首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory.The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn4+ cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4.The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO2.The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.  相似文献   

2.
This paper deals with the treatment method for the management of spent solvents of reprocessing origin (30% tri-n-butyl phosphate in n-dodecane) using the ‘alkaline hydrolysis process’. The consolidated work reported herein has established total conversion of TBP to aqueous soluble reaction products and transfer of near total radioactivity associated with the waste into this aqueous phase. It was also observed that n-dodecane (diluent) did not take part in the reaction and separated out as the top layer. Repeated runs have established the process on engineering scale (up to 200 l/batch) with regard to conversion of TBP into sodium salt of HDBP, butanol and recovery of the diluent practically free of TBP. The measured parameters, specifically, temperature and pressure did not deviate from set limits during the entire reaction time indicating safe operation. Experiments were also carried out on immobilization of the aqueous phase resulting from hydrolysis which contains almost all the radioactivity associated with the original spent solvent. These immobilization studies have established compatibility of the process generated aqueous stream with cementitious matrix.  相似文献   

3.
Degradation of a model polymer mixture (PVC/PS/PE) and a waste polymer mixture in the presence of HCl fixators (Red Mud, precipitated CaCO3 and dolamite) was studied using thermal gravimetric analysis (TGA) and a cycled-spheres-reactor. The experiments in cycled-spheres reactor model were performed by stepwise pyrolysis. Liquid products and HCl from each step were collected separately. For the model polymer mixture, the precipitated CaCO3 showed the best effect on the fixation of evolved HCl and the reduction of chlorine content in the liquid products whereas RM yielded the best result for the waste polymer mixture. In addition, using HCl fixator also affected the degradation of both types of polymer mixture, leading to the formation of more gaseous and less residue.  相似文献   

4.
Combined ultrasonic (US) irradiation and sodium peroxodisulfate (Na2S2O8) treatment has been investigated for promotion of both decomposition of (4-chloro-2-methylphenoxy) acetic acid (MCPA) and mineralization of organic residues. This treatment is expected to accelerate both reactions, because the US cavitation effect promotes the production of radicals, such as SO 4 ? · and OH·, by the decomposition of Na2S2O8 and water. In this study, decomposition experiments were performed on 100?ppm MCPA aqueous solutions in a sonoreactor at reaction temperatures of 298?C333?K with US irradiation alone, Na2S2O8 treatment alone, and the combination of US and Na2S2O8 treatment. It was found that the combined treatment achieved a higher MCPA decomposition rate and total organic carbon (TOC) removal ratio than either treatment alone. The decomposition ratios of both MCPA and TOC increased with reaction temperature, and especially steep increases were observed at 333?K due to a significant promotion of thermal decomposition of Na2S2O8. The production of radical species was also promoted by the combined treatment. These results suggest that the higher MCPA decomposition rate and TOC removal ratio are due to the increased formation of sulfate and hydroxyl radicals via thermal and US decomposition of Na2S2O8.  相似文献   

5.
The recovery of phosphorus from sewage sludge ash samples obtained from 7 operating sludge incinerators in the UK using a sulfuric acid washing procedure to produce a technical grade phosphoric acid product has been investigated. The influences of reaction time, sulfuric acid concentration, liquid to solid ratio and source of ISSA on P recovery have been examined. The optimised conditions were the minimum stoichiometric acid requirement, a reaction time of 120 min and a liquid to solid ratio of 20. Under these conditions, average recoveries of between 72% and 91% of total phosphorus were obtained. Product filtrate was purified by passing through a cation exchange column, concentrated to 80% H3PO4 and compared with technical grade H3PO4 specifications. The economics of phosphate recovery by this method are briefly discussed.  相似文献   

6.
In this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants.Proximate and ultimate analyses were performed. The thermal behaviour of studied sewage sludge was investigated by thermogravimetric analysis with mass spectrometry (TGA-MS). The samples were heated from ambient temperature to 800 °C at a constant rate 10 °C/min in air (combustion process) and argon flows (pyrolysis process). The thermal profiles presented in form of TG/DTG curves were comparable for studied sludges. All TG/DTG curves were divided into three stages. The main decomposition of sewage sludge during the combustion process took place in the range 180–580 °C with c.a. 70% mass loss. The pyrolysis process occurred in lower temperature but with less mass loss. The evolved gaseous products (H2, CH4, CO2, H2O) from the decomposition of sewage sludge were identified on-line.  相似文献   

7.
Thermal behavior characteristics of Adhesive residue   总被引:1,自引:0,他引:1  
Solid wastes from organic Adhesive production are identified as toxicant hazardous wastes in China’s National Catalogue of Hazardous Wastes. The aim of this study is analyzing the thermal behavior of Adhesive residue. Its pyrolysis and combustion characteristics were investigated using thermogravimetric analysis (TGA). Experiments were carried out in the temperature range of 50–950 °C in both nitrogen and air. The results indicate that combustion under these experimental conditions largely occurs between 210 and 410 °C, whereas pyrolysis proceeds between 260 and 430 °C. Almost all weight lost takes place before 430 °C during both pyrolysis and combustion of the residue. Fourier transform infrared spectroscopy (FTIR) was used to characterize the emission characteristics during pyrolysis. When the sample is heated in an inert atmosphere, the evolution of volatiles starts around 260 °C, and reaches a peak rate at 394 °C. Most organic products evolve in a narrow temperature range during pyrolysis. The evolving gaseous products were identified as Butyraldehyde, Ether, Acetonitrile and CO2, accompanied with some CO.  相似文献   

8.
In this study, refuse plastic fuel (RPF) was copyrolyzed with low-quality coal and was gasified in the presence of a metal catalyst and steam. Some metal catalysts, such as Ni, NiO, and Mg, and mixtures of these with base promoters such as Al2O3 and Fe2O3 were employed in the pyrolysis and gasification processes to convert the synthesis gas into more valuable fuel gas. The operating temperatures for the pyrolysis and gasification were between 700° and 1000°C. The experimental parameters were the operating temperature, catalyst type, basic promoter type, and steam injection amount. Solid fuel samples (5 g) were fed into a semibatch-type quartz tube reactor when the reactor reached the designated temperature. The synthesis gas was analyzed by gas chromatography. The use of low-quality coal as fuel in co-pyrolysis with RPF was explored. For the co-pyrolysis of RPF and low-quality coal, the effectiveness of the catalysts for fuel gas production followed the order Mg > NiO > Ni. In catalytic gasification of RPF, the addition of Al2O3 seemed to reduce the activity of the corresponding catalysts Ni and Mg. The maximum fuel gas yield (92.6%) was attained when Mg/Fe2O3 was used in steam gasification at 1000°C.  相似文献   

9.
Resurrection of the iron and phosphorus resource in steel-making slag   总被引:4,自引:0,他引:4  
 This research focused on the treatment of steel-making slags to recycle and recover iron and phosphorus. The carbothermal reduction behavior of both synthesized and factory steel-making slag in microwave irradiation was investigated. The slags were mixed with graphite powder and heated to a temperature higher than 1873 K to precipitate a lump of Fe–C alloy with a diameter of 2–8 mm. The larger the carbon equivalent (Ceq, defined in the text), the higher the fractional reduction of iron and phosphorus. An increase in the SiO2 content of slag led to a considerable improvement in the reduction for both iron and phosphorus because of the improvement in the fluidity of the slags and an increase in the activity coefficient of P2O5 in the slags. The extraction behavior of phosphorus from Fe–P–Csatd alloy was also investigated at 1473 K by carbonate flux treatment. For all the experiments with a processing time longer than 10 min, the phosphorus in the fluxes could be concentrated to more than 9% (w/w) showing that it could be used as a phosphorus resource. Compared with K2CO3 flux treatment, that using Na2CO3 was more effective for the extraction of phosphorus, and this was attributed to the lower evaporation of Na2CO3. Finally, a recycling scheme for steel-making slag is proposed. Received: March 16, 2001 / Accepted: November 12, 2001  相似文献   

10.
Lake Kitagata in Fukui Prefecture, Japan, was examined to collect fundamental data on nutrient export and material recycling using the native aquatic plants, common reed and wild rice. Common reed was located all over the lake shore, while wild rice was in the upper part of the lake. On average, the nutrient content was nitrogen: 2.1 and 2.6?%, P2O5: 0.38 and 0.64?%, K2O: 2.1 and 2.4?% for common reed and wild rice, respectively, and decreased along with their growth. If harvested in October, the nitrogen and phosphorus exported from the lake were estimated to be only 1.1 and 1.9?% of the inflow, respectively. Methane fermentation of these plants showed an average of 134 and 150?mL-CH4/g-VS added for common reed and wild rice, respectively, indicating possible use as an auxiliary source. The composting of these plants mixed with chicken manure, bean curd and rice bran was successful, and the products were rich in the major nutrients and well-balanced. A pretreatment method combining sulfuric acid and thermal treatment was able to convert about 50?% of cellulose in common reed to glucose, the precursor for bioethanol production. Therefore, these technologies are demonstrated to be helpful for the beneficial use of the biomass.  相似文献   

11.
Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 °C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO3:H2O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 °C.  相似文献   

12.
In this study, a very promising way of treating and recycling spent nickel catalysts of fertilizer plants in Vietnam was proposed. Firstly, nickel was recovered from spent catalyst using HNO3—leaching process. Results show that nickel recovery of over 90% with a purity of over 90% can be achieved with HNO3 2.1–2.5 M at 100?°C in 75 min. The residue after leaching is not considered as a hazardous waste according to the Vietnamese regulations. Then, the leachate solution was used as a precursor to prepare a model catalyst for exhaust gas (CO, HC, NOx) treatment. In comparison with the catalyst prepared from the commercial nickel nitrate solution, the catalyst synthesized from recovered nickel exhibits similar properties and activities. The influence of Ni loading of Ni/alumina catalyst as well as the modification of active phase by some metals addition (Mn, Ba, Ce) was also investigated. It is feasible to modify active phase by transition metals such as Mn, Ba, and Ce for complete oxidation of CO and HC at 270?°C and a reduction of NOx below 350?°C at high volumetric flow condition (GHSV?=?110.000 h?1).  相似文献   

13.
This paper aims to make an overview on the current status and new tendency for recycling cathodic active materials from spent lithium-ion batteries. Firstly, it introduces several kinds of pretreatment technologies, followed by the summary of all kinds of single recycling processes mainly focusing on organic acid leaching and synergistic extraction. Then, several examples of typical combined processes and industrial recycling processes are presented in detail. Meanwhile, the advantages, disadvantages and prospect of each single process, combined process, as well as industrial recycling processes, are discussed. Finally, based on a novel acidic organic solvent, the authors briefly introduce an environmental friendly process to directly recycle and resynthesize cathodic active material LiNi1/3Co1/3Mn1/3O2 from spent lithium-ion batteries. The preliminary experimental results demonstrated the advantages of low reaction temperature, high separation efficiency and organic solvent cycling and preventing secondary pollution to the environment. This process may be used for large-scale recycling of spent lithium-ion batteries after further study.  相似文献   

14.
The formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) from carbon that was produced by the pyrolysis of paper fibers and from wood charcoal was investigated experimentally. Fibers obtained from filter paper were pyrolyzed at 300° and 800°C to produce low- and high-temperature carbon samples. The two types of carbon and wood charcoal were mixed with silica (SiO2) and trace copper oxide to produce three synthetic fly ash samples. Experiments to measure the formation of PCCDs/Fs from the three ash samples were conducted using a bench-scale reactor. The two carbon samples derived from paper fibers generated more PCDDs/Fs than was generated by the wood charcoal. The PCDDs/Fs generated by the low-temperature carbon and by the wood charcoal were dominated by the lower-chlorinated PCDFs. Such unique homologue distribution patterns are very similar to those generated by the open burning of household waste. The high-temperature carbon generated more highly chlorinated PCDDs/Fs. The effect of pyrolysis temperature on the de novo formation of PCDDs/Fs from residual carbon is discussed. Paper and paper products contained in household waste are likely to be the source of unburned carbon that contributes to high PCDD/F emissions in the open burning of household waste.  相似文献   

15.
A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn–Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organic separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H2SO4 (2 mol L?1) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ?99.8% is recovered in an electrolytic cell with a cathode efficiency of ?85% under the conditions of 37–40 °C and 300 A m?2. The most of MnO2 and a small quantity of electrolytic MnO2 are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi0.5Mn1.5O4 material of lithium-ion battery. The as-synthesized LiNi0.5Mn1.5O4 discharges 118.3 mAh g?1 capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO2. This process can recover the substances in the spent Zn–Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable.  相似文献   

16.
This paper presents a study regarding the preparation of MgCr2O4 from waste tannery solution, and chromium leaching behavior is also investigated with varying amounts of sulfate, chloride and calcium. The phase transformation, crystallinity index and crystallite diameter were characterized using XRD, FT-IR and thermal analysis. A well-crystallized MgCr2O4 was successfully prepared at 1400 °C. The sintering temperature had a major impact on the formation of MgCr2O4 compared with sintering time. The MgCr2O4 phase was observed initially at 400 °C and its crystallite diameter increased with increasing temperature. The concentration of total chromium leached and Cr(VI) decreased gradually with increasing temperature. The considerable amount of Cr(VI) was found in the leachate at 300–500 °C caused by Cr(VI) intermediary products. Sulfate and chlorine could impact the transformation efficiency of chromium adversely, and chlorine has a more significant effect than sulfate. The presence of calcium disturbed the formation of MgCr2O4 and new chromium species (CaCrO4) appeared, which resulted in a sharp increase in the concentration of leached Cr(VI). Incorporating Cr(III) into the MgCr2O4 spinel for reusable products reduced its mobility significantly. This was demonstrated to be a promising strategy for the disposal of chromium containing waste resource.  相似文献   

17.

Phosphogypsum (PG) is a large hazardous waste from fertiliser and phosphoric acid industries from which useful products including rare-earth elements (REEs) can be recovered depending on the treatment process. Its conversion to calcium sulphide (CaS) which was achieved at 95% followed by the formation of S, CaCO3 and residue is one of the plausible treatment processes leading to economic and environmental benefits. This study aimed at monitoring selected REEs behaviour during the conversion of (PG) to (CaS). The concentrations of REEs in the raw PG, the produced CaS and the obtained residue were determined after digestion (microwave and traditional acid leaching) using ICP-OES. The effect of CO2 and H2S used in the process of forming CaCO3 and S from PG on the concentrations of REEs was also investigated. Microwave digestion proved to be more effective than traditional acid leaching in the recovery of REEs. Microwave digestion using 3 mL HNO3 + 1 mL HCl was more effective than 1 mL HNO3 + 3 mL in REEs recovery. CaS contained the highest amount of Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, La and Y with values of 2646, 476, 2255, 320, 60.5, 376, 79.8, 1.24, 476, 1185 and 318 µg/g respectively. Based on these findings, the residue could be further processed to recover REEs despite less than 40% decrease in concentration for the majority of REEs observed due to the use of H2S and CO2. CO2 was found to be more suitable as fewer REEs were leached as compared to H2S. All things considered, the obtained residue could be a good secondary source of REEs as it is easier to leach, retained good amount of REEs and lesser impurities.

  相似文献   

18.
Thermocatalytic degradation of high density polyethylene (HDPE) was carried out using acid activated fire clay catalyst in a semi batch reactor. Thermal pyrolysis was performed in the temperature range of 420–500 °C. The liquid and gaseous yields were increased with increase in temperature. The liquid yield was obtained 30.1 wt% with thermal pyrolysis at temperature of 450 °C, which increased to 41.4 wt% with catalytic pyrolysis using acid activated fire clay catalyst at 10 wt% of catalyst loading. The composition of liquid products obtained by thermal and catalytic pyrolysis was analyzed by gas chromatography-mass spectrometry and compounds identified for catalytic pyrolysis were mainly paraffins and olefins with carbon number range of C6–C18. The boiling point was found in the range of commercial fuels (gasoline, diesel) and the calorific value was calculated to be 42 MJ/kg.  相似文献   

19.
Detailed kinetic studies are presented for two reactions: the nitric oxide (NO) selective catalytic reduction (SCR) by propene over indium/alumina (In/Al2O3) and the nitrous oxide (N2O) reduction over ruthenium/alumina (Ru/Al2O3). Both reactions were studied in the presence of excess oxygen (O2) to simulate the composition of flue gases. Apparent activation energies and apparent orders of reaction were calculated in experiments performed under differential reaction conditions. We used our experimental results to propose the reaction mechanism that leads to nitrogen formation over the two catalysts. The NO reduction proceeds through the initial formation of C X H Y O Z N, a reaction intermediate that reacts with activated nitrogen oxides (NO X ). Nitrous oxide is catalytically decomposed to nitrogen (N2) over Ru/Al2O3.  相似文献   

20.
The recovery of phosphorus from waste is very important for Japan because Japan has no natural phosphorus resources. In order to recover phosphorus from incineration ash of chicken manure, an acid dissolution–alkali precipitation method was investigated. Phosphorus content in the ash was 8%. The ash was treated with hydrochloric acid to obtain phosphorus-rich solution. Phosphorus could then be recovered as a precipitant by adding sodium hydroxide solution into the phosphorus-rich solution and gradually changing the pH in the solution to 3, 4, and 8. At pH 3, a small amount of phosphorus was precipitated to remove iron, which would cause coloring of subsequent precipitants. At pH 4, 84% of the phosphorus in the original solution could be recovered as CaHPO4 · 2H2O with a purity of 92%. At pH 8, 8% of the phosphorus in the phosphorus-rich solution could be recovered as identified hydroxyapatite. A recovery rate of 92% phosphorus as CaHPO4 · 2H2O and identified as hydroxyapatite was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号