首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
Humic colloid-borne migration of uranium in sand columns   总被引:3,自引:0,他引:3  
Column experiments were carried out to investigate the influence of humic colloids on subsurface uranium migration. The columns were packed with well-characterized aeolian quartz sand and equilibrated with groundwater rich in humic colloids (dissolved organic carbon (DOC): 30 mg dm(-3)). U migration was studied under an Ar/1% CO2 gas atmosphere as a function of the migration time, which was controlled by the flow velocity or the column length. In addition, the contact time of U with groundwater prior to introduction into a column was varied. U(VI) was found to be the dominant oxidation state in the spiked groundwater. The breakthrough curves indicate that U was transported as a humic colloid-borne species with a velocity up to 5% faster than the mean groundwater flow. The fraction of humic colloid-borne species increases with increasing prior contact time and also with decreasing migration time. The migration behavior was attributed to a kinetically controlled association/dissociation of U onto and from humic colloids and also a subsequent sorption of U onto the sediment surface. The column experiments provide an insight into humic colloid-mediated U migration in subsurface aquifers.  相似文献   

2.
Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria   总被引:1,自引:0,他引:1  
We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is characterized by mass transfer between stagnant micro-pores and mobile flow zones. The model describes the succession of terminal electron accepting processes and the growth and decay of sulfate-reducing bacteria, concurrent with the enzymatic reduction of aqueous U(VI) species. The effective U(VI) reduction rate and sorption site distributions are determined by fitting the model simulation to an in-situ experiment at Oak Ridge, TN. Results show that (1) the presence of nitrate inhibits U(VI) reduction at the site; (2) the fitted effective rate of in-situ U(VI) reduction is much smaller than the values reported for laboratory experiments; (3) U(VI) sorption/desorption, which affects U(VI) bioavailability at the site, is strongly controlled by kinetics; (4) both pH and bicarbonate concentration significantly influence the sorption/desorption of U(VI), which therefore cannot be characterized by empirical isotherms; and (5) calcium-uranyl-carbonate complexes significantly influence the model performance of U(VI) reduction.  相似文献   

3.
Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.  相似文献   

4.
Cheng T  Barnett MO  Roden EE  Zhuang J 《Chemosphere》2007,68(7):1218-1223
The migration of uranium(VI) in subsurface environments is strongly influenced by its adsorption/desorption reactions at the solid/solution interface. Phosphate is often present in subsurface systems and was shown to significantly affect U(VI) adsorption in previous batch experiments. In this study, column experiments were conducted to investigate the effects of phosphate on U(VI) adsorption and transport under flow conditions. The adsorption of U(VI) and phosphate was very low on pure quartz sand with negligible effects on U(VI) and phosphate transport. However, U(VI) and phosphate transport was retarded in a column packed with goethite-coated sand. The presence of phosphate, either as a co-solute with U(VI) or pre-adsorbed, greatly increased U(VI) adsorption and retardation. U(VI) and phosphate adsorption in our column experiments were rate-limited, and the adsorption of U(VI) and phosphate was not reversible, with kinetic limitations more pronounced for desorption than for adsorption. This study demonstrated the importance of phosphate in controlling U(VI) mobility in subsurface environments and helped illustrate some phenomena potentially applicable to U(VI) adsorption and transport in natural systems, especially where U(VI) adsorption is rate-limited.  相似文献   

5.
Natural analogues allow scientists to investigate biogeochemical processes relevant to radioactive waste disposal that occur on time scales longer than those that may be studied by time-limited laboratory experiments. The Palmottu U-Th deposit in Finland and the Bangombé natural nuclear reactor in Gabon involve the study of natural uranium, and are both considered natural analogues for subsurface radioactive waste disposal. The microbial population naturally present in groundwater may affect the redox conditions, and hence, the radionuclide solubility and migration. Therefore, groundwater samples from the two sites were investigated for microbial populations. The total numbers of cells ranged from 10(4) to 10(6) cells ml(-1). Iron-reducing bacteria (IRB) were the largest culturable microbial population in the Palmottu groundwater and were present at up to 1.3 x 10(5) cells ml(-1). Sulfate-reducing bacteria (SRB) and acetogens could also be cultured from the Palmottu groundwater. The numbers of IRB and SRB were largest in groundwater with the lowest uranium concentrations. Removal of dissolved U(VI) from solution was concomitant with the growth of IRB enrichment cultures and the reduction of iron. The redox buffer in the Palmottu groundwater consists of iron and uranium species, both of which are affected by IRB. IRB and aerobic heterotrophs were cultured from the Bangombé groundwater, where redox potentials are buffered by iron and organic carbon species. Microbial populations similar to those found at Palmottu and Bangombé are found throughout the Fennoscandian Shield, a potential host rock for subsurface radioactive waste disposal. These results confirm that microorganisms can be expected to play a role in stabilizing radioactive waste disposed of in the subsurface by lowering redox potential and immobilizing radionuclides.  相似文献   

6.
Directly adjacent to the Chesapeake Bay lies the Aberdeen Proving Ground, a U.S. Army facility where testing of armor-piercing ammunitions has resulted in the deposition of >70,000 kg of depleted uranium (DU) to local soils and sediments. Results of previous environmental monitoring suggested limited mobilization in the impact area and no transport of DU into the nation's largest estuary. To determine if physical and biological reactions constitute mechanisms involved in limiting contaminant transport, the sorption and biotransformation behavior of the radionuclide was studied using geochemical modeling and laboratory microcosms (500 ppb U(VI) initially). An immediate decline in dissolved U(VI) concentrations was observed under both sterile and non-sterile conditions due to rapid association of U(VI) with natural organic matter in the sediment. Reduction of U(VI) to U(IV) occurred only in non-sterile microcosms. In the non-sterile samples, intrinsic bioreduction of uranium involved bacteria of the order Clostridiales and was only moderately enhanced by the addition of acetate (41% vs. 56% in 121 days). Overall, this study demonstrates that the migration of depleted uranium from the APG site into the Chesapeake Bay may be limited by a combination of processes that include rapid sorption of U(VI) species to natural organic matter, followed by slow, intrinsic bioreduction to U(IV).  相似文献   

7.
In this study we investigated the effect of uranium on the growth of the bacterium Thermus scotoductus strain SA-01 as well as the whole cell U(VI) reduction capabilities of the organism. Also, site-directed mutagenesis confirmed the identity of a protein capable of a possible alternative mechanism of U(VI) reduction. SA-01 can grow aerobically in up to 1.25 mM uranium and has the capability to reduce low levels of U(VI) in under 20 h. TEM analysis performed on cells exposed to uranium showed extracellular and membrane-bound accumulation of uranium. The reductase-like protein was surprisingly identified as a peptide ABC transporter, peptide-binding protein. This study showcases the concept of protein promiscuity, where this protein with a distinct function in situ can also have the unintended function of a reactant for the reduction of U(VI).  相似文献   

8.
BACKGROUND, AIM, AND SCOPE: The subsurface at the Oak Ridge Field Research Center represents an extreme and diverse geochemical environment that places different stresses on the endogenous microbial communities, including low pH, elevated nitrate concentrations, and the occurrence of heavy metals and radionuclides, including hexavalent uranium [U(VI)]. The in situ immobilization of U(VI) in the aquifer can be achieved through microbial reduction to relatively insoluble U(IV). However, a high redox potential due to the presence of nitrate and the toxicity of heavy metals will impede this process. Our aim is to test biostimulation of the endogenous microbial communities to improve nitrate reduction and subsequent U(VI) reduction under conditions of elevated heavy metals. MATERIALS AND METHODS: Column experiments were used to test the possibility of using biostimulation via the addition of ethanol as a carbon source to improve nitrate reduction in the presence of elevated aqueous nickel. We subsequently analyzed the composition of the microbial communities that became established and their potential for U(VI) reduction and its in situ immobilization. RESULTS: Phylogenetic analysis revealed that the microbial population changed from heavy metal sensitive members of the actinobacteria, alpha- and gamma-proteobacteria to a community dominated by heavy metal resistant (nickel, cadmium, zinc, and cobalt resistant), nitrate reducing beta- and gamma-proteobacteria, and sulfate reducing Clostridiaceae. Coincidentally, synchrotron X-ray absorption spectroscopy analyses indicated that the resulting redox conditions favored U(VI) reduction transformation to insoluble U(IV) species associated with soil minerals and biomass. DISCUSSION: This study shows that the necessary genetic information to adapt to the implemented nickel stress resides in the endogenous microbial population present at the Oak Ridge FRC site, which changed from a community generally found under oligotrophic conditions to a community able to withstand the stress imposed by heavy metals, while efficiently reducing nitrate as electron donor. Once nitrate was reduced efficient reduction and in situ immobilization of uranium was observed. CONCLUSIONS: This study provides evidence that stimulating the metabolism of the endogenous bacterial population at the Oak Ridge FRC site by adding ethanol, a suitable carbon source, results in efficient nitrate reduction under conditions of elevated nickel, and a decrease of the redox potential such that sulfate and iron reducing bacteria are able to thrive and create conditions favorable for the reduction and in situ immobilization of uranium. Since we have found that the remediation potential resides within the endogenous microbial community, we believe it will be feasible to conduct field tests. RECOMMENDATIONS AND PERSPECTIVES: Biostimulation of endogenous bacteria provides an efficient tool for the successful in situ remediation of mixed-waste sites, particularly those co-contaminated with heavy metals, nitrate and radionuclides, as found in the United States and other countries as environmental legacies of the nuclear age.  相似文献   

9.
Hexavalent chromium (Cr(VI)) was reduced to immobile and nontoxic Cr(III) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of kinetic batch and dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT. Reduction of Cr(VI) was rapid (within 1 h) in columns packed with quartz sand and bacteria, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO2-coated sand. A mathematical model was developed and evaluated against data obtained from column experiments. The model takes into account (1) advective-dispersive transport of Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria); (2) first-order kinetic adsorption of Cr(III) and lactate; (3) conversion of solid phase beta-MnO2 to solid phase MnOOH due to oxidation of Cr(III); (4) dual-Monod kinetics, where Cr(VI) is the electron acceptor and lactate is the electron donor. The breakthrough data for Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria) were fitted simultaneously. The breakthrough data are well described by the mathematical model that considers the above processes. This result demonstrates the ability of the coupled hydrobiogeochemical model to simulate chromium transport in complex reactive systems.  相似文献   

10.
This work addresses the effect that plants (Typha latifolia and Carex lurida) have on the reduction of Cr(VI) in wetland sediments. Experiments were carried out using tubular microcosms, where chemical species were monitored along the longitudinal flow axis. Cr(VI) removal was enhanced by the presence of plants. This is explained by a decrease in the redox potential promoted by organic root exudates released by plants. Under these conditions sulfate reduction is enhanced, increasing the concentration of sulfide species in the sediment pore water, which reduce Cr(VI). Evapotranspiration induced by plants also contributed to enhance the reduction of Cr(VI) by concentrating all chemical species in the sediment pore water. Both exudates release and evapotranspiration have a diurnal component that affects Cr(VI) reduction. Concentration profiles were fitted to a kinetic model linking sulfide and Cr(VI) concentrations corrected for evapotranspiration. This expression captures both the longitudinal as well as the diurnal Cr(VI) concentration profiles.  相似文献   

11.
During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to identify the dominant transport and biological processes controlling uranium mobility during biostimulation, and determine field-scale parameters for these modeled processes. The coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes based on the 2002 field experiment, that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of the bioavailable Fe(III) mineral threshold for the onset of sulfate reduction, and rates for the Fe(III), U(VI), and sulfate terminal electron accepting processes.  相似文献   

12.
Microbial reactions play an important role in regulating pore water chemistry as well as secondary mineral distribution in many subsurface systems and, therefore, may directly impact radionuclide migration in those systems. This paper presents a general modeling approach to couple microbial metabolism, redox chemistry, and radionuclide transport in a subsurface environment. To account for the likely achievement of quasi-steady state biomass accumulations in subsurface environments, a modification to the traditional microbial growth kinetic equation is proposed. The conditions for using biogeochemical models with or without an explicit representation of biomass growth are clarified. Based on the general approach proposed in this paper, the couplings of uranium reactions with biogeochemical processes are incorporated into computer code BIORXNTRN Version 2.0. The code is then used to simulate a subsurface contaminant migration scenario, in which a water flow containing both uranium and a complexing organic ligand is recharged into an oxic carbonate aquifer. The model simulation shows that Mn and Fe oxyhydroxides may vary significantly along a flow path. The simulation also shows that uranium(VI) can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.  相似文献   

13.
Fractures and biopores can act as preferential flow paths in clay aquitards and may rapidly transmit contaminants into underlying aquifers. Reliable numerical models for assessment of groundwater contamination from such aquitards are needed for planning, regulatory and remediation purposes. In this investigation, high resolution preferential water-saturated flow and bromide transport data were used to evaluate the suitability of equivalent porous medium (EPM), dual porosity (DP) and discrete fracture/matrix diffusion (DFMD) numerical modeling approaches for assessment of flow and non-reactive solute transport in clayey till. The experimental data were obtained from four large undisturbed soil columns (taken from 1.5 to 3.5 m depth) in which biopores and channels along fractures controlled 96-99% of water-saturated flow. Simulating the transport data with the EPM effective porosity model (FRACTRAN in EPM mode) was not successful because calibrated effective porosity for the same column had to be varied up to 1 order of magnitude in order to simulate solute breakthrough for the applied flow rates between 11 and 49 mm/day. Attempts to simulate the same data with the DP models CXTFIT and MODFLOW/MT3D were also unsuccessful because fitted values for dispersion, mobile zone porosity, and mass transfer coefficient between mobile and immobile zones varied several orders of magnitude for the different flow rates, and because dispersion values were furthermore not physically realistic. Only the DFMD modeling approach (FRACTRAN in DFMD mode) was capable to simulate the observed changes in solute transport behavior during alternating flow rate without changing values of calibrated fracture spacing and fracture aperture to represent the macropores.  相似文献   

14.
Strontium-90 has migrated deep into the unsaturated subsurface beneath leaking storage tanks in the Waste Management Areas (WMA) at the U.S. Department of Energy's (DOE) Hanford Reservation. Faster than expected transport of contaminants in the vadose zone is typically attributed to either physical hydrologic processes such as development of preferential flow pathways, or to geochemical processes such as the formation of stable, anionic complexes with organic chelates, e.g., ethylenediaminetetraacetic acid (EDTA). The goal of this paper is to determine whether hydrological processes in the Hanford sediments can influence the geochemistry of the system and hence control transport of Sr(2+) and SrEDTA(2-). The study used batch isotherms, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core. Isotherms and repacked column experiments suggested that the SrEDTA(2-) complex was unstable in the presence of Hanford sediments, resulting in dissociation and transport of Sr(2+) as a divalent cation. A decrease in sorption with increasing solid:solution ratio for Sr(2+) and SrEDTA(2-) suggested mineral dissolution resulted in competition for sorption sites and the formation of stable aqueous complexes. This was confirmed by detection of MgEDTA(2-), MnEDTA(2-), PbEDTA(2-), and unidentified Sr and Ca complexes. Displacement of Sr(2+) through a partially-saturated undisturbed core resulted in less retardation and more irreversible sorption than was observed in the saturated repacked columns, and model results suggested a significant reservoir (49%) of immobile water was present during transport through the heterogeneous layered sediments. The undisturbed core was subsequently disassembled along distinct bedding planes and subjected to sequential extractions. Strontium was unequally distributed between carbonates (49%), ion exchange sites (37%), and the oxide (14%) fraction. An inverse relationship between mass wetness and Sr suggested that sandy sediments of low water content constituted the immobile flow regime. Our results suggested that the sequestration of Sr(2+) in partially-saturated, heterogeneous sediments was most likely due to the formation of immobile water in drier regions having low hydraulic conductivities.  相似文献   

15.
Column and batch experiments were conducted with sandstone and ground water samples to investigate oxidation of uraninite precipitated by microbially mediated reduction of U(VI), a contaminant in ground water beneath a uranium mill tailings site near Tuba City, AZ, USA. Uraninite precipitated together with mackinawite (FeS0.9) because Fe(III) from the sandstone and sulfate, another contaminant in the water were reduced together with U(VI). After completion of U(VI) reduction, experiments were conducted to find out whether uraninite is protected by mackinawite against reoxidation. Uncontaminated ground water from the same site, containing 7 mg/l of dissolved oxygen, was passed through the columns or mixed with sandstone in batch experiments. The results showed that small masses of uraninite, 0.1 μg/g of sandstone, are protected by mackinawite from reoxidation. Uraninite masses on the order of 0.1 μg/g correspond to U(VI) concentrations of 0.5 mg/l, typically encountered in uranium contaminated ground waters. Mackinawite is an effective buffer and is formed in sufficient quantity to provide long-term protection of uraninite. Uranium concentrations in ground water passed through the columns are too low (4 μg/l) to distinguish between dissolution and oxidative dissolution of uraninite. However, batch experiments showed that uraninite oxidation takes place.  相似文献   

16.
Drilling methods can severely alter physical, chemical, and biological properties of aquifers, thereby influencing the reliability of water samples collected from groundwater monitoring wells. Because of their fast drilling rate, air-actuated hammers are increasingly used for the installation of groundwater monitoring wells in unconsolidated sediments. However, oil entrained in the air stream to lubricate the hammer-actuating device can contaminate subsurface sediments. Concentrations of total hydrocarbons, heavy metals (Cu, Ni, Cr, Zn, Pb, and Cd), and nutrients (particulate organic carbon, nitrogen, and phosphorus) were measured in continuous sediment cores recovered during the completion of a 26-m deep borehole drilled with a down-hole hammer in glaciofluvial deposits. Total hydrocarbons, Cu, Ni, Cr and particulate organic carbon (POC) were all measured at concentrations far exceeding background levels in most sediment cores. Hydrocarbon concentration averaged 124 +/- 118 mg kg(-1) dry sediment (n = 78 samples) with peaks at depths of 8, 14, and 20 m below the soil surface (maximum concentration: 606 mg kg(-1)). The concentrations of hydrocarbons, Cu, Ni, Cr, and POC were positively correlated and exhibited a highly irregular vertical pattern, that probably reflected variations in air loss within glaciofluvial deposits during drilling. Because the penetration of contaminated air into the formation is unpreventable, the representativeness of groundwater samples collected may be questioned. It is concluded that air percussion drilling has strong limitations for well installation in groundwater quality monitoring surveys.  相似文献   

17.
Large seasonal fluctuations of the water table are characteristic of aquifers with a low specific yield, including those fractured, double-porosity aquifers that have significant matrix porosity containing virtually immobile porewater, such as the Chalk of northern Europe. Where these aquifers are contaminated, a strong relationship between water table elevation and contaminant concentration in groundwater is commonly observed, of significance to the assessment, monitoring, and remediation of contaminated groundwater. To examine the processes governing contaminant redistribution by a fluctuating water table within the 'seasonally unsaturated zone', or SUZ, profiles of porewater solute concentrations have been established at a contaminated site in southern England. These profiles document the contaminant distribution in porewater of the Chalk matrix over the SUZ at a greater level of detail than recorded previously. A novel double-porosity solute transport code has been developed to simulate the evolution of the SUZ matrix porewater contaminant profiles, given a fluctuating water table, when the groundwater is initially contaminated and the SUZ is initially free of contamination. The model is simply characterised by: the matrix-fracture porosity ratio, the matrix block geometry, and a characteristic diffusion time. De-saturation and re-saturation of fractures is handled by a new approximation method. Contaminant accumulates in the upper levels of the SUZ, where it is less accessible to mobile groundwater, and acts as a persistent secondary source of contamination once the original source of contamination has been removed or has become depleted. The 'SUZ process' first attenuates the progress of contaminants in groundwater, and subsequently controls the slow release of contamination back to the mobile groundwater, thus prolonging the duration of groundwater contamination by many years. The SUZ process should operate in any fractured, micro-porous lithology e.g. fractured clays and mudstones, making this approach widely applicable.  相似文献   

18.
In a preliminary study, the uptake and the mobility of uranium (U) by black oak trees (Quercus velutina) were assessed by measuring the isotopic composition of tree rings in two mature oak trees in a heavy metal contaminated bog in Concord, MA. The bog is adjacent to a nuclear industrial facility that has been processing depleted uranium (DU) since 1959. Over the past 40 years, DU has been leaking from an onsite holding basin and cooling pond down gradient to the bog where the oaks are located. Because DU has no source outside the nuclear industry, contamination from the industrial facility is readily discernable from uptake of natural U by measuring isotopic compositions. Isotope ratio analysis confirms the occurrence of DU in bark, sapwood and heartwood tree rings dating back to 1937, pre-dating the introduction of DU at the site by at least 20 years. Isotope dilution analysis indicates high concentrations of U (>3 ppb) in sapwood that drop rapidly to relatively constant concentrations (0.3-0.4 ppb) in heartwood. These data indicate that once incorporated into tree cells, U is mobile, possibly by diffusion through the tree wood. Concentrations of U in sapwood are approximately equal to average U concentrations in groundwater onsite over the past 10 years, suggesting that oak trees can be used as present-day bioindicators of U-contaminated groundwater. We suggest that regional sampling of oak bark and sapwood is a reasonable, inexpensive alternative to drilling wells to monitor shallow groundwater U contamination.  相似文献   

19.
Hossain MA 《Chemosphere》2006,63(1):171-174
Chromium(VI) (Cr(VI)) contamination of soil and groundwater is a major environmental concern. Bioreduction of Cr(VI) by Shewanella oneidensis MR-1 (MR-1) can be considered a feasible option to reduce the toxic and mobile Cr(VI) to the less toxic and less mobile chromium(III) (Cr(III)). The reaction rate expression for Cr(VI) reduction is nonlinear and the rate constants are evaluated by employing nonlinear optimization techniques. The outcome of the optimization techniques, in general, depends on the initial estimate of the kinetic parameters which is not always available. A graphical approach based on sound mathematical reasoning has been developed which is accurate, simpler to use, and can provide the best initial estimate for nonlinear optimization.  相似文献   

20.
The abiotic sorption and oxic degradation processes that control the fate of the explosive CL-20, Hexanitrohexaazaisowurtzitane, in the subsurface environment were investigated to determine the potential for vadose and groundwater contamination. Sorption of aqueous CL-20 is relatively small (K(d) = 0.02-3.83 cm3 g(-1) for 7 sediments and 12 minerals), which results in only slight retardation relative to water movement. Thus, CL-20 could move quickly through unsaturated and saturated sediments of comparable composition to groundwater, similar to the subsurface behavior of RDX. CL-20 sorption was mainly to mineral surfaces of the sediments, and the resulting isotherm was nonlinear. CL-20 abiotically degrades in oxic environments at slow rates (i.e., 10s to 100s of hours) with a wide variety of minerals, but at fast rates (i.e., minutes) in the presence of 2:1 phyllosilicate clays (hectorite, montmorillonite, nontronite), micas (biotite, illite), and specific oxides (MnO2 and the ferrous-ferric iron oxide magnetite). High concentrations of surface ferrous iron in a dithionite reduced sediment degraded CL-20 the fastest (half-life < 0.05 h), but 2:1 clays containing no structural or adsorbed ferrous iron (hectorite) could also quickly degrade CL-20 (half-life < 0.2 h). CL-20 degradation rates were slower in natural sediments (half-life 3-800 h) compared to minerals. Sediments with slow degradation rates and small sorption would exhibit the highest potential for deep subsurface migration. Products of CL-20 oxic degradation included three high molecular weight compounds and anions (nitrite and formate). The 2-3.5 moles of nitrite produced suggest CL-20 nitro-groups are degraded, and the amount of formate produced (0.2-1.2 moles) suggests the CL-20 cage structure is broken in some sediments. Identification of further degradation products and CL-20 mineralization rates is needed to fully assess the impact of these CL-20 transformation rates on the risk of CL-20 (and degradation product) subsurface movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号