首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Most examples that support the substitution‐habitat hypothesis (human‐made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16–0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11–0.14), and low probability of occurrence in refuge habitats (0.05–0.08). Thus, the substitution–habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats.  相似文献   

2.
For species at risk of decline or extinction in source–sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site‐ or habitat‐specific demographic conditions, movement abilities, and behaviors. We calculated source–sink metrics over a range of periods of data collection and prioritized consistently high‐output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source–sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data‐rich source–sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short‐term regional persistence. Because source–sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.  相似文献   

3.
Determining which vegetation types organisms perceive similarly and classifying these types into groups that function as similar habitats are necessary steps toward expanding the focus of conservation strategies from single species to ecosystems. Therefore, the methods used to determine these habitat classifications are crucial to the successful design and implementation of these conservation strategies. Typically, this process has been accomplished through best professional judgement. We used quantitative techniques to group vegetation types into habitats based on the occurrence of breeding wildlife species ( n = 420) in Oregon. After calculating faunal similarities among all regional vegetation types ( n = 130), we used cluster analysis to group vegetation types into wildlife habitats. We classified the original 130 vegetation types into 30 wildlife habitat types that we believe function similarly. We tested this classification to assess whether vegetation types could be correctly classified into habitat types based on wildlife species composition. Discriminant analysis correctly classified 95% of the vegetation types into their wildlife habitat types, strengthening our confidence in this approach. This approach for classifying habitat types allows consistent development of conservation strategies at coarse resolutions and aids in identifying vegetation types where additional biodiversity surveys are needed. Finally, this approach can be refined continuously as the precision of vegetation mapping and our understanding of organism-habitat associations improve.  相似文献   

4.
Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear‐cut guidance on how genetic features can be incorporated into conservation‐planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation‐priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected‐area networks that appropriately preserve community‐level evolutionary patterns.  相似文献   

5.
The EU Habitats Directive (92/43/EEC) does include provisions for setting up the Natura 2000-network of protected areas based on listed species and habitats, and in addition specific regulations on species protection. Three Quarters of all designated sites (SCI’s) do not only include natural habitat types in a strict sense like forests or water-bodies, but also agricultural land. 18?% of the SCI’s even include between 25 and 50?% agricultural land and 24?% above 50?%. 48 species and three habitat types listed under the Habitats Directive have a clear focus in agriculture. Another eleven habitat types are dependant from a nature-friendly low intensity use or management. A large proportion of these habitats and species are actually in an unfavourable conservation status. The paper analyses the impact of EU nature conservation on agriculture based on the species and habitats falling under the Habitats Directive. On the other hand indirect negative influences of agriculture are discussed, that may have considerable impact on the future development of the conservation status of endangered habitats and species.  相似文献   

6.
Abstract: Understanding the risk of extinction of a single population is an important problem in both theoretical and applied ecology. Local extinction risk depends on several factors, including population size, demographic or environmental stochasticity, natural catastrophe, or the loss of genetic diversity. The probability of local extinction may also be higher in low‐quality sink habitats than in high‐quality source habitats. We tested this hypothesis by comparing local extinction rates of 15 species of Odonata (dragonflies and damselflies) between 1930–1975 and 1995–2003 in central Finland. Local extinction rates were higher in low‐quality than in high‐quality habitats. Nevertheless, for the three most common species there were no differences in extinction rates between low‐ and high‐quality habitats. Our results suggest that a good understanding of habitat quality is crucial for the conservation of species in heterogeneous landscapes.  相似文献   

7.
Marxan is the most common decision-support tool used to inform the design of protected-area systems. The original version of Marxan does not consider risk and uncertainty associated with threatening processes affecting protected areas, including uncertainty about the location and condition of species’ populations and habitats now and in the future. We described and examined the functionality of a modified version of Marxan, Marxan with Probability. This software explicitly considers 4 types of uncertainty: probability that a feature exists in a particular place (estimated based on species distribution models or spatially explicit population models); probability that features in a site will be lost in the future due to a threatening process, such as climate change, natural catastrophes, and uncontrolled human interventions; probability that a feature will exist in the future due to natural successional processes, such as a fire or flood; and probability the feature exists but has been degraded by threatening processes, such as overfishing or pollution, and thus cannot contribute to conservation goals. We summarized the results of 5 studies that illustrate how each type of uncertainty can be used to inform protected area design. If there were uncertainty in species or habitat distribution, users could maximize the chance that these features were represented by including uncertainty using Marxan with Probability. Similarly, if threatening processes were considered, users minimized the chance that species or habitats were lost or degraded by using Marxan with Probability. Marxan with Probability opens up substantial new avenues for systematic conservation planning research and application by agencies.  相似文献   

8.
We aspired to set conservation priorities in ways that lead to direct conservation actions. Very large‐scale strategic mapping leads to familiar conservation priorities exemplified by biodiversity hotspots. In contrast, tactical conservation actions unfold on much smaller geographical extents and they need to reflect the habitat loss and fragmentation that have sharply restricted where species now live. Our aspirations for direct, practical actions were demanding. First, we identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities. In doing this, we recognized the limitations of incomplete information. We started such a process in Colombia and used the results presented here to implement reforestation of degraded land to prevent the isolation of a large area of cloud forest. We used existing range maps of 171 bird species to identify priority conservation areas that would conserve the greatest number of species at risk in Colombia. By at risk species, we mean those that are endemic and have small ranges. The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. We then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, we made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes. Establecimiento de Prioridades Prácticas para la Conservación de Aves en los Andes Occidentales de Colombia  相似文献   

9.
Abstract: The giant panda (Ailuropoda melanoleuca), is one of the world's most endangered species. Habitat loss and fragmentation have reduced its numbers, shrunk its distribution, and separated the population into isolated subpopulations. Such isolated, small populations are in danger of extinction due to random demographic factors and inbreeding. We used least‐cost modeling as a systematic approach to incorporate satellite imagery and data on ecological and behavioral parameters of the giant panda collected during more than 10 years of field research to design a conservation landscape for giant pandas in the Minshan Mountains. We identified 8 core habitats and 4 potential linkages that would link core habitats CH3, CH4, and CH5 with core habitats CH6, CH7, and CH8. Establishing and integrating the identified habitats with existing reserves would create an efficient reserve network for giant panda conservation. The core habitats had an average density of 4.9 pandas/100 km2 and contained approximately 76.6% of the giant panda population. About 45% of the core habitat (3245.4 km2) existed outside the current nature reserves network. Total estimated core habitat decreased between 30.4 and 44.5% with the addition of residential areas and road networks factored into the model. A conservation area for giant panda in the Minshan Mountains should aim to ensure habitat retention and connectivity, improve dispersal potential of corridors, and maintain the evolutionary potential of giant pandas in the face of future environmental changes.  相似文献   

10.
Abstract: Applied conservation biology must provide solutions for the conservation of species in modern landscapes, where prime habitats are being continuously fragmented and altered and animals are restricted to small, nonviable populations. We studied habitat selection in a fragmented population of endangered Iberian lynx (   Lynx pardinus ) by examining 14 years of radiotracking data obtained from lynx trapped in two different source areas. Habitat selection was studied independently for predispersal lynx in the source areas, for dispersing individuals through the region, and for postdispersing animals, most of which settled far from their point of origin. A multivariate analysis of variance showed that habitat use differed significantly among these phases and between area of origin, but not between sexes. The habitat type most used, and best represented within home ranges, was the mediterranean scrubland. Pine plantations were also important during and after dispersal. The rest of the habitats were either avoided (open habitats) or used according to availability ( pine and eucalyptus plantations) by dispersing lynx. Differences due to lynx origin were detected only during predispersal and dispersal and were observed because animals from each area had different habitat availability. Lynx with established territories did not use areas at random. They occupied patches of mediterranean scrubland more often than would be expected from scrubland availability during predispersal; the rest of the habitats were included within home ranges less than would be expected from their availability in the landscape. Results indicate that dispersing animals may use habitats of lower quality than habitats used by resident individuals, which suggests that conservation strategies applied across regions might be a viable objective.  相似文献   

11.
Abstract: Non‐native species can cause the loss of biological diversity (i.e., genetic, species, and ecosystem diversity) and threaten the well‐being of humans when they become invasive. In some cases, however, they can also provide conservation benefits. We examined the ways in which non‐native species currently contribute to conservation objectives. These include, for example, providing habitat or food resources to rare species, serving as functional substitutes for extinct taxa, and providing desirable ecosystem functions. We speculate that non‐native species might contribute to achieving conservation goals in the future because they may be more likely than native species to persist and provide ecosystem services in areas where climate and land use are changing rapidly and because they may evolve into new and endemic taxa. The management of non‐native species and their potential integration into conservation plans depends on how conservation goals are set in the future. A fraction of non‐native species will continue to cause biological and economic damage, and substantial uncertainty surrounds the potential future effects of all non‐native species. Nevertheless, we predict the proportion of non‐native species that are viewed as benign or even desirable will slowly increase over time as their potential contributions to society and to achieving conservation objectives become well recognized and realized.  相似文献   

12.
Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark‐monitoring data on large scales (100s–1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species‐level models had higher accuracy (? ≥ 0.69) and deviance explained (≥48%) than our order‐level model (? = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species‐specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species‐focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non‐extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across multiple maritime jurisdictions, and our approach provides a simple for method for testing the effectiveness of MPAs.  相似文献   

13.
Abstract: Privately owned lands support a large portion of the biodiversity in some areas, but procedures for identifying those private lands critical to the maintenance of biodiversity vary tremendously. We used habitat-based distribution maps in combination with population conservation goals to help identify strategic habitats on private lands in Florida. We used a vegetation map, occurrence data, and published life-history information to create habitat-based distribution maps for 179 rare taxa. We estimated the security of 130 of the taxa by overlaying public land boundaries on habitat maps and then estimating whether conservation lands satisfied a population goal of supporting at least 10 populations of approximately 200 breeding adults. The remaining taxa were evaluated in terms of number of occurrence records on conservation lands. Of the 179 taxa evaluated, existing conservation lands did not adequately protect 56. We then identified habitats on private lands that could best satisfy the minimum conservation goal or else significantly enhance the survival potential of inadequately protected taxa. Strategic habitats included a mix of large and small sites, incorporated some corridor or stepping-stone connections among habitat patches, and protected multiple species. Additional strategic habitats were identified for shorebirds, four natural plant communities, and 105 globally rare plants. The strategic habitats identified in Florida cover 1.65 million ha (12% of the land area) and would cost $8.2 billion (about 15% of Florida's annual state budget) to purchase and $122 million per year to manage. Existing conservation lands account for 3.07 million ha (22% of the land area).  相似文献   

14.
Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site‐selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions. Predicción y Mapeo del Hábitat Potencial de Descanso de la Grulla Americana para Guiar la Selección de Sitios para Proyectos de Energía Eólica.  相似文献   

15.
Giant panda (Ailuropoda melanoleuca) conservation is a possible success story in the making. If extinction of this iconic endangered species can be avoided, the species will become a showcase program for the Chinese government and its collaborators. We reviewed the major advancements in ecological science for the giant panda, examining how these advancements have contributed to panda conservation. Pandas’ morphological and behavioral adaptations to a diet of bamboo, which bear strong influence on movement ecology, have been well studied, providing knowledge to guide management actions ranging from reserve design to climate change mitigation. Foraging ecology has also provided essential information used in the creation of landscape models of panda habitat. Because habitat loss and fragmentation are major drivers of the panda population decline, efforts have been made to help identify core habitat areas, establish where habitat corridors are needed, and prioritize areas for protection and restoration. Thus, habitat models have provided guidance for the Chinese governments’ creation of 67 protected areas. Behavioral research has revealed a complex and efficient communication system and documented the need for protection of habitat that serves as a communication platform for bringing the sexes together for mating. Further research shows that den sites in old‐growth forests may be a limiting resource, indicating potential value in providing alternative den sites for rearing offspring. Advancements in molecular ecology have been revolutionary and have been applied to population census, determining population structure and genetic diversity, evaluating connectivity following habitat fragmentation, and understanding dispersal patterns. These advancements form a foundation for increasing the application of adaptive management approaches to move panda conservation forward more rapidly. Although the Chinese government has made great progress in setting aside protected areas, future emphasis will be improved management of pandas and their habitat.  相似文献   

16.
Conservation of wide‐ranging species, such as the African forest elephant (Loxodonta cyclotis), depends on fully protected areas and multiple‐use areas (MUA) that provide habitat connectivity. In the Gamba Complex of Protected Areas in Gabon, which includes 2 national parks separated by a MUA containing energy and forestry concessions, we studied forest elephants to evaluate the importance of the MUA to wide‐ranging species. We extracted DNA from elephant dung samples and used genetic information to identify over 500 individuals in the MUA and the parks. We then examined patterns of nuclear microsatellites and mitochondrial control‐region sequences to infer population structure, movement patterns, and habitat use by age and sex. Population structure was weak but significant, and differentiation was more pronounced during the wet season. Within the MUA, males were more strongly associated with open habitats, such as wetlands and savannas, than females during the dry season. Many of the movements detected within and between seasons involved the wetlands and bordering lagoons. Our results suggest that the MUA provides year‐round habitat for some elephants and additional habitat for others whose primary range is in the parks. With the continuing loss of roadless wilderness areas in Central Africa, well‐managed MUAs will likely be important to the conservation of wide‐ranging species. Utilización de Perfiles Genéticos de Elefantes Africanos para Inferir su Estructura Poblacional, Movimientos y Uso del Hábitat en un Paisaje con Conservación y Desarrollo en Gabón Resumenfgs  相似文献   

17.
Habitat loss and degradation are thought to be the primary drivers of species extirpations, but for many species we have little information regarding specific habitats that influence occupancy. Snakes are of conservation concern throughout North America, but effective management and conservation are hindered by a lack of basic natural history information and the small number of large-scale studies designed to assess general population trends. To address this information gap, we compiled detection/nondetection data for 13 large terrestrial species from 449 traps located across the southeastern United States, and we characterized the land cover surrounding each trap at multiple spatial scales (250-, 500-, and 1000-m buffers). We used occupancy modeling, while accounting for heterogeneity in detection probability, to identify habitat variables that were influential in determining the presence of a particular species. We evaluated 12 competing models for each species, representing various hypotheses pertaining to important habitat features for terrestrial snakes. Overall, considerable interspecific variation existed in important habitat variables and relevant spatial scales. For example, kingsnakes (Lampropeltis getula) were negatively associated with evergreen forests, whereas Louisiana pinesnake (Pituophis ruthveni) occupancy increased with increasing coverage of this forest type. Some species were positively associated with grassland and scrub/shrub (e.g., Slowinski's cornsnake, Elaphe slowinskii) whereas others, (e.g., copperhead, Agkistrodon contortrix, and eastern diamond-backed rattlesnake, Crotalus adamanteus) were positively associated with forested habitats. Although the species that we studied may persist in varied landscapes other than those we identified as important, our data were collected in relatively undeveloped areas. Thus, our findings may be relevant when generating conservation plans or restoration goals. Maintaining or restoring landscapes that are most consistent with the ancestral habitat preferences of terrestrial snake assemblages will require a diverse habitat matrix over large spatial scales.  相似文献   

18.
Abstract:  Researchers predict that new infrastructure development will sharply increase the rate and extent of deforestation in the Brazilian Amazon. There are no predictions, however, of which species it will affect. We used a spatially explicit model that predicts the location of deforestation in the Brazilian Amazon by 2020 on the basis of historical patterns of deforestation following infrastructure development. We overlaid the predicted deforested areas onto maps of bird ranges to estimate the amount of habitat loss within species ranges. We also estimated the amount of habitat loss within modified ecoregions, which were used as surrogates for areas of bird endemism. We then used the extent of occurrence criterion of the World Conservation Union to predict the future conservation status of birds in the Brazilian Amazon. At current rates of development, our results show that at least 16 species will qualify as threatened or will lose more than half of their forested habitat. We also identified several subspecies and isolated populations that would also qualify as threatened. Most of the taxa we identified are not currently listed as threatened, and the majority are associated with riverine habitats, which have been largely ignored in bird conservation in Amazonia. These habitats and the species they hold will be increasingly relevant to conservation as river courses are altered and hydroelectric dams are constructed in the Brazilian Amazon.  相似文献   

19.
Abstract: Marine protected areas (MPAs) have been highlighted as a means toward effective conservation of coral reefs. New strategies are required to more effectively select MPA locations and increase the pace of their implementation. Many criteria exist to design MPA networks, but generally, it is recommended that networks conserve a diversity of species selected for, among other attributes, their representativeness, rarity, or endemicity. Because knowledge of species’ spatial distribution remains scarce, efficient surrogates are urgently needed. We used five different levels of habitat maps and six spatial scales of analysis to identify under which circumstances habitat data used to design MPA networks for Wallis Island provided better representation of species than random choice alone. Protected‐area site selections were derived from a rarity–complementarity algorithm. Habitat surrogacy was tested for commercial fish species, all fish species, commercially harvested invertebrates, corals, and algae species. Efficiency of habitat surrogacy varied by species group, type of habitat map, and spatial scale of analysis. Maps with the highest habitat thematic complexity provided better surrogates than simpler maps and were more robust to changes in spatial scales. Surrogates were most efficient for commercial fishes, corals, and algae but not for commercial invertebrates. Conversely, other measurements of species‐habitat associations, such as richness congruence and composition similarities provided weak results. We provide, in part, a habitat‐mapping methodology for designation of MPAs for Pacific Ocean islands that are characterized by habitat zonations similar to Wallis. Given the increasing availability and affordability of space‐borne imagery to map habitats, our approach could appreciably facilitate and improve current approaches to coral reef conservation and enhance MPA implementation.  相似文献   

20.
Managing Boreal Forest Landscapes for Flying Squirrels   总被引:5,自引:0,他引:5  
Abstract: Flying squirrel (Pteromys volans) populations have declined severely during the past few decades, and the species has become a focal species in forest management and the conservation debate in Finland. We compared landscape structure around known flying squirrel home ranges with randomly chosen forest sites to determine which landscape patterns characterize the areas occupied by the species in northern Finland. We sought to identify the key characteristics of the landscape that support the remaining flying squirrel populations. We analyzed landscape structure within circular areas with 1- and 3-km radii around 63 forest sites occupied by flying squirrels, and around 96 random sites. We applied stepwise analysis of the landscape structure where landscapes were built up step-by-step by adding patch types in order of their suitability for the flying squirrel. The land-use and forest-resource data for the analysis were derived from multisource national forest inventory and imported to a geographical information system. Landscape patch types were divided into three suitability categories: breeding habitat (mixed spruce-deciduous forests); dispersal habitat ( pine and young forests); and unsuitable habitat ( young sapling stands, open habitats, water). Flying squirrel landscapes contained more suitable breeding habitat patches and were better connected by dispersal habitats than random landscapes. Our results suggest that for the persistence of the flying squirrel, forest managers should 1) maintain a deciduous mixture, particularly in spruce-dominated forests; 2) maintain physical connectivity between optimal breeding habitats; and 3) impose coarse-grained structures on northeastern Finnish landscapes at current levels of habitat availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号