首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We consider the propagation of a high-Reynolds-number gravity current in a horizontal channel with general cross-section whose width is \(f(z), 0 \le z\le H\), and the gravity acceleration g acts in \(-z\) direction. (The classical rectangular cross-section is covered by the particular case \(f(z) =\) const.) We assume a two-layer system of homogeneous fluids of constant densities \(\rho _{c}\) (current, of height \(h < H \)) and smaller \(\rho _{a}\) (ambient, filling the remaining part of the channel). We focus attention on the calculation and assessment of the nose Froude-number condition \(Fr = U/(g' h)^{1/2}\); here U is the speed of propagation of the current and \(g' = (\rho _{c}/\rho _{a}-1) g\) is the reduced gravity. We first revisit the steady-state current, and derive compact insightful expressions of Fr and energy dissipation as a function of \(\varphi \) (\(=\) area fraction occupied by the current in the cross-section). We show that the head loss \(\delta _0\) on the stagnation line is formally a degree of freedom in the determination of \(Fr(\varphi )\), and we clarify the strong connections with the head loss \(\delta \) in the ambient fluid, and with the overall rate of dissipation \(\dot{{\mathcal{D}}}\). We demonstrate that the closure \(\delta _0 = 0\) [suggested by Benjamin (J Fluid Mech 31, 209–248, 1968) for the rectangular cross-section] produces in general the smallest Fr for a given \(\varphi \); the results are valid for a significant range \([0, \varphi _{\max }]\), in which the current is dissipative, except for the point \(\varphi _{\max }\) where \(\delta = \dot{{\mathcal{D}}} = 0\). We show that imposing the closure \(\delta = \dot{{\mathcal{D}}} = 0\), which corresponds to an energy-conserving or non-dissipative current, produces in general unacceptable restrictions of the range of validity, and large values of Fr; in particular, deep currents (\(\varphi < 0.3\) say) must be excluded because they are inherently dissipative. On the other hand, the compromise closure \(\delta (\varphi ) =\delta _0(\varphi )\) produces the simple \(Fr(\varphi ) = \sqrt{2}(1 - \varphi )\) formula whose values and dissipation properties are very close, and the range of validity is identical, to these obtained with Benjamin’s closure (moreover, we show that this corresponds to circulation-conservation solutions). The results are illustrated for practical cross-section geometries (rectangle, \(\Delta \) and \(\nabla \) triangle, circle, and the general power-law \(f(z) = b z ^\alpha \) (\(b>0, \alpha \ge 0, 0< z \le H\)). Next, we investigate the connection of the steady-state results with the time-dependent current, and show that in a lock-released current the rate of dissipation of the system is equal to, or larger than, that obtained for Fr corresponding to the conditions at the nose of the current. The results and insights of this study cover a wide range of cross-section geometry and apply to both Boussinesq and non-Boussinesq systems; they reveal a remarkable robustness of Fr as a function of \(\varphi \).  相似文献   

2.
In this study, the flow dynamics of intrusive gravity currents past a bottom-mounted obstacle were investigated using highly resolved numerical simulations. The propagation dynamics of a classic intrusive gravity current was first simulated in order to validate the numerical model with previous laboratory experiments. A bottom-mounted obstacle with a varying non-dimensional height of \(\tilde{D}=D/H\), where D is the obstacle height and H is the total flow depth, was then added to the problem in order to study the downstream flow pattern of the intrusive gravity current. For short obstacles, the intrusion re-established itself downstream without much distortion. However, for tall obstacles, the downstream flow was found to be a joint effect of horizontal advection, overshoot-springback phenomenon, and associated Kelvin-Helmholtz instabilities. Analysis of the numerical results show that the relationship between the downstream propagation speed and the obstacle height can be subdivided into three regimes: (1) a retarding regime (\(\tilde{D}\) \(\approx \) 0–0.3) where a 30 % increase in obstacle height leads to a 20 % reduction in propagation speed, simply due to the obstacle’s retarding effect; (2) an impounding regime (\(\tilde{D}\) \(\approx \) 0.3–0.6) where the additional 30 % increase in obstacle height only leads to a further (negligible) 5 % reduction in propagation speed, due to the accelerating effect of upstream impoundment and downstream enhanced mixing; and (3) a choking regime (\(\tilde{D}\) \(\approx \) 0.6–1.0) where the propagation speed is dramatically reduced due to the dominance of the obstacle’s blocking effect. The obstacle thickness was found to be irrelevant in determining the downstream propagation speed at least for the parameter range explored in this study. The present work highlights the significance of topographic effects in stratified flows with horizontal pressure forcing.  相似文献   

3.
Fine particulate matter (\(\hbox {PM}_{2.5}\)) events negatively affect the health of numerous persons globally each year. Previous works have described the association between air pollution and surface-level meteorological conditions; however, there has been less focus on the task of linking air pollution events with meteorological conditions at higher levels of the atmosphere. Working within the functional data framework, we develop a penalized functional quantile regression (PFQR) procedure to model conditional quantiles of a continuous response based on a functional covariate, with the ability to penalize selected derivatives of the estimated coefficient function. Our aim is to investigate the relationship between atmospheric profile variables (APVs), assumed to be functional, and key quantiles of the conditional distribution of surface-level \(\hbox {PM}_{2.5}\). Via a simulation study, we find that the performance of our PFQR procedure compares favorably to other related approaches. We conclude with an analysis of \(\hbox {PM}_{2.5}\) data at two Southeastern US locations, Columbia, SC and Tampa, FL, where we estimate the coefficient functions for the APVs corresponding to both ‘typical’ and ‘high’ \(\hbox {PM}_{2.5}\) events. As we believe that the true coefficient functions are smooth and may be exactly zero over subsets of their domains, we impose penalties on the 0th and 2nd derivatives. Our analysis indicates that the corresponding atmospheric conditions differ between the two locations, and that the conditions differ seasonally within location.  相似文献   

4.
Gravity waves are prominent physical features that play a fundamental role in transport processes of stratified aquatic ecosystems. In a two-layer stratified basin, the equations of motion for the first vertical mode are equivalent to the linearised shallow water equations for a homogeneous fluid. We adopted this framework to examine the spatiotemporal structure of gravity wavefields weakly affected by the background rotation of a single-layer system of equivalent thickness \(h_{\ell }\), via laboratory experiments performed in a cylindrical basin mounted on a turntable. The wavefield was generated by the release of a diametral linear tilt of the air–water interface, \(\eta _{\ell }\), inducing a basin-scale perturbation that evolved in response to the horizontal pressure gradient and the rotation-induced acceleration. The basin-scale wave response was controlled by an initial perturbation parameter, \({\mathcal{A}}_{*} = \eta _{0}/h_{\ell }\), where \(\eta _{0}\) was the initial displacement of the air–water interface, and by the strength of the background rotation controlled by the Burger number, \({\mathcal{S}}\). We set the experiments to explore a transitional regime from moderate- to weak-rotational environments, \(0.65\le {\mathcal{S}} \le 2\), for a wide range of initial perturbations, \(0.05\le {\mathcal{A}}_{*}\le 1.0\). The evolution of \(\eta _{\ell }\) was registered over a diametral plane by recording a laser-induced optical fluorescence sheet and using a capacitive sensor located near the lateral boundary. The evolution of the gravity wavefields showed substantial variability as a function of the rotational regimes and the radial position. The results demonstrate that the strength of rotation and nonlinearities control the bulk decay rate of the basin-scale gravity waves. The ratio between the experimentally estimated damping timescale, \(T_{d}\), and the seiche period of the basin, \(T_{g}\), has a median value of \(T_{d}/T_{g}\approx 11\), a maximum value of \(T_{d}/T_{g}\approx 10^{3}\) and a minimum value of \(T_{d}/T_{g}\approx 5\). The results of this study are significant for the understanding the dynamics of gravity waves in waterbodies weakly affected by Coriolis acceleration, such as mid- to small-size lakes.  相似文献   

5.

Gravity currents propagating on \(12^\circ \), \(9^\circ \), \(6^\circ \), \(3^\circ \) unbounded uniform slopes and on an unbounded horizontal boundary are reported. Results show that there are two stages of the deceleration phase. In the early stage of the deceleration phase, the front location history follows \({(x_f+x_0)}^2 = {(K_I B)}^{1/2} (t+t_{I})\), where \((x_f+x_0)\) is the front location measured from the virtual origin, \(K_I\) an experimental constant, B the total buoyancy, t time and \(t_I\) the t-intercept. In the late stage of the deceleration phase for the gravity currents on \(12^\circ \), \(9^\circ \), \(6^\circ \) unbounded uniform slopes, the front location history follows \({(x_f+x_0)}^{8/3} = K_{VS} {{B}^{2/3} V^{2/9}_0 }{\nu }^{-1/3} ({t+t_{VS}})\), where \(K_{VS}\) is an experimental constant, \(V_0\) the initial volume of heavy fluid, \(\nu \) the kinematic viscosity and \(t_{VS}\) the t-intercept. In the late stage of the deceleration phase for the gravity currents on a \(3^\circ \) unbounded uniform slope and on an unbounded horizontal boundary, the front location history follows \({(x_f+x_0)}^{4} = K_{VM} {{B}^{2/3} V^{2/3}_0 }{\nu }^{-1/3} ({t+t_{VM}})\), where \(K_{VM}\) is an experimental constant and \(t_{VM}\) the t-intercept. Two qualitatively different flow morphologies are identified in the late stage of the deceleration phase. For the gravity currents on \(12^\circ \), \(9^\circ \), \(6^\circ \) unbounded uniform slopes, an ‘active’ head separates from the body of the current. For the gravity currents on a \(3^\circ \) unbounded uniform slope and on an unbounded horizontal boundary, the gravity currents maintain an integrated shape throughout the motion. Results indicate two possible routes to the final stage of the gravity currents on unbounded uniform slopes.

  相似文献   

6.
This paper investigates flows around a free surface piercing cylinder with Froude number F > 0.5 and Reynolds number around Re = 50,000. The aim of this work is to gain a better understanding of the flow behaviour in environmental systems such as fishways. The advances are based upon experimental and numerical results. Several flow discharges and slopes are tested to obtain both subcritical and supercritical flows. The drag force exerted on the cylinder is measured with the help of a torque gauge while the velocity field is obtained using particle velocimetry. For the numerical part, two URANS turbulence models are tested, the k-\(\omega\) SST and the RNG k-\(\varepsilon\) models using the OpenFOAM software suite for subcritical cases, and then compared with the corresponding experimental results. With fishways applications in mind, the changes in drag coefficient \(C_d\) versus Froude number and water depth are studied and experimental correlations proposed. We conclude that the most suitable URANS turbulence model for reproducing this kind of flow is the k-\(\omega\) SST model.  相似文献   

7.
Over the past years, the health impact of airborne particulate matter \(\mathrm{PM}_{10}\) has become a very topical subject. Thereby, a lot of research effort in the environmental sciences goes towards the modeling and the prediction of ambient \(\mathrm{PM}_{10}\) concentrations. In this paper, we are interested in the statistical classification of the daily mean \(\mathrm{PM}_{10}\) concentration in Tunisia according to the authority regulation. We consider two monitoring stations: a big industrial station and a traffic station. The main goal of this work is to determine the pertinent predictors of \(\mathrm{PM}_{10}\) concentration within a nonlinear multiclass framework. To do this, we used two popular statistical learning methods; the support vector machines (SVM) and the random forests (RF). The statistical results obtained on the real datasets, show that RF outperform SVM for the purpose of variable selection even with a reduced number of observations compared to the number of explicative variables. It was also demonstrated that the \(\mathrm{PM}_{10}\) concentration measured yesterday is the most relevant predictor of its present-day value. Moreover, we found that the more delayed values of \(\mathrm{PM}_{10}\) concentration may be crucial to get an accurate prediction.  相似文献   

8.
Flows in a compound open-channel (two-stage geometry with a main channel and adjacent floodplains) with a longitudinal transition in roughness over the floodplains are experimentally investigated in an 18 m long and 3 m wide flume. Transitions from submerged dense vegetation (meadow) to emergent rigid vegetation (wood) and vice versa are modelled using plastic grass and vertical wooden cylinders. For a given roughness transition, the upstream discharge distribution between main channel and floodplain (called subsections) is also varied, keeping the total flow rate constant. The flows with a roughness transition are compared to flows with a uniformly distributed roughness over the whole length of the flume. Besides the influence of the downstream boundary condition, the longitudinal profiles of water depth are controlled by the upstream discharge distribution. The latter also strongly influences the magnitude of the lateral net mass exchanges between subsections, especially upstream from the roughness transition. Irrespective of flow conditions, the inflection point in the mean velocity profile across the mixing layer is always observed at the interface between subsections. The longitudinal velocity at the main channel/floodplain interface, denoted \(U_{int}\), appeared to be a key parameter for characterising the flows. First, the mean velocity profiles across the mixing layer, normalised using \(U_{int}\), are superimposed irrespective of downstream position, flow depth, floodplain roughness type and lateral mass transfers. However, the profiles of turbulence quantities do not coincide, indicating that the flows are not fully self-similar and that the eddy viscosity assumption is not valid in this case. Second, the depth-averaged turbulent intensities and Reynolds stresses, when scaled by the depth-averaged velocity \(U_{d,int}\) exhibit two plateau values, each related to a roughness type, meadow or wood. Lastly, the same results hold when scaling by \(U_{d,int}\) the depth-averaged lateral flux of momentum due to secondary currents. Turbulence production and magnitude of secondary currents are increased by the presence of emergent rigid elements over the floodplains. The autocorrelation functions show that the length of the coherent structures scales with the mixing layer width for all flow cases. It is suggested that coherent structures tend to a state where the magnitude of velocity fluctuations (of both horizontal vortices and secondary currents) and the spatial extension of the structures are in equilibrium.  相似文献   

9.
The behaviour of a discharge of warm water upwards into a homogeneous body of cold fresh water was investigated by means of a numerical model. The discharge has a parabolic velocity profile, with Reynolds number \(Re=50\), Prandtl number \(Pr=7\) and Froude number varied over the range \(0.2 \le {\rm Fr} \le 2.5\). Water density is taken to be a quadratic function of temperature, so that an initially positively buoyant discharge will experience buoyancy reversal as it mixes with an ambient below the temperature of maximum density. The resulting plume has some similarities to a fountain resulting from injection of negatively buoyant fluid upward into a less dense ambient. The plume is initially symmetric, but then its head detaches as it approaches its maximum height. The detached head is denser than the fluid in the plume below it, and the interaction between the sinking head and the rising plume causes a sideways deflection; as this cycle is repeated, the plume displays side-to-side flapping motion and vertical bobbing. As Froude number is increased (i.e. buoyancy reduced) the growth of the plume becomes slower, but the plume eventually reaches a greater height. We obtain empirical power-law scalings for maximum height and time taken to reach that height as functions of Froude number; these scalings are simlar to those for fountains with a linear dependence of density on temperature in the very weak regime.  相似文献   

10.
Modeling empirical distributions of repeated counts with parametric probability distributions is a frequent problem when studying species abundance. One must choose a family of distributions which is flexible enough to take into account very diverse patterns and possess parameters with clear biological/ecological interpretations. The negative binomial distribution fulfills these criteria and was selected for modeling counts of marine fish and invertebrates. This distribution depends on a vector \(\left( K,\mathfrak {P}\right) \) of parameters, and ranges from the Poisson distribution (when \(K\rightarrow +\infty \)) to Fisher’s log-series, when \(K\rightarrow 0\). Moreover, these parameters have biological/ecological interpretations which are detailed in the literature and in this study. We compared three estimators of K, \(\mathfrak {P}\) and the parameter \(\alpha \) of Fisher’s log-series, following the work of Rao CR (Statistical ecology. Pennsylvania State University Press, University Park, 1971) on a three-parameter unstandardized variant of the negative binomial distribution. We further investigated the coherence underlying parameter values resulting from the different estimators, using both real count data collected in the Mauritanian Exclusive Economic Zone (MEEZ) during the period 1987–2010 and realistic simulations of these data. In the case of the MEEZ, we first built homogeneous lists of counts (replicates), by gathering observations of each species with respect to “typical environments” obtained by clustering the sampled stations. The best estimation of \(\left( K,\mathfrak {P}\right) \) was generally obtained by penalized minimum Hellinger distance estimation. Interestingly, the parameters of most of the correctly sampled species seem compatible with the classical birth-and-dead model of population growth with immigration by Kendall (Biometrika 35:6–15, 1948).  相似文献   

11.
The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions (\({\text{NO}}_{3}^{-}\), \({\text{SO}}_{4}^{2-}\), F?, Cl?, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\)) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.  相似文献   

12.
The maximum likelihood estimator for estimating proportions by group testing is biased. An expression for the approximate bias has been previously presented, which enables the creation of a less biased estimator by removing the term of \(O(n^{-1})\). However, in this previous work the term of \(O(n^{-2})\) was incorrectly derived. This note gives a correct derivation, and examines the relative contribution of the two terms.  相似文献   

13.
We present a brief review of the recent investigations on gravity currents in horizontal channels with non-rectangular cross-section area (such as triangle, \(\bigvee \)-valley, circle/semi-circle, trapezoid) which occur in nature (e.g., rivers) and constructed environment (tunnels, reservoirs, canals). To be specific, we discuss the propagation of a gravity current (GC) in a horizontal channel along the horizontal coordinate x, with gravity g acting in the \(-z\) direction, and y the horizontal–lateral coordinate. The bottom and top of the channel are at \(z=0,H\). The “standard” problem is concerned with 2D flow in a channel with rectangular (or laterally unbounded) cross-section area (CSA). Recent investigations have successfully extended the standard knowledge to the channels of CSA given by the quite general \(-f_1(z)\le y \le f_2(z)\) for \(0 \le z \le H\). This includes the practical \(\bigvee \)-valley, triangle, circle/semi-circle and trapezoid; these geometries may be in “up” or “down” setting with respect to gravity, e.g., \(\bigtriangleup \) and \(\bigtriangledown \). The major objective of the extended theory is to predict the height of the interface \(z=h(x,t)\) and the velocity (averaged over the CSA) u(xt), where t is time; the prediction includes the speed and position of the nose \(u_N(t), x_N(t)\). We show that the motion is governed by a set of simplified equations, called “model,” that provides versatile and insightful solutions and trends. The emphasis in on a high-Reynolds-number current whose motion is dominated by buoyancy–inertia balance; in particular a GC released from a lock, which also contains general effects such as front and internal jumps (shocks), and reflected bore. We discuss two-layer, one-layer, and box models; Boussinesq and non-Boussinesq systems; compositional and particle-driven cases; and the effect of stratification of the ambient fluid. The models are self-contained, and admit realistic initial and boundary conditions. The governing equations are amenable to analytical solutions in some special circumstances. Some salient features of the buoyancy-viscous regime, and the estimate for the length at which transition to this regime takes place, are also presented. Some experimental support to the theory, and open questions for further investigations, are also mentioned. The major conclusions are (1) The CSA geometry has significant influence on the motion of the GC; and (2) The new theory is a useful, very significant, extension of the standard two-dimensional GC problem. The standard current is just a particular case, \(f_{1,2} =\) constants, among many other covered by the new theory.  相似文献   

14.
This paper presents the spatio-temporal variations in bed elevations and the near-bed turbulence statistics over the deformed bed generated around the submerged cylindrical piers embedded vertically on loose sediment bed at a constant flow discharge. Experiments were carried out in a laboratory flume for three blockage ratios in the range of 0.04–0.06 using three different sizes of submerged cylinders individually placed vertically at the centerline of the flume. Clear-water experimental conditions were maintained over the smooth sediment bed surface with a constant flow discharge (\(Q = 0.015\,{\rm m}^3/{\rm sec}\)), thereby giving three different cylinder Reynolds numbers \(Re_{D_c} = \frac{U_mD_c}{\nu }\) (=10200, 12750, 15300) away from the cylinder locations, where \(U_m\) is the maximum mean velocity, \(D_c\) is the cylinder diameter and \(\nu\) is the kinematic viscosity of fluid. Instantaneous sand bed elevations around the cylinders were recorded using a SeaTek 5MHz ultrasonic ranging system of net 24 transducers to estimate bed form migration, and the near-bed velocity data at transducer locations over the stable deformed bed around the pier-like structures were collected using down-looking three-dimensional (3D) Micro-acoustic Doppler velocimeter to estimate the bottom Reynolds shear stresses and the contributions of bursting events to the dominant shear stress component. The flow perturbation generated due to relatively lower flow blockage ratio favored to achieve the stable bed condition more rapidly than the others, and larger upstream scour-depth and deformed areas were noticed for greater flow blockage ratio due to larger cylinder diameter. For larger blockage ratio in the upstream of scour-hole near the bed, occurrences of probabilities of both boundary-ward interactions (Q1 and Q3) were the dominant; whereas in the downstream of the scoured region, occurrences of probabilities of second and third quadrant events (Q2 and Q4) were dominant. On the other hand, for the lower blockage ratio, quadrant (Q2) was dominant over Q4 in the downstream of scour-hole, and in the upstream of scour-hole, quadrant Q4 was the dominant.  相似文献   

15.
Drag coefficient has been commonly used as a quantifying parameter to represent the vegetative drag, i.e., resistance to the flow by vegetation. In this study, the measured data on the drag coefficient for rigid vegetation in subcritical open-channel flow reported in previous studies are collected and preprocessed for multi-parameter analysis. The effect of Froude number (Fr) on the drag coefficient for rigid vegetation in subcritical flow cannot be ignored, especially when \(Fr < 0.12\). The drag coefficient is observed to exponentially decrease with the stem Reynolds number (R d ) and logarithmically decreased with the vegetation density (λ) when \(0.012 < \lambda < 0.12\). The relative submergence (h * ) has a significant effect on the drag coefficient, and a positive logarithmic relationship is summarized. A simplified three-stage empirical formula is obtained based on the divisions of Fr. Laboratory tests (with \(Fr < 0.02\)) prove that the present empirical model has higher precision compared with existing models.  相似文献   

16.
In order to properly size the mechanical ventilation system of a tunnel, it is essential to estimate the wind-driven pressure difference that might rise between its two portals. In this respect, we explore here the pressure distribution over a tunnel portal under the influence of an incident atmospheric boundary layer and, in particular, its dependency on wind direction and on tunnel geometry. Reduced scale models of generic configurations of a tunnel portal are studied in an atmospheric wind tunnel. Pressure distributions over the front section of different open cavities are measured with surface taps, which allows us to infer the influence of the tunnel aspect ratio and wind direction on a pressure coefficient \(C_{P}\), defined as a spatially and time averaged non-dimensional pressure. Experiments reveal that the magnitude of the coefficient \(C_{P}\), as a function of the wind direction, is significantly influenced by the portal height-to-width ratio and almost insensitive to its length. The experimental data set is completed by hot-wire anemometry measurements providing vertical distribution of velocity statistics. The same configurations are simulated by numerically solving the Reynolds-averaged Navier–Stokes equations, adopting the standard \(k - \varepsilon\) turbulence model. Despite some discrepancies between numerical and experimental estimates of some flow parameters (namely the turbulent kinetic energy field), the numerical estimates of the pressure coefficients \(C_{P}\) show very good agreement with experimental data. The latter is also compared to the predictions of an analytical model, based on the estimate of a spatially averaged velocity within an infinitely long street canyon. The results of the model, which takes into account varying canyon aspect ratios, are in reasonable agreement with experimental data for all cases studied. Notably, its predictions are significantly better than those provided by the simple analytical relations usually adopted as a reference in tunnel ventilation studies.  相似文献   

17.
Species reproduction is an important determinant of population dynamics. As such, this is an important parameter in environmental risk assessment. The closure principle computational approach test (CPCAT) was recently proposed as a method to derive a NOEC/LOEC for reproduction count data such as the number of juvenile Daphnia. The Poisson distribution used by CPCAT can be too restrictive as a model of the data-generating process. In practice, the generalized Poisson distribution could be more appropriate, as it allows for inequality of the population mean \(\mu\) and the population variance \(\sigma ^2\). It is of fundamental interest to explore the statistical power of CPCAT and the probability of determining a regulatory relevant effect correctly. Using a simulation, we varied between Poisson distribution (\(\mu =\sigma ^2\)) and generalized Poisson distribution allowing for over-dispersion (\(\mu <\sigma ^2\)) and under-dispersion (\(\mu >\sigma ^2\)). The results indicated that the probability of detecting the LOEC/NOEC correctly was \(\ge 0.8\) provided the effect was at least 20% above or below the mean level of the control group and mean reproduction of the control was at least 50 individuals while over-dispersion was missing. Specifically, under-dispersion increased, whereas over-dispersion reduced the statistical power of the CPCAT. Using the well-known Hampel identifier, we propose a simple and straight forward method to assess whether the data-generating process of real data could be over- or under-dispersed.  相似文献   

18.
Coherent structures in the atmospheric boundary layer are fundamental to the transport of momentum and heat as well as to the production of turbulence. The present work attempts to investigate the behavior of the inclination angle of the vortex packet structures (\(\gamma\)) under different stability conditions. The data were collected from the Marine Ecosystem Research Centre (EKOMAR) site at the east coast of Peninsular Malaysia. The main measurements were conducted by placing two hotwires 3 and 12 m above ground. The two-point correlation method was used to calculate the vortex packet structure inclination angle, while the one-point correlation method was employed to calculate its length-scale. The inclination angle was found to increase under both stable and unstable conditions. As the Obukhov stability parameter (\(\zeta\)) approaches 0, the inclination angle ranged between \(\gamma = 15^\circ\) to \(\gamma = 18^\circ\) for the stable and unstable conditions, respectively, which agrees with the findings of previous research. The vertical gradient of velocity is the dominant parameter affecting the inclination angle under different stability conditions.  相似文献   

19.
Reservoir simulation of \(\hbox {CO}_2\) sequestration, energy recovery, and environmental contamination scenarios must be accompanied by uncertainty quantification. Typically this is done by stochastically modeling porosity and permeability fields, simulating realizations based on the model, and then numerically simulating flow and transport. The challenge is to generate simulated porosity and permeability fields with characteristics as similar as possible to those known of the reservoir under study. In this paper we focus on the first two steps above in analyzing a large 3-dimensional array of geospatial porosity data and using the results to produce simulated data with characteristics mimicking those of the original porosity observations. The spatial covariance is empirically approximated from horizontal cross sections of the data via a kernel principle component analysis yielding dimension reduction. Simulations in three dimensions are produced by linking consecutive parallel cross sections via conditioning on a small subarray of the data. The conditional simulations effectively reproduce observed channeling, an important large scale feature of interest in the sub-surface relevant to transport of contaminates. The original porosity data is non-Gaussian and requires additional analysis and transformation to generate both porosity and permeability fields.  相似文献   

20.
We investigate the effect of buoyancy on the small-scale aspects of turbulent entrainment by performing direct numerical simulation of a gravity current and a wall jet. In both flows, we detect the turbulent/nonturbulent interface separating turbulent from irrotational ambient flow regions using a range of enstrophy iso-levels spanning many orders of magnitude. Conform to expectation, the relative enstrophy isosurface velocity \(v_n\) in the viscous superlayer scales with the Kolmogorov velocity for both flow cases. We connect the integral entrainment coefficient E to the small-scale entrainment and observe excellent agreement between the two estimates throughout the viscous superlayer. The contribution of baroclinic torque to \(v_n\) is negligible, and we show that the primary reason for reduced entrainment in the gravity current as compared to the wall-jet are 1) the reduction of \(v_n\) relative to the integral velocity scale \(u_T\); and 2) the reduction in the surface area of the isosurfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号