首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
上海西郊麦期氮素淋溶定位研究   总被引:14,自引:0,他引:14  
上海西郊水旱轮作地中麦期的淋失研究表明,氮肥淋失的基本形态为硝酸盐氮,施肥后10d左右,形成硝酸盐氮淋溶的高峰期,在整个生育期间,随深度增加,硝酸盐氮浓度峰值向深层推移,但其渗漏深度为80cm左右。氮素的淋失主要发生在11月到次年3月的作物幼苗期,当追肥超过150kg/hm^2后,渗漏量增加很快。  相似文献   

2.
15N-labeled nitrate was injected into different depths of an alluvial calcareous soil profile on the North China Plain. Subsequent movement of NO3- -N and its recovery by deep-rooted maize (Zea mays L.) and shallow-rooted eggplant (Solanum melongena L.) were studied. Under conventional water and nutrient management the mean recoveries of 15N-labeled nitrate from K(15)NO3 injected at depths 15, 45, and 75 cm were 22.4, 13.8, and 7.8% by maize and 7.9, 4.9, and 2.7% by eggplant. The recovery rate by maize at each soil depth was significantly higher than by eggplant. The deeper the injection of nitrate the smaller the distance of its downward movement and this corresponded with the movement of soil water during crop growth. Deeper rooting crops with high root length density and high water consumption may therefore be grown to utilize high concentrations of residual nitrate in the subsoil from previous intensive cropping and to protect the environment.  相似文献   

3.
Zhu JG  Liu G  Han Y  Zhang YL  Xing GX 《Chemosphere》2003,50(6):725-732
Nitrate concentration in well water collected from the wells near farm houses was investigated in the Taihu Lake basin (TBL) of China. Nitrate-N content of the well water ranged from 0.1 to 23 mgNl(-1), and 41% exceeded the criteria (10 mg Nl(-1)). It was found that the difference in well conditions, especially the depth of the well, was the main cause of the difference in the nitrate concentration of well water, i.e. it was higher in shallow well and lower in deeper well. A recommendation was made for local farmers to drill wells deeper than 10 m in order to reduce the risk of high ingestion of nitrate-N in their drinking water. Nitrate distribution and denitrification in the saturated zone of a paddy field under rice/wheat rotation in the TBL were studied. Porous pipes were installed in triplicate at depths of 1.5, 2.0, 2.5, 3.5 and 5 m respectively to collect the soil solution samples. Results showed that nitrate was the predominant N form in soil solution of saturated zone, and it increased from 1.5 to 2.5 m depth, and decreased from 2.5 to 5 m depth. N2O captured in the soil solution was very high comparing with N2O content in air. N2O content was positively correlated with nitrate concentrations in the soil profile. These results indicate that nitrate leached into saturated zone was mainly transformed via denitrification processes. Comparing the sum of inorganic nitrogen with the total nitrogen in soil solution samples collected from those wells at the field, some soluble organic nitrogen was found about 1-2 mg N l(-1) in average.  相似文献   

4.
The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha(-1) on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha(-1), with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha(-1) in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha(-1) at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs.  相似文献   

5.
The aim of this work was to study the distribution of imidacloprid in soil and its translocation to roots and aerial parts of maize plant. The main objective was to assess imidacloprid residues in field environment, in order to provide data on honeybees exposure level to such an active substance. Imidacloprid has been detected and quantified by Triple Quadrupole HPLC-MS-MS. Pesticide persistence in the soil and its residues in pollen and in maize plants have been evaluated during the growing of maize plants developed from seeds dressed with Gaucho 350 FS (imidacloprid: 1.0 mg/seed). The sowing has been performed by means of a pneumatic precision drill. Samples have been collected at 30, 45, 60, 80, 130 days after the sowing, as pollen samples have been collected at the tasseling. Imidacloprid presence in aerial part of maize plant declined to 2-3 μg/kg 80 days after the sowing, while concentration in kernel at harvest was <1 μg/kg. Maize pollen represents an important part of protein supply of beehives, and it is of critical importance to bee foraging. The values detected (imidacloprid residues <1 μg/kg) showed that maize pollen source should not be relevant for acute toxicity impact on honey bees.  相似文献   

6.
[Carbonyl-14C]methabenzthiazuron (MBT) was applied to growing winter wheat in an outdoor lysimeter. The amount applied corresponded to 4 kg Tribunil/ha. 140 days after application the 0-2.5 cm soil layer was removed from the lysimeter. This soil contained about 40% of the applied radioactivity. Using 0,01 M CaCl2 solution or organic solvents, the extractable residues were removed from the soil. The bioavailability of the non-extractable as well as aged residues remaining in the soil was investigated in standardized microecosystems containing 1.5 kg of dry soil. During a 4 weeks period the total uptake (4 maize plants/pot) amounted up to 3.6; 2.2; and 0.9% of the radioactivity from soils containing aged MBT residues, MBT residues non-extractable with 0.01 M CaCl2 or MBT residues non-extractable with organic solvents, respectively. About 20% of the radioactivity found in maize leaves represented chromatographically characterized parent compound. At the end of the plant experiment the soil was extracted again with 0.01 M CaCl2 and with organic solvents. The soil extracts and also the organic phases obtained from the aqueous fulvic acid solution contained unchanged parent compound.  相似文献   

7.
Dhillon SK  Hundal BK  Dhillon KS 《Chemosphere》2007,66(9):1734-1743
Greenhouse experiments were conducted to study the bioavailability of selenium (Se) to sorghum (Sorghum bicolor L.), maize (Zea mays L.) and berseem (Trifolium alexandrinum L.) fodders in a sandy loam soil amended with different levels of Se-rich wheat (Triticum aestivum L.) and raya (Brassica juncea L. Czern) straw containing 53.3 and 136.7microg Seg(-1), respectively. Each of the fodder crops was grown after incorporation of Se-rich materials either individually or in a sequence - sorghum-maize-berseem by incorporating Se-rich straws only to the first crop. Application of Se-rich straws to each crop, even at the greatest rate of 1%, did not have any detrimental effect on dry matter yield of different crops. With increase in the level of wheat straw from 0% to 1%, Se content in sorghum and maize plants increased to greatest level of 1.3 and 1.5microg g(-1), respectively, at 0.3% of applied straw and thereafter it decreased consistently. In case of raya straw, the greatest Se content in sorghum (2.3microg g(-1)) and maize (3.0microg g(-1)) was recorded at 0.3% and 0.4% of the applied straw, respectively. Unlike sorghum and maize fodders, Se content in all the four cuts of berseem continued to increase with increase in the level of applied straws and for different cuts of berseem it varied from 1.6 to 2.3 and 3.4 to 4.3microg g(-1) in case of wheat and raya straw, respectively. Similar variations in Se content of different fodder crops were recorded when these were grown in the sequence - sorghum-maize-berseem; but Se content was 2-4 times lower than when each crop was grown with fresh application of Se-rich straw. None of the fodders absorbed Se in levels toxic for animal consumption (>5microg g(-1)) even at the greatest level of applied straw. Of the total Se added through Se-rich straws, utilization of Se was not more than 2% in case of sorghum and maize crops and up to 5% in case of berseem. At the time of sowing of sorghum, hot water soluble Se (HWS-Se) in soils treated with different levels of Se-rich wheat and raya straw, respectively, varied from 18 to 36 and 18 to 79microg kg(-1). Whereas in case of berseem, it varied from 33 to 101 and 33 to 154microg kg(-1), respectively. HWS-Se present at the sowing time of berseem was significantly correlated with Se content of all the four cuts in the soil treated with Se-rich straws; the coefficients of correlation 'r' varied between 0.79 (p0.05) and 0.99 (p0.001). Selenium-rich materials supplied significant amounts of S, P and micronutrients to the growing fodder crops. These investigations suggest that Se-rich raya and wheat straw may be disposed off safely in soils used for growing fodders.  相似文献   

8.
This study investigates the effects of residue incorporation coupled with plant growth and soil moisture level on wheat biomasses, soil nutrients, labile organic carbon (LOC), microbial metabolic profiles, and community composition. Four management practices were used in a 180-day pot experiment: (1) control (CON), (2) maize (Zea mays L.) residue incorporation without plants (MR), (3) wheat (Triticum aestivum L.) plants without maize residue (WP), and (4) maize residue incorporation with wheat plants (MRWPs). Each management practice included soil moisture at both 40 and 80% of field capacity. At wheat harvest, soil nutrient contents in the WP and MRWP treatments were significantly lower than in the CON and MR treatments. In comparison with the CON treatment, MR, WP, and MRWP treatments resulted in 35, 23, and 67% increases in dissolved organic carbon content; 17, 12, and 34% increases in hot-water extractable organic carbon content; and 78, 50, and 150% increases in microbial biomass carbon content. Furthermore, microbial utilizations of carboxylic acids and polymer carbon sources in the MR, WP, and MRWP treatments were 261 and 88%, 239 and 105%, and 300 and 126% higher than in the CON treatment. The MR and CON treatments had similar phospholipid fatty acid (PLFA) content but the WP and MRWP treatments had significantly increased gram-negative content and changes to community composition compared with the CON and MR treatments. The wheat biomass, LOC, and PLFA contents significantly increased with greater soil moisture. Overall, these results suggest an additive effect of residue incorporation and plant growth on LOC contents, primarily due to the changes in microbial utilization of carbon sources and community composition.  相似文献   

9.
A simple and efficient residue analysis method for direct determination of ioxynil octanoate in maize and soil was developed and validated with High Performance Liquid Chromatography-Ultra Violet (HPLC-UV). The samples were extracted with mixtures of acetonitrile and deionized water followed by Solid Phase Extraction (SPE) to remove co-extractives prior to analysis by HPLC-UV. The recoveries of ioxynil octanoate extracted from maize and soil samples ranged from 86 %-104 % and 84 %-96 %, respectively, with relative standard deviation (RSD) less than 7.84% and sensitivity of 0.01 mg kg(-1). The method was applied to determine the residue of ioxynil octanoate in maize and soil samples from experimental field. Data had shown that the dissipation rate in soil was described as pseudo-first-order kinetics and the half-life (t(1/2)) was less than 1.78 days. No ioxynil octanoate residue (<0.01 mg kg(-1)) was detected in maize at harvest time withholding period of 60 days after treatments of the pesticide. Direct confirmation of the analytes in field trial samples was realized by Liquid Chromatography-Mass Spectrometry (LC-MS).  相似文献   

10.
Plants grown in contaminated areas may accumulate trace metals to a toxic level via their roots and/or leaves. In the present study, we investigated the distribution and sources of Pb and Cd in maize plants (Zea mays L.) grown in a typical zinc smelting impacted area of southwestern China. Results showed that the smelting activities caused significantly elevated concentrations of Pb and Cd in the surrounding soils and maize plants. Pb isotope data revealed that the foliar uptake of atmospheric Pb was the dominant pathway for Pb to the leaf and grain tissues of maize, while Pb in the stalk and root tissues was mainly derived from root uptake. The ratio of Pb to Cd concentrations in the plants indicated that Cd had a different behavior from Pb, with most Cd in the maize plants coming from the soil via root uptake.  相似文献   

11.
Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.). Results showed that Hg concentrations in foliages were correlated significantly (p < 0.05) with air Hg concentrations but insignificantly correlated with soil Hg concentrations, indicating that Hg in crop foliages was mainly from air. Hg concentrations in roots were generally correlated with soil Hg concentrations (p < 0.05) but insignificantly correlated with air Hg concentrations, indicating that Hg in crop roots was mainly from soil. No significant correlations were found between Hg concentrations in stems and those in air and soil. However, Hg concentrations in upper stems were usually higher than those in bottom stems, implying air Hg might have stronger influence than soil Hg on stem Hg accumulation.  相似文献   

12.
Bi YL  Li XL  Christie P  Hu ZQ  Wong MH 《Chemosphere》2003,50(6):863-869
Application of topsoil over phytotoxic mine wastes is often practised to establish perennial plant communities on minespoil areas. In China, population pressure encourages attempts to remediate such areas by growing arable crop plants, but efforts to establish agricultural crops often fail. We report an outdoor pot experiment that compared the effects of two arbuscular mycorrhizal (AM) fungi, Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe and G. versiforme (Karsten) Berch, on the growth and nutrient uptake of maize (Zea mays L.) grown in different depths of soil layer overlying coal fly ash. Colonization by both AM fungi increased plant growth compared with non-mycorrhizal controls, with G. mosseae giving higher yields of maize than G. versiforme at the same depths of soil. Increasing soil depth led to increased plant yields. Mycorrhizal plants absorbed more nutrients than non-mycorrhizal controls, and translocated less Na to the shoots, perhaps protecting the plants from excessive Na accumulation. These preliminary results indicate that arbuscular mycorrhizas may make a substantial contribution to successful crop establishment in soils overlying areas of coal fly ash.  相似文献   

13.
During two vegetation periods, the behaviour of the triadimefon metabolite, triadimenol, in different plant parts of winter wheat and in soil was investigated. The fungicide Bayleton DF (triadimefon + captafol) was applied at the beginning of earing. Different ratios of triadimenol-A/-B were found in individual plant parts. Triadimenol-A predominated in the two uppermost leaves, and triadimenol-B in the roots and in the soil. No residues of triadimenol were found in grain at harvest time (detection limit 0.01 mg/kg).  相似文献   

14.
The response of maize (Zea mays L.) to inorganic arsenic exposure was studied, at the seedling stage under hydroponic conditions, preliminarily in sixteen lines (fourteen hybrids and two inbred lines) and then, more deeply, in six of these lines, selected by showing contrasting differences in their sensitivity to the metalloid. The results indicated that (i) maize is rather tolerant to arsenic toxicity, (ii) arsenite is more phytotoxic than arsenate, (iii) roots are less sensitive than shoots to the metalloid, (iv) a great accumulation of non-protein thiols (probably phytochelatins), without substantial effect on the glutathione content, is produced in roots but not in shoots of arsenic-exposed plants and (v) maize is able to accumulate high levels of arsenic in roots with very low translocation to shoots. The study, thus, suggests that maize, for its very low rate of acropetal transport of arsenic from roots to shoots, may be a safe crop in relation to the risk of entry of metalloid in the food chain and, for being an important bioenergy crop capable of expressing high levels of arsenic tolerance and accumulation in roots, may represent an interesting opportunity for the exploitation of agricultural useless arsenic contaminated lands.  相似文献   

15.
The potential RDX contamination of food chain from polluted soil is a significant concern in regards to both human health and environment. Using a hydroponic system and selected soils spiked with RDX, this study disclosed that four crop plant species maize (Zea mays), sorghum (Sorghum sudanese), wheat (Triticum aestivum), and soybean (Glycine max) were capable of RDX uptake with more in aerial parts than roots. The accumulation of RDX in the plant tissue is concentration-dependent up to 21 mg RDX/L solution or 100 mg RDX/kg soil but not proportionally at higher RDX levels from 220 to 903 mg/kg soil. While wheat plant tissue harbored the highest RDX concentration of 2,800 μg per gram dry biomass, maize was able to remove a maximum of 3,267 μg RDX from soil per pot by five 4-week plants at 100 mg/kg of soil. Although RDX is toxic to plants, maize, sorghum, and wheat showed reasonable growth in the presence of the chemical, whereas soybeans were more sensitive to RDX. Results of this study facilitate assessment of the potential invasion of food chain by RDX-contaminated soils.  相似文献   

16.
Abstract

Movement and degradation of 14C‐atrazine (2‐chloro 4‐(ethylamino)‐6‐(isopropylamino)‐s‐triazine, was studied in undisturbed soil columns (0.50m length × 0.10m diameter) of Gley Humic and Deep Red Latosol from a maize crop region of Sao Paulo state, Brazil. Atrazine residues were largely confined to the 0–20cm layers over a 12 month period Atrazine degraded to the dealkylated metabolites deisopropylatrazine and deethylatrazine, but the major metabolite was hydroxyatrazine, mainly in the Gley Humic soil. Activity detected in the leachate was equivalent to an atrazine concentration of 0.08 to 0.11μg/1.

The persistence of 14C‐atrazine in a maize‐bean crop rotation was evaluated in lysimeters, using Gley Humic and Deep Red Latosol soils. Uptake of the radiocarbon by maize plants after 14‐days growth was equivalent to a herbicide concentration of 3.9μg/g fresh tissue and was similar in both soils. High atrazine degradation to hydroxyatrazine was detected by tic of maize extracts. After maize harvest, when beans were sown the Gley Humic soil contained an atrazine concentration of 0.29 μg/g soil and the Deep Red Latosol, 0.13 μg/g soil in the 0–30 cm layer. Activity detected in bean plants corresponded to a herbicide concentration of 0.26 (Gley Humic soil) and 0.32μg/g fresh tissue (Deep Red Latossol) after 14 days growth and 0.43 (Gley Humic soil) and 0.50 μg/g fresh tissue (Deep Red Latossol) after 97 days growth. Traces of activity equivalent to 0.06 and 0.02μg/g fresh tissue were detected in bean seeds at harvest. Non‐extractable (bound) residues in the soils at 235 days accounted for 66.6 to 75% (Gley Humic soil and Deep Red Latossol) of the total residual activity.  相似文献   

17.
Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates.  相似文献   

18.
Wang WS  Shan XQ  Wen B  Zhang SZ 《Chemosphere》2003,53(5):523-530
Two extraction procedures, i.e. a single extraction procedure using low-molecular-weight-organic-acids (LMWOAs) as extractant and a sequential extraction procedure recommended by the European Community Bureau of Reference (BCR), were performed to extract metal fractions from wet rhizosphere soil. And the extracted soil solutions were further fractionated as colloidal and truly dissolved fractions. Heavy metals in maize roots were experimentally defined as metals adsorbed on cell wall and metals taken up by cross-membrane by washing with CaCl(2). The correlation coefficients between extractable metals from soil and taken up by maize roots and shoots were compared between two extraction methods, and a good correlation was obtained if LMWOAs were used. In contrast, the correlation coefficients were poor when the BCR method was used.  相似文献   

19.
Nitrogen (N) remaining as inorganic ('mineral') soil N at crop harvest (N(minH)) contributes to nitrate leaching. N(minH) data from 20 (grass) and 78 (maize) experiments were examined to identify main determinants of N(minH). N-rate (A) explained 51% (grass) and 34% (maize) of the variance in N(minH). Best models included in addition crop N-offtake (U), offtake in unfertilised plots (U(0)), and N(minH) in unfertilised plots (N(minH,0)) and then explained up to 75% of variance. At low N-rates where apparent N recovery rho keeps to its initial value rho(ini), N(minH) keeps to its base level N(minH,0). At N-rates that exceed the value A(crit) where rho drops below rho(ini), N(minH) rises above N(minH,0) by an amount proportional to (rho(ini)-rho)A. About 80% of (rho(ini)-rho)A was found as N(minH,) in grass as well as in maize. The fraction (1-rho(ini))A does not appear to contribute to N(minH) at low N-rates (A< or =A(crit)) or at high N-rates (A>A(crit)).  相似文献   

20.
Dewatered municipal biosolids (DMBs) were applied to a field at a rate of ~22 Mg dw ha(-1) in October 2008. Pharmaceuticals and personal care products (PPCPs) were monitored in groundwater, tile drainage, soil, DMB aggregates incorporated into the soil post-land application, and in the grain of wheat grown on the field for a period of ~1 year following application. Over 80 PPCPs were analyzed in the source DMB. PPCPs selected for in-depth monitoring included: antibiotics (tetracyclines, fluoroquinolones), bacteriocides (triclosan, triclocarban), beta-blockers (atenolol, propranolol, metaprolol), antidepressants (fluoxetine, citalopram, venlafaxine, sertraline), antifungals (miconazole), analgesics (acetaminophen, ibuprofen) and anticonvulsants (carbamazepine). PPCPs in tile were observed twice, ~3 weeks and 2 months post-application. Of all PPCPs measured in tile drainage, only carbamazepine, ibuprofen, acetaminophen, triclosan, triclocarban, venlafaxine, and citalopram were detected (5-74 ng L(-1)). PPCPs were not detected in groundwater >2 m depth below the soil surface, and concentrations above detection limits at 2 m depth were only observed once just after the first rain event post-application. In groundwater, all compounds found in tile, except carbamazepine, acetaminophen and citalopram, were detected (10-19 ng L(-1)). PPCPs were detected in DMB aggregates incorporated in soil up to 1 year post-application, with miconazole and fluoxetine having the lowest percent reductions over 1 year (~50%). For several compounds in these aggregates, concentration declines were of exponential decay form. No PPCPs were detected in the grain of wheat planted post-application on the field. No PPCPs were ever detected in water, soil or grain samples from the reference plot, where no DMB was applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号