首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Otto  S. K. Pierce 《Marine Biology》1981,61(2-3):193-198
We have studied the interaction of extra- and intracellular osmoregulatory mechanisms which the estuarine bivalve Rangia cuneata utilize to tolerate salinities ranging from freshwater to 25 ppt. The normally occurring intracellular free amino acid (FAA) accumulation in hyperosmotically stressed R. cuneata isolated ventricles was significantly reduced in the presence of divalent cation concentrations lower than that normally found in the blood. The effect of the divalent cations was not on the intracellular biosynthetic pathways responsible for FAA synthesis but rather on the myocardial membrane permeability to FAA. These data indicate that the effectiveness of the intracellular FAA mediated volume regulatory response in R. cuneata is dependent on both intracellular FAA accumulation and on the extracellular regulation of blood divalent cation concentration. This dependency indicates one interaction of extra- and intracellular osmoregulation in R. cuneata.  相似文献   

2.
Changes in salinity affect the metabolic rate of the sympagic amphipodOnisimus glacialis collected from the Barents Sea in 1986 and 1988. When transferred from 35 to 5 ppt S, oxygen consumption and ammonia excretion both increase three-fold during the first 5 h of exposure, and they remain high throughout the rest of the experimental period (26 h). During 24-h acclimation to various salinities (5 to 45 ppt), the amphipods exhibit a respiratory and excretory response to hyper- and hypoosmotic stress; however, a rather constant O:N atomic ratio (around 15) was obtained at the experimental salinities, indicating protein/lipids as metabolic substrate. Both rates of oxygen consumption and ammonia excretion increased with an increasing osmotic difference (0 to 650 mOsm) between the haemolymph and the environmental medium, indicating higher energy requirements for osmotic and ionic regulation at low salinities. In amphipods abruptly transferred from 35 to 5 ppt, a minor decrease of the haemolymph sodium concentrations together with an increased ammonia excretion output indicate a counter-ion regulation of NH 4 + and Na+ during hyposmotic stress.  相似文献   

3.
To assess the interaction between testosterone (T) treatment and acclimation to different salinities, seawater-acclimated gilthead sea bream (Sparus auratus) were implanted with slow-release coconut oil implants alone (control) or containing T (5 μg/g body mass). After 5 days, eight fish of control and T-treated groups were sampled. The same day, eight fish of each group were transferred to low salinity water (LSW, 6 ppt, hypoosmotic test), seawater (SW, 38 ppt, control test) and high salinity water (HSW, 55 ppt, hyperosmotic test) and sampled 9 days later. Gill Na+, K+-ATPase activity increased in HSW-acclimated fish with respect to SW- and LSW-acclimated fish in both control and T-treated groups. Kidney Na+, K+-ATPase activity was also enhanced in HSW-acclimated fish, but only in T-treated group. From a metabolic point of view, most of the changes observed can be attributed to the action of salinity and T treatment alone, since few interactions between T treatment and osmotic acclimation to different salinities were observed. Those interactions included in treated fish: in the liver, decreased capacity in using glucose in fish acclimated to extreme salinities; in the gills, decreased capacity in using amino acids in HSW; in the kidneys increased capacity in using amino acids in extreme salinities; and in the brain, decreased glycogen and acetoacetate levels of fish in LSW.  相似文献   

4.
The osmoregulatory abilities of one freshwater and two brackish water (Baltic Sea) populations of the euryhaline teleost fish Gasterosteus aculeatus were studied with respect to evolutionary physiology. Plasma osmolality, activities of Na+K+-ATPase, citrate synthase, creatine kinase in the gill and free amino acids in liver, axial muscle and pectoral fin muscle were measured. After transfer from 10 to 35 ppt at 15 °C, time-course changes of plasma osmolality and gill Na+K+-ATPase showed no significant fundamental differences between the freshwater and one of the Baltic Sea populations. In a multi-factorial experiment, each population was exposed to four different abiotic regimes. Both brackish water populations had high mortality in freshwater at 4 °C, which is discussed as a failure of osmotic regulation (reduced taurine concentrations). Freshwater specimens had higher levels of glycine in the axial and pectoral fin muscles compared to the brackish water populations. This is interpreted as a genetically based effect. In brackish (20 ppt) water of 15 °C, the freshwater population had high activities of Na+K+-ATPase, but low activities of creatine kinase, whereas both brackish water populations behaved in the opposite way. A fundamental difference between the freshwater and brackish water populations on the level of the osmoregulatory machinery was not observed. Received: 10 December 1998 / Accepted: 22 September 1999  相似文献   

5.
Brachiomonas submarina Bohlin (Chlorophyceae), a euryhaline marine flagellate, can osmoregulate over a wide range of external salinity. The alga exhibits maximum water content at 100% artificial seawater (ASW), and shows only a small water loss (<15%) when salinity is increased to 300% ASW. The non-aqueous volume of the cells is increased at salinities higher than 100% ASW. This is partially attributable to the accumulation of glycerol. Glycerol is the major osmoregulatory organic solute in this flagellate. The alga also shows an accumulation of amino acids in response to increased salinity. The contribution of glycerol and amino acids to intracellular osmolarity is only 9% at 10% ASW, but accounts for 49% at 300% ASW. The remainder of the osmotic balance is due to uptake and accumulation of inorganic ions, particularly sodium, potassium and chloride.  相似文献   

6.
J.-C. Chen  J.-L. Lin 《Marine Biology》1994,120(1):115-121
Hemolymph osmolality and tissue water of laboratory-reared Penaeus chinensis Osbeck juveniles (0.83 to 1.86 g) were investigated, after they had been transferred individually from 10, 20, 30 and 40 ppt to 10, 20, 30 and 40 ppt for 0.25, 0.5, 1, 2, 5 and 10 d, respectively. Hemolymph osmolality and tissue water of shrimp were stablilized within 5 d after they had been subjected to a sudden change in salinity from each salinity level. Hemolymph osmolality had a positively linear relationship with medium osmolality. Tissue water decreased with increased medium osmolality, and decreased with increased hemolymph osmolality. The mean (SD) isosmotic point was 703 (8) mOsm kg–1 which is equivalent to 24.2 (1.0) ppt. P. chinensis juveniles exhibited hyperosmotic regulation in salinities below isosmotic value, and hypoosmotic regulation in those above. The shrimp originally adapted to high salinity levels (30 and 40 ppt) showed less fluctuation of tissue water than those adapted to low salinity levels (10 and 20 ppt) when they were subjected to a sudden change in salinity.  相似文献   

7.
We tested the effects of osmotic stress on survival, developmental rate, and level of HSPs on American horseshoe crab (Limulus polyphemus) embryos. Animals were maintained in the laboratory at an ambient salinity of 20 ppt and then exposed to 4-h osmotic shocks at salinities of 10, 30, 40, 50, and 60 ppt, with a control group at 20 ppt. Horseshoe crab embryos had 100% developmental success (defined as individuals reaching the first instar or trilobite larval stage) at all salinities. However, osmotic stresses, especially hyperosmotic conditions, slowed the rate of development. Embryos subjected to osmotic stress showed higher levels of HSP70 and HSP90 than control animals kept at a salinity of 20 ppt. HSPs are of value to horseshoe crab embryos in surviving the fluctuating salinities that are typical of estuarine beach habitats.  相似文献   

8.
The relationship between the osmotic pressures of the blood and the ambient medium was determined for 4 species of bivalve molluscs whose habitats represent distinct salinity regimes within the range from fresh to full seawater. These organisms included 3 corbiculids: Corbicula manilensis (freshwater); Polymesoda caroliniana (brackish-water); Pseudocyrena floridana (marine) and 1 unionid: Elliptio lanceolata. On the basis of the data and similar measurements from the literature, we have placed the molluscs into 5 categories: marine stenohaline, marine euryhaline, oligohaline, fresh-water euryhaline and freshwater stenohaline. Marine stenohaline and euryhaline species are osmoconformers. They differ only in the size of the free amino acid pool available for intracellular volume regulation, and thus in the range of salinities that they tolerate. Oligohaline species tolerate salinities from seawater down to freshwater; they not only possess a large capacity for volume regulation, but can also osmoregulate below 3 S. Freshwater species also osmoregulate below 3 S, but they are usually limited to salinities below 2. Presumably, in evolving from the marine to the freshwater habit, they have lost the ability to volume-regulate in response to hyperosmotic stress. We propose that the varying physiological characteristics underlie the well-known relationship that species abundance declines from both freshwater and full seawater to a minimum between 3 and 5 S. We have related this species minimum to physical-chemical discontinuities in the ionic composition of seawater which are, again, reflected in the physiological mechanisms of the molluscs.Contribution No. 50 from the Tallahassee, Sopchoppy and Gulf Coast Marine Biological Association.  相似文献   

9.
The free amino acid pool of the calanoid copepod Acartia tonsa was reduced in proportion to the decrease in external salinity within 24 h, with a corresponding increase in ammonia excretion and a transient rise in oxygen consumption. The free amino acid pool was not increased in response to increased salinity. Catabolism of free amino acids is important in the reduction of cellular osmotic pressure in reduced salinities. Antagonistic demands of osmotic preservation and nutritional metabolism on the free amino acid pool may limit the production of the species in waters of higher salinity.  相似文献   

10.
D. W. Engel 《Marine Biology》1977,41(3):275-279
An investigation of the osmoregulatory capabilities of two portunid crabs, Callinectes sapidus and C. similis, was conducted to determine if their differences in distributional patterns were reflected in their capacity to adjust physiologically to changes in salinity. After acclimation to 5, 20 and 35 S, measurements of hemolymph and muscle concentrations of Na+, Cl- and K+ and muscle-free amino acids indicated that C. sapidus is a better osmoregulator at low salinity than C. similis, while both species osmoregulate equally well at high salinity. This difference in osmoregulatory capacity corresponds well with their distribution in coastal-plain estuaries.This research was supported under agreement (49-7)-5 between the National Marine Fisheries Service and the Energy Research and Development Administration.Communicated by M.R. Tripp, Newark  相似文献   

11.
The influence of salinity acclimation on the lipids of gill mitochondrial membranes was investigated in the osmoconforming oyster Crassostrea virginica. Commercially obtained oysters were maintained at 300 or 1000 mOsm for 1 mo at 10°C and fed identical diets of cultured algae. Salinity exposure induced an increase in some of the negatively charged phospholipids. This response may be a mechanism to bind accumulated cations which would otherwise interfere with intracellular metabolism. Lower levels of n6 fatty acids were also observed at high salinities, compared to oysters in dilute seawater and are consistent with the established marine versus freshwater n6 pattern. Arrhenius plots of membrane-bound carnitine palmitoyl transferase activity failed to display a shift in breakpoints, indicating the changes observed did not influence the properties of the membrane.  相似文献   

12.
The effect of molting on osmotic and chloride concentrations in the blood of the prawn Penaeus monodon Fabricius (20±3 g) at various salinities was investigated. Prawns were obtained from ponds in Iloilo, Philippines, in 1984. They were stocked in salinities of 8, 20, 32 and 44, and their hemolymph was sampled during molt (Time 0), and then 0.125, 0.25, 0.5, 1, 2, 4, 6, 10 and 14 d after molting. Prawns during and immediately after molt tended to conform to the environmental osmolality. Subsequent postmolt (0.5 d) stages displayed more divergence from external salinity. The isosmotic point was higher (940±30 mOsm kg-1) during molt than during intermolt (663±8 mOsm/kg-1), suggesting different osmotic requirements in early molt. Hyperregulation of hemolymph chloride below 20 S, as well as isoionic point (301±6 mM), were independent of molting stage. At 20 S and above, newly molted (0 to 0.25 d post-molt) individuals tended to conform to the external chloride concentration while intermolt (0.5 d) post-molt individuals did not. Contribution of hemolymph chloride to hemolymph osmolality was greater during intermolt than during ecdysis, suggesting an important role for other negatively charged ions during molt. When molt occurred in 20 S (the test salinity most similar to the isoionic salinity), there was little or no change in hemolymph osmolality or chloride concentration from 0 to 14 d postmolt. At 8, 32 and 44 S, the change from molt to intermolt values in hemolymph osmotic and chloride concentrations was hyperbolic. Non-linear least-squares regression showed that prawns generally achieved intermolt values within 1 d after molting. Prawns at intermolt regulated hemolymph osmolality (620 to 820 mOsm kg-1) and chloride concentration (300 to 450 mM) at a much narrower range than during molt (520 to 1 170 mOsm kg-1 and 250 to 520 mM, respectively). Hemolymph osmolality was a more sensitive indicator of physiological response than hemolymph chloride concentration. Distribution and culture of P. monodon might be limited in low salinities by its ability to maintain a hemolymph osmolality 500 mOsm kg-1 during molt and 600 mOsm kg-1 in intermolt, and in high salinities by its capacity to reduce the hemolymph osmolality from values at molt to those in intermolt. Osmotic and chloride concentrations in the blood of P. monodon clearly varied with both molt stage and salinity of the medium. Dependence on external factors, however, gradually declined in older molt stages, suggesting a reduction in integument permeability and greater development of ion absorption/secretion mechanisms as the exoskeleton hardened.SEAFDEC Contribution No. 197  相似文献   

13.
The rotifer Brachionus plicatilis is euryhaline (growing between 2 and 97 ppt) and has previously been considered an osmoconformer. We suggest that B. plicatilis is an osmoregulator, exhibiting a pattern of Na+/K+ ATPase activity in response to salinity consistent with that of other osmoregulating euryhaline invertebrates. To examine salinity tolerance, growth rates between 5 and 60 ppt were determined. The activity of Na+/K+ ATPase was examined, over the same range of salinities, by measuring ATPase activity in rotifer homogenates in the presence and absence of a Na+/K+ ATPase inhibitor. Maximum specific growth rate (0.95 day–1) occurred at 16 ppt, highest mean amictic eggs per female (1.41) occurred at 20 ppt, and both parameters decreased rapidly as salinity increased. Egg development time was constant with salinity at 0.92 days. The activity of Na+/K+ ATPase per milligram protein increased from 3.9 µmol h–1 at 5 ppt to 6.8 µmol h–1 at 50 ppt and accounted for 15 and 30% of total ATPase activity, respectively. We suggest that these observations are consistent with increasing stress at high salinities and the occurrence of a hypo-osmoregulatory response. Given the high ATP consumption of Na+/K+ ATPase at high salinities, it is possible that a proportion of the corresponding decreases in growth rate and egg production are a direct cost of regulation.Communicated by J.P. Thorpe, Port Erin  相似文献   

14.
Specimens of Chlamys opercularis, Modiolus modiolus, Mytilus edulis, Crassostrea gigas, Scrobicularia plana and Mya arenaria were exposed to both gradual (sinusoidal) and abrupt (square-wave) salinity fluctuations and measurements made of osmotic, Na+, Mg2+ and Ca2+ concentrations in the hemolymph and where applicable in the mantle fluid. In both sinusoidal and square-wave regimes fluctuating between 100 and 50% seawater (100%=ca. 32 S), the hemolymph Na+, Mg2+, Ca2+ and osmotic concentrations followed the concentrations of the external medium in Chlamys opercularis. The hemolymph and mantle fluid osmotic Na+, Mg2+ and Ca2+ concentrations of Modiolus modiolus, Mytilus edulis, Crassostrea gigas and S. plana followed those of the external medium as long as the molluscs' shell valves remained open. There were no changes in the ionic or osmotic concentrations of the hemolymph or mantle fluid of any of these species during periods of shell-valve closure. The hemolymph osmotic, Na+ and Mg2+ concentrations of wedged-open Modiolus modiolus, Mytilus edulis, C. gigas and S. plana followed those of the external medium. Hemolymph Ca2+ concentrations showed a damped response in C. gigas and Mytilus edulis. The hemolymph osmotic, Na+, Ca2+ and Mg2+ concentrations of Mya arenaria fluctuated in a similar manner to the external medium, but were damped. Wedged-open Mytilus edulis exposed to fluctuating salinity and supplied with a constant supply of 10 mM Ca2+ showed greater changes in hemolymph ionic and osmotic concentrations than M. edulis exposed to the same salinity fluctuation without a constant Ca2+ supply. Chlamys opercularis and Modiolus modiolus survived in a 50% seawater minimum sinusoidal salinity fluctuation for 10 days; wedged-open M. modiolus survived only 3 days. Burrowing had no effect on the osmotic, Na+, Mg2+ or Ca2+ concentrations of the hemolymph of Mya arenaria or S. plana exposed to fluctuating salinities. All of the species studied were shown to be osmoconformers.  相似文献   

15.
Grass shrimp, Palaemonetes pugio, were capable of hypo- and hyper-osmotic regulation of body fluids. Hemolymph chloride and osmotic concentrations were maintained at relatively stable levels over a wide salinity range. Following an abrupt transfer from intermediate (14 and 17) to high (31 and 35) or low (1 and 2) salinities, hemolymph chloride levels exhibited initial overshoot and undershoot, respectively, of new steady-state levels. Osmotic concentrations exhibited an initial undershoot at low, but not overshoot at high salinity. Chloride space in salinity-acclimated shrimp was relatively stable at salinities from 1 to 35. Changes in chloride space following salinity transfer paralleled those of hemolymph chloride levels, and are discussed in the light of alterations in intracellular sodium concentrations reported earlier. Rate constants for chloride turnover indicated independent exchanges of sodium and chloride ions. Water-turnover measurements showed that permeability of P. pugio was greatest at the isosmotic salinity (17) and reduced at salinities which were associated with active osmoregulation. Exposure to sublethal and 96-h LC50 levels of Aroclor® 1254 did not seriously alter hemolymph chloride and osmotic concentrations, chloride space or chloride-exchange kinetics in adult shrimp. Disruption of hemolymph chloride regulation in juvenile shrimp was associated with large mortalities not observed in adults. Shrimp exposed to Aroclor 1254 at 17 S exhibited reduced water permeability similar to levels previously observed in controls at high and low salinities in response to osmotic or ionic gradients. Exposure to PCBs did not result in further reduction in permeability at the latter salinities.  相似文献   

16.
Patterns of nine intracellular free amino acids (FAA), which are utilized as organic osmolytes for salinity-induced cell volume regulation in marine osmoconformers, were compared in five Macoma balthica populations and seven Mytilus spp. populations along their European distribution. Three types of FAA patterns were classified within both taxa: a northern Baltic type, a southern Baltic type and an Atlantic/Mediterranean type which mainly differ regarding the share of alanine and taurine. Differences are discussed in relation to habitat salinity and population genetics. Along a salinity gradient, the total size of the intracellular FAA pool did not differ between sympatric M. balthica and Mytilus spp., and was significantly correlated with habitat osmolality in a range from 70 to 600 mmol kg−1 H2O (oligohaline to mesohaline) in both bivalves. In M. balthica, this correlation was mainly based on significant correlations of alanine (15–100 mmol kg−1 DW), glycine (30–100 mmol kg−1 DW) and taurine (0–70 mmol kg−1 DW) with habitat osmolality. In Mytilus spp., only glycine (25–100 mmol kg−1 DW) and taurine (4–180 mmol kg−1 DW) were significantly correlated with habitat osmolality. The concentration of alanine was three times lower in Mytilus spp. than in M. balthica and did not correlate with habitat osmolality. Within a habitat osmolality range from 600 to 1,100 mmol kg−1 H2O (mesohaline to marine) the concentration of FAA remained constant in both taxa. It is suggested that under marine conditions additional organic osmolytes must become more important for cell volume regulation in Macoma and Mytilus.  相似文献   

17.
Juvenile weakfish, Cynoscion regalis (Bloch and Schneider, 1801), exhibit significant spatial diffrences in growth rate and condition factor among estuarine nursery zones in Delaware Bay. The potential influence of temperature and salinity on the suitability of estuarine nursery areas for juvenile weakfish was investigated in laboratory experiments by measuring ad libitum feeding rate, growth rate and gross growth efficiency of juveniles collected in Delaware Bay in 1990 (40 to 50 mm standard length; 1.4 to 2.1 g) in 12 temperature/salinity treatments (temperatures: 20, 24, 28°C; salinities: 5, 12, 19, 26 ppt) representing conditions encountered in different estuarine zones during spring/summer. Feeding rates (FR) increased significantly with temperature at all salinities, ranging from 10 to 15% body wt d-1 at 20°C to 33–39% body wt d-1 at 28°C. Specific growth rates (SGR) ranged from 1.4 to 9.4% body wt d-1 (0.3 to 1.5 mm d-1) and gross growth efficiencies (K 1) varied from 13.6 to 26.4% across temperature/salinity combinations. Based on nonlinear multiple regression models, predicted optimal temperatures for SGR and K 1 were 29 and 27°C, respectively. Salinity effects on SGR and K 1 were significant at 24 and 28°C where predicted optimal salinity was 20 ppt. At these warmer temperatures, SGR and K 1 were significantly lower at 5 than at 19 ppt despite higher FR at 5 ppt. Therefore, maximum growth rate and growth efficiency occurred under conditions characteristic of mesohaline nurseries. This finding is consistent with spatial patterns of growth in Delaware Bay, implying that physicochemical gradients influence the value of particular estuarine zones as nurseries for juvenile weakfish by affecting the energetics of feeding and growth. Laboratory results indicate a seasonal shift in the location of physiologically optimal nurseries within estuaries. During late spring/early summer, warmer temperatures in oligohaline areas permit higher feeding rate and faster growth compared to mesohaline areas. By mid-late summer, spatial temperature gradients diminish and mesohaline areas provide more suitable physicochemical conditions for growth rate and growth efficiency whereas oligohaline areas become energetically stressful. Substantial mortality occurred at 5 ppt and 28°C, providing additional evidence that oligohaline conditions are stressful during late summer. Furthermore, juveniles provided a choice among salinities in laboratory trials preferred those salinities which promoted higher growth rates. The extensive use of oligohaline nurseries by juvenile weakfish despite the potential for reduced growth rate and growth efficiency suggests this estuarine zone may provide a substantial refuge from predation.  相似文献   

18.
We studied the early life history of diadromous gobies in Dominica, West Indies, from May 1989 to May 1991, emphasising Sicydium punctatum Perugia. The transition of newly hatched larvae from upriver nest sites to the sea was studied in laboratory experiments. Newly hatched larvae are negatively buoyant but avoid settling to the bottom by active swimming during drift to the sea. Laboratory experiments evaluated salinity preferences and effects on swimming endurance. Larvae in haloclines actively selected low to intermediate salinities. Initially (0 to 5-d post-hatch), larvae minimized exposure to salinities >10 ppt, but later (5 to 8-d) occupied increasingly saline water. Larvae in no-choice freshwater or seawater treatments ceased activity at 4 to 5 d, but in haloclines larvae remained active up to 8 d post-hatch. Salinities <10 ppt are important for early survival of sicydiine gobies. Implications for larval survival and transport are discussed.  相似文献   

19.
Egg mortality of Baltic cod (Gadus morhua L.), collected off northern Gotland, Sweden, in 1990, was studied in four different salinities — 10 and 15 ppt (salinity of the principal spawning areas of Baltic cod) and 5 and 7 ppt (salinity above the halocline) — in laboratory experiments. Mortality was high during the first 4 d of development, but after gastrulation mortality was low in all salinities tested, except for 5 ppt, in which mortality increased slightly before hatching. Mortality during hatching varied considerably with salinity. No hatching occurred in 5 ppt salinity, and only a few larvae survived in 7 ppt salinity; in contrast, mortality during hatching was comparatively low in salinities of 10 and 15 ppt.  相似文献   

20.
O. Oku  A. Kamatani 《Marine Biology》1997,127(3):515-520
The marine planktonic diatom Chaetoceros anastomosans, which was isolated from Sagami Bay, was used for a study of resting spore formation mechanisms in batch culture experiments. Vegetative cells could grow at salinities ranging from 20.7 to 45.5‰, and resting spore formation was enhanced significantly in nitrate-depleted, high salinity media (40.0 to 45.5‰). The rate of resting spore formation (1.9 d−1) was comparable to the specific growth rate (1.8 d−1) of vegetative cells in the exponential growth phase in normal salinity medium. The size of resting spores formed under high salinity conditions was smaller than that of spores formed in normal salinity media. Unlike vegetative cells, resting spores seemed to possess some mechanisms to survive over a wider range of salinities by resisting bacterial attacks on their cell walls. Received: 4 August 1996 / Accepted: 27 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号