pot cultures have been studied. Compared to plants grown only in soil, root length, fresh weight and dry weight of plants grown in soil supplemented with unirradiated sludge were found to be significantly reduced. This inhibition in growth was found to be nullified when plants were grown in soil supplemented with gamma-irradiated sludge, suggesting that gamma radiation induced inactivation of toxic substance(s) in sludge. The protein content of plants grown in soil supplemented with irradiated sludge was also found to be significantly increased compared to those grown with unirradiated or no sludge, after 45 days. There was no significant effect of gamma irradiated sludge on shoot length, total soluble sugars, starch content and yield of chickpea plants. The results obtained suggest that the sludge tested, and obtained from the digester of a conventional domestic sewage treatment plant, is inhibitory to several growth parameters. Gamma irradiation of sewage resulted in removal of this inhibition. This suggests a possibility of beneficial and safe recycling of gamma-irradiated sludge for agricultural uses.  相似文献   

18.
The impact of ozone on assimilate partitioning in plants: a review   总被引:50,自引:0,他引:50  
Numerous studies have shown that ozone (O(3)) reduces plant growth and changes assimilate partitioning. The pattern of such changes varies with species, but trends suggest a comprehensive model. O(3) generally reduces the amount of dry matter in the whole plant. In plants which have not flowered or set fruit, and at low O(3) levels, the remaining available assimilate is generally diverted to leaves and stems at the expense of roots and crowns. As the plant matures, flowers and develops seeds, these sinks receive a relatively high proportion of the available assimilate. O(3) may reduce the number of flowers or seeds, but the remaining seeds often have a total dry matter accumulation comparable to that in non-stressed plants. At higher O(3) levels, assimilate accumulation is greatly depressed, and partitioning changes are not as obvious. However, it is significant that the storage organs of plants-those organs which supply energy for new growth in perennial plants such as trees-are the organs most affected by O(3)-induced partitioning changes when O(3) concentrations are in the range commonly observed in polluted ambient air.  相似文献   

19.
Polycyclic aromatic hydrocarbon (PAH) concentrations were measured in Spartina alterniflora plants grown in pots of contaminated sediment, plants grown in native sediment at a marsh contaminated with up to 900 microg/g total PAHs, and from plants grown in uncontaminated control sediment. The roots and leaves of the plants were separated, cleaned, and analyzed for PAHs. PAH compounds were detected at up to 43 microg/g dry weight in the root tissue of plants grown in pots of contaminated soil. PAH compounds were detected at up to 0.2 microg/g in the leaves of plants grown in pots of contaminated soil. Concentrations less than 0.004 microg/g were detected in the leaves of plants grown at a reference site. Root concentration factor (RCF) values ranged from 0.009 to 0.97 in the potted plants, and from 0.004 to 0.31 at the contaminated marsh site. Stem concentration factor (SCF) values ranged from 0.00004 to 0.03 in the potted plants and 0.0002 to 0.04 at the contaminated marsh. No correlation was found between the RCF value and PAH compound or chemical properties such as logKOW. SCF values were higher for the lighter PAHs in the potted plants, but not in the plants collected from the contaminated marsh. PAH concentrations in the roots of the potted plants are strongly correlated with soil concentrations, but there is less correlation for the roots grown in natural sediments. Additional plants were grown directly in PAH-contaminated water and analyzed for alkylated PAH homologs. No difference was found in leaf PAH concentrations between plants grown in contaminated water and control plants.  相似文献   

20.
Modeling the effects of ozone on soybean growth and yield   总被引:1,自引:0,他引:1  
A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号